
Theoretical Linguistics P rogramme, B udapest University (E L T E)

STRONG CO M PO SITION ALITY

László Kálmán

Research Institute for Linguistics, Hungarian Academy of Sciences

W orking Papers in th e T heory of G r a m m a r , Vo l . 2, No. 3

R e c e iv e d : J une 1995

STRONG COMPOSITIONALITY

László K álm án

Theoretical Linguistics Programme, Budapest University (ELTE)
c /o Research Institute for Linguistics, HAS, Room 119

Budapest L, P.O. Box 19. H-1250 Hungary
E-MAIL: kalman0nytud.hu

W orking P apers in the T heory of Grammar , Vo l . 2, No. 3
Su ppo rted by th e H ungarian National Research F und (OTKA)

Theoretical Linguistics Programme, Budapest University (E L T E)
Research Institute for Linguistics, Hungarian Academy of Sciences

B u d a p e s t I., P.O. Box 19. H-1250 H u n gary
T e l e p h o n e : (36-1) 175 8285; Fa x : (36-1) 212 2050

WfS
* Hííivtüáamányi lntéze.

Kcnyvlára ^
■ A\Íjv, szímr 16 m /)r

0. In tr o d u c t io n
This paper addresses the m uch-debated issue of the Principle o f Compositionality,
the exact content, the form ulation and the validity of which has been questioned
so often. In its weakest form, it requires the in terp re ta tion of na tu ra l-language
u tterances to assign meanings in a more or less system atic m anner. In M ontague’s
(1970) classical version, it stipulates a perfect parallelism between sem antic and
syntactic structu res. Its validity has been questioned on the basis of the influence of
the (u tterance-ex ternal and utterance-internal) context on in terp re ta tion . Finally,
it also has acquired an intuitive meaning, which roughly corresponds to m inim izing
idiomaticity.

In this paper, I will argue th a t the principle of com positionality has several
weak points, which make its actual content far weaker than its in tu itive in te r­
p re ta tion . As a m a tte r of fact, the principle is almost vacuous in its popu lar
form. S ec t io n 1 introduces the principle and explains w hat its weak points are.
I conclude th a t Com positionality must be strengthened if it is to act as a m ore
substan tia l constrain t on in terpretation. I will also explain how the in tu itive idea
th a t idioms are exceptions to Com positionality can be m ade m ore technical.

S ec t io n 2 presents a language tha t is prototypically non-com positional in the
in tuitive sense. T he language in question is the com m and language of the Unix
operating system. A fter explaining the basics of the language (S e c t io n 2.1), I
will argue th a t it is no accident th a t users have difficulty m astering it. A lthough
its in te rp re ta tion is perfectly compatible w ith the popular form of the principle
of com positionality, it is fundam entally different from n a tu ra l languages in ways
obviously re la ted to the intuitive concept of com positionality as described in the
first section (S ec t io n 2.2).

S e c t io n 3 is the core of the paper. I propose two additional constrain ts
on the in te rp re ta tio n of natural-language expressions: Independence says th a t
the m eanings assigned to sub-expressions in an expression m ust not depend on
each o th e r’s shapes (S ec tio n 3.1); and A dditiv ity prohibits operations com bin­
ing m eanings from destructively modify any previously assigned m eanings (S e c ­
t io n 3.2). I also sketch an in terpretation m echanism for Unix com m ands th a t
respects Strong Compositionality, i.e., the conjunction of Com positionality, In ­
dependence and A dditivity. S ection 3 .2 .1 deals w ith the particu la r problem of
trea ting default m echanism s w ithout violating Additivity.

S ec t io n 4 in tends to draw some consequences of Strong C om positionality for
the sem antics of n a tu ra l languages. In particu lar, in S ectio n 4 .1 I argue th a t
the m athem atica l m etaphor of ‘incom plete’ expressions seen as functors m ust be
abandoned in term s of the principle of additivity. Instead, I will propose to a b an ­
don the concept of ‘sem antic incompleteness’ altogether, so th a t the com bination
of m eanings yields ju s t m ore complete meanings from less com plete ones. S e c ­
t io n 4 .2 is abou t the expression-internal interactions of meanings. I argue th a t

2

such interactions are no t excluded by Independence (which only bans interactions
in te rm s of formal properties), nor by Additivity (inasmuch as the interactions
are n o t destructive). I sketch possible analyses of phenomena in which such in­
te rac tio n s are involved. In particu lar, I argue th a t the meanings of adjectives and
nouns in ‘intersective m odification’ constructs are ‘brought into harm ony’ in a
non-destructive way before the ‘in tersection’ operation is perform ed, and this type
of analyses can perhaps be extended to other types of complex expressions, such
as preposition /noun an d verb /d irec t object constructs. In conclusion, I suggest
th a t , by relying on the same mechanisms as we use for treating default values, the
analyses are com patible w ith Strong Compositionality. Finally, in S e c tio n 4.3,
I in tro d u ce an operation called coalesced intersection, which can be used instead
of function application for combining meanings. This section is about the possi­
ble techniques tha t allow us to trea t the meanings of syntactically complete and
incom plete expressions on a pair, w ithout type theoretic distinctions.

1. C o m p o s it io n a lity
It is h a rd to imagine a language for which no compositional in terp re ta tion exists
un d er th e usual definition of com positionality:1

(1) Compositionality
T he meaning of a complex expression is a function of the meanings of its
sub-expressions and of the way in which they are put together.

It seem s obvious th a t, for any complex expression whatsoever, as long as we can
determ ine ‘the way in which its constituents are pu t together’, th is criterion can
be satisfied .2 The definition in (1) has at least three loose points th a t are jointly
responsible for this:3

(2) Weak points o f compositionality
(i) the function used for combining the meanings of the sub-expressions

can be any function at all;
(ii) there is no a priori lim itation on w hat objects meanings can be;

(iii) in the definition above, there are no constraints as to how the meanings
should be assigned to the various sub-expressions.

Let m e now elaborate on each point in (2i—iii) above.
A d (2i): There are few things a function cannot do. In particu lar, we can

define functions pointwise so th a t their behaviour cannot be considered uniform in

1 For the variants of this definition and their history, see P artee (1984) and
Szabó (1995).

2 Cf. Partee (1984).
3 Partee (1984) raises the same problems.

3

any in tu itive sense. T h a t is, although the intuitive content of com positionality im ­
plies th a t, under norm al circumstances, the same constituent in the sam e syntactic
role will play the sam e sem antic role, this is not guaranteed by the definition in (1).
For exam ple, a word like yesterday could easily m ean ‘yesterday’ in some sentences
and ‘accidentally’ in others in term s of (1). True, a word like yesterday could be
polysemous in the sense th a t there would be two hom onym ous (hom ophonous)
words of this shape, one of which means ‘yesterday’ and the o ther ‘accidentally’.
In th a t case, we would consider them two different expressions (the surface shapes
of which incidentally coincide), and the principle of com positionality would apply
to b o th expressions separately and independently. On the o ther hand, were this
to be the case, our hypothetical word yesterday would lead to am biguities in most
cases. T h a t is, m ost sentences would be ambiguous if they contained it as a con­
stituen t. But the definition in (1) would even allow a s itua tion in which yesterday
could unam biguously refer to ‘yesterday’ in some cases, and ‘accidentally’ in all
others, which is ha rd to imagine in any hum an language. (This exam ple will be
contrasted w ith o ther types of ‘am biguities’ in S ect io n 4.2.)

A d (2ii): There are few things we could not do w ith artificial m eanings.4
The sim plest way of showing this is the following. Obviously, the in ten tion of the
principle of com positionality as formulated in (1) is th a t the meanings of complex
expressions depend on the meanings ra ther than the forms of their sub-expressions.
However, if w hat a ‘m eaning’ is is not constrained, then we could assign character
strings to certain sub-expressions as their meanings (say, character strings corre­
sponding to their orthographic form), and have the com bination function behave
differently depending on w hat those strings are, thereby getting around an essen­
tial aspect of w hat (1) intends to claim. I will not have too much to say about
this in the following. Note, however, th a t a remedy for the weakness in (2i) could
also help solving (2ii): For example, if the com bination functions sim ply cannot
perform operations on character strings, then the above ‘trick’ is not feasible.

A d (2iii): There are few things we could not do if we did not constrain the
assignm ent of m eanings to expressions. A lthough the principle of com positionality
intends to constrain the assignment of meanings to complex expressions, we can
still do alm ost anything if the assignments of meanings to simple expressions is
left unconstrained . For example, if we could determ ine the m eaning of a simple
sub-expression depending on w hat other expressions occur in the complex expres­
sion (and ‘the way in which they are put together’), then the meanings of complex
expressions could depend on the shape of their constituents, which would be un ­
desirable, as poin ted out in (2ii) above.

M y conclusion is th a t new principles, constraining the com positionality p rin ­
ciple in (1), should be developed and adopted for the syn tax /sem antics interface

4 Cf. Janssen (1983) and Partéé (1984).

4

of natural languages. They m ust constrain bo th the class of functions th a t can be
u sed for combining the m eanings of the sub-expressions of a complex expression,
a n d the way in which sim ple expressions are assigned meanings. The following
sections will be devoted to such constraints.

Before proceeding, let m e briefly digress on a problem th a t bo th the trad itional
concept of compositionality an d the stric ter version to be proposed m ust face. This
problem is th a t non-transparent expressions by definition violate the principle of
compositionality, since th e ir meanings are unpredictable from the meanings of
th e words th a t they contain and the way they are combined.5 There are various
possibilities of dealing w ith such expressions.

First, we could say th a t they constitute exceptions from the principle (th a t is,
we could form ulate the principle in such a way th a t it applies to transparent com­
plex expressions only). I believe this is incorrect, because m any non-transparent
expressions are partially com positional, and preventing the principle of compo­
sitionality from applying to them would make wrong predictions. For example,
in languages th a t make lexical distinctions between verbs w ith different aspec­
tu a l properties, an idiom headed by a verb th a t belongs to a particu lar aspectual
class will behave accordingly. Thus, in Russian, there are no idioms headed by
perfective verbs tha t are n o t perfective as a whole, and so on.

Second, we could say th a t non-transparent expressions are somehow not com­
plex at all. This would also be incorrect, because most non-transparent complex
expressions p a tte rn together w ith transparent ones, and partic ipate in sim ilar pro­
cesses, so th a t their syntactic complexity is undeniable. Now, the term complex
expression in the principle (1) is to be understood in the syntactic sense, or the
en tire principle becomes vacuous.

Third, we can say th a t th e idiomatic, non-transparent aspect of a complex ex­
pression belongs to ‘the way in which the sub-expressions are p u t together’. I think
th is is the only correct way of dealing w ith non-transparent expressions. For ex­
am ple, take the upper hand is clearly a complex expression w ith a non-transparent
m eaning. Now assume th a t ‘the way in which its parts are pu t together’ is not
sim ply the derivation th a t produces analogous transparent expressions, b u t an
exceptional, qualified version of th a t derivation, which produces ju s t this phrase.
T h en its m eaning can be seen as perfectly compositional. True, this procedure
w ould allow us to explain away many odd cases; it would even allow us to trea t
intuitively non-compositional languages as compositional (but having m any excep­
tio n a l derivations, maybe for every expression). But positing special derivations is

5 This problem was used as a counter-argum ent against com positionality by
Bresnan (1978), am ong others.

5

costly and calls for independent m otivation. On the other hand, this tre a tm e n t al­
lows us to tre a t ‘partia lly transparen t’ expressions correctly, since any exceptional
derivation m ay have regular, non-exceptional aspects.

To conclude, I would like to emphasise th a t the problem of non -transparen t
expressions is unrelated to the problems of com positionality m entioned in the
rem arks (2i—iii) above and, in general, to the issues addressed in this p ap e r , so the
argum ents given above are tangential to the m ain points to be made.

2. A N o n -C o m p o s it io n a l L an gu age
As I suggested in the above, the sense in which natural languages are in tu itively
com positional is m uch narrower than the definition in (1). To illu s tra te this,
and to come closer to w hat further constraints should be imposed, let m e briefly
present a language which is wildly non-com positional in the intuitive sense, i.e.,
very dissim ilar to n a tu ra l languages, although it can be given a com positional
in te rp re ta tion under the definition (1). The language in question is the language
of Unix commands. As a m atter of fact, probably the com m and language of any
com puter operating system would do. I chose Unix because it is best know n to
the academ ic community. The reader fam iliar w ith the basics of Unix com m ands
may skip the following sub-section.

2.1 . B a s ic s o f U n ix C om m an d s
A Unix com m and (also called command line) consists of a command n a m e , fol­
lowed by a list of options (which are in principle all optional and their o rd e r does
not m a tte r in principle), followed by zero or more arguments (some of w hich may
be optional). (The options and the argum ents together are called parameters.)
For exam ple, the com m and name rm (for ‘remove’) can be followed by th e options
-d , - f , - i a n d /o r - r , and an argum ent (file) (the name of the file to be rem oved).6

O ptions come in two varieties: they either consist of a hyphen a n d a string
(such an option is called a switch or a Bag: the options of rm m entioned above
belong here), or a hyphen, a string and an o ther string. For example, the com m and
line

make - f (makefile) (target)

6 I will make unforgivable simplifications here and in the following as far as
the real complexities of the Unix com m and language are concerned. For
exam ple, in actual fact, many other options can appear w ith rm in various
im plem entations, and in all im plem entations, more th an one file n am e can
be given.

6

invokes the program make w ith the argum ent (target), and specifies th a t the rules
o f producing the target are described in a file called (makefile). The la tte r type of
options are said to consist o f an option letter (- f above) followed by its argument
((makefile) above). (W hether a blank is needed between the option le tte r and
its argument depends on th e im plem entation, or even on the individual com m and
names.) W ith some com m and names, the flags and the option letters can be mixed
freely, and th e arguments o f th e option le tters may follow a conglomerate of flags
an d option letters in the o rd e r in which th e corresponding option le tters occur.
In some cases, such a conglom erate can be w ritten in one single word, introduced
w ith a single hyphen. So, if the command nam e make can be followed by the
flag -n (‘do nothing, ju s t show what you would do’), then the following may be
equivalent in an im plem entation:

make -n - f (makefile) (target)
make -n -f(m akefile) (target)
make -n f (makefile) (target)
make - fn (makefile) (target)

As I said , options are in principle optional, but sometimes the s itua tion is
m uch more complex. For exam ple, it may happen th a t the presence of either a
particular argum ent or a particu lar option is obligatory. For example, the com­
m and name g rep (‘look for strings in a file’) can be followed by an argum ent (expr)
(the expression describing th e strings to look for) or an option ‘- f (exprfile)’ (the
nam e of a file in which such an expression is to be found); exactly one of the two
is obligatory. In other cases, an option m ay appear only if another option is also
present. For example, the com m and name I s (‘list names, properties etc. of files’)
can be followed by the o p tio n - t (‘sort by tim e ra ther th an alphabetically’); an
o ther flag, -u , can also a p p ea r (‘sort by last access tim e ra th e r than last modifi­
cation tim e’), bu t only if - t is also present. Finally, under norm al circum stances,
arguments m ay be optional only if the rem aining argum ents are also optional, be­
cause argum ents are only m arked by their positions (they are not in troduced w ith
option letters).

For the sake of clarity, a careful distinction is to be m ade between the com­
m and language and the shell languages of an operating system. The com m and
language determ ines how programs stored in the com puter can be invoked w ith
various param eters. The shells, on the o ther hand, are command interpreters,
i.e., program s which help th e user issue com m ands by preprocessing h is /h e r in­
p u t command lines. Shells usually offer in teresting possibilities to the user, e.g.,
they rem em ber where various programs are to be found (for a faster invocation),
they rem em ber what com m ands have been issued earlier (so th a t it is easier to

7

issue earlier com m ands again and again), they allow the user to use all so rts of
abbreviations for com m and lines, file names etc., they help the user invoke p ro ­
gram s one after the other, or in various combinations (for exam ple, they contain
flow-of-control possibilities like the if . .. then ... construct), and they provide the
user w ith built-in commands th a t do not correspond to separate program s, b u t
are carried out by the shell itself. For the sake of simplicity, the language th a t I
am talking about here is the command language ra ther than any particu lar shell
language.

2 .2 . T h e N o n -C o m p o s it io n a lity o f U n ix C o m m a n d s
As I m entioned in S ec t io n 1, the com positionality of an entire language is a
gradual concept. It may happen th a t every single expression of a language is
constructed using some special derivation. Such a language would satisfy the
principle of com positionality in a vacuous way, since none of its expressions would
be transparen t. However, it would be entirely non-com positional in the in tu itive
sense, i.e., it would be very dissimilar to na tu ra l languages. The Unix com m and
language constitu tes an interm ediate case: m ost com m and lines can be seen as
having a m ore or less transparen t in terpretation, yet all users agree th a t th e ir
sem antics is far from sim ilar to the semantic of natural-language utterances.

W hat is the reason why Unix commands ‘feel’ so non-com positional a t tim es?
Obviously, this is due to the fact tha t, despite their fairly regular syntax (in the
non-technical sense of ‘regular’), expressions in the same syntactic position (even
literally identical expressions) fulfil very different functions from one com m and to
the other. T h a t is, b o th the simple expressions (com m and nam es, flags, op tion
letters) and their ways of com bination (being a first or second argum ent, being an
option etc.) lack constant meanings. Let me present a few exam ples to illu s tra te
this.

C om m and nam es may have multiple (vaguely related) functions. For exam ple,
the com m and mount is used to a ttach a data-storing device (such as a d a ta disk) to
the file system when it is followed by an argum ent, whereas it displays inform ation
on the currently a ttached data-storing devices when invoked w ithout an argum ent.
The com m and sendm ail has many unrelated functions, such as sending m ail,
rebuilding the database describing mail protocols, and so on.

The m eanings of flags may vary from one com m and nam e to the other. For
exam ple, the flag -1 m eans ‘produce long, verbose listing’ when used w ith the
com m and I s (m entioned above), whereas it means ‘count lines only’ when it fol­
lows the com m and nam e wc (which is used for counting the num ber of lines, words
a n d /o r characters in a file). The flag -v means ‘produce verbose o u tp u t’ w ith
m any com m ands, whereas it m eans ‘display non-m atching ra th e r th an m atch ing
lines’ when used w ith g rep . As we have seen, - f as an option le tte r may abbrev iate

8

‘file’ (it precedes the n am e of an auxiliary file, such as one containing commands
or expressions), but it s tan d s for ‘force’ when used w ith rm (in which case various
precautions are not tak en by the rm program).

T h ere is no uniform ity as to w hat is expressed w ith an (obligatory or optional,
first or second) argum ent or with an option. For exam ple, as we have seen, the
expression that tells g re p w hat strings to look for m ay appear in an option (pre­
ceded by -e) or as an obligatory argum ent. The nam e of the target archive file of
the t a r archiving u tility can only be expressed w ith an option (‘- f (file)’), while
its argum ent is the nam e of the file to be extracted from or added to the archive.
On the o ther hand, as we have seen, the nam e of the ta rge t is an argum ent of the
com m and name make.

T h e examples could be listed indefinitely. Everyone who has used Unix will
know how often the so-called manual pages (descriptions of the syntax and se­
m antics of each com m and) have to be consulted in order to find out about the
idiosyncratic properties of a command. Clearly, the heterogeneous behaviour of
the com m ands is due to the fact th a t each command nam e corresponds to a pro­
gram, an d it is those program s ra th e r than the shells or the operating system
tha t deal w ith the param eters given in the com m m and line. T hat is, it is w ithin
the discretion of the program m er who creates those program s to define how they
should behave. In o ther words, the in terpreta tion of the param eters is the ‘internal
affair’ o f each individual program . The only way to constrain the heterogeneity of
their in terpretation is to instruct the program m ers to be more consistent.

However, the in te rp re ta tion of the Unix com m and language (and of other
com puter command languages, for th a t m atter) is trivially compositional under
the trad itiona l concept o f compositionality, since the program s corresponding to
the com m ands contain th e definitions of the functions th a t they com pute, and the
program s themselves a re in terpreted compositionally. B ut those program s do all
sorts o f ‘tricks’, falling in to each of the three classes th a t I m entioned in (2i-iii)
in S e c t io n 1. That is, (i) they em body arb itrary functions (any function tha t
a com puter program can compute); (ii) they have access to their param eters in
the form of character strings, which m eans th a t the compositional calculation of
the m eaning of a com m and line m ust rely on an odd concept of ‘m eaning’; and
(iii) th e way in which ‘re a l’ meanings are assigned to the param eters (e.g., the way
in which a character s trin g is taken to refer to a file) is not system atic (because it
is also an ‘internal affa ir’ of the program s invoked).

W e can see that th e intuitive non-com positionality of command languages like
th a t of Unix stems from the weak points of the principle of com positionality as
described in (2) in S e c t io n 1. If we were to build a shell sim ulating a composi­
tional in terpretation for Unix commands, we should solve the general problem s of
compositionality.7

7 W e have proposed a partial solution for this in Kálm án and R ádai (1994).

9

3. S tro n g C o m p o sit io n a lity
In this section, I develop an alternative to the trad itional concept of com position­
ality. T he alternative will consist in adding two sub-principles to the trad itio n a l
definition (see (1) in S e c tio n 1), called Independence and Additivity. The re su lt­
ing, m ore restrictive, principle will also be called Strong Compositionality. T he
following sub-sections introduce these principles.

3 .1 . In d e p e n d e n c e
I will s ta r t w ith the problem of assigning meanings to the sub-expressions o f an
expression. We have seen th a t the intuitive non-com positionality of Unix com ­
m ands is p a rtly due to the fact th a t the program invoked is free to in te rp re t the
param eters, depending on its idiosyncratic contents. The principle of com position­
ality (see (1) in S e c tio n 1) leaves it open how the sub-expressions of a com plex
expression are assigned meanings. To satisfy the intuitively desired requirem ents
of com positionality in a hypothetical Unix com m and language, the m eanings as­
signed to the param eters m ust not depend on w hat the com m and nam e is and
w hat the o ther param eters are. T hat is, meanings m ust not be assigned in a
construction-specific m anner. I propose the following principle to achieve th is:

(3) Independence
T he meanings of the constituents of a complex expression are assigned
independently of each other, of the way in which they are p u t together, an d
of the function th a t yields the meaning of the complex expression.

If a language obeys Independence, then the meaning of an expression m ay
not vary depending on w hat it is a constituent of. Were we not to impose such a
constraint, very similar constructs (e.g., containg the same expression in the sam e
syntactic role) could be in terpreted in heterogeneous (or even unrelated) ways.
Note th a t th is principle implies th a t the m eaning contributions of the constituen ts
of an expression are constant, i.e., they do not vary from one construct to the
other. This m eans a certain context-independence, which m any would deny. I
conceive of th is as a price to pay for a reasonable alternative to the trad itio n a l
concept of compositionality.

The role of the external context in the in terpreta tion of complex expressions
is undeniable, b u t it is not a challenge to e ither Com positionality or Independence
as long as we can reduce it to an influence on the assignment of m eanings to
simple sub-expressions, and this seems perfectly feasible (cf. P artee (1984)). O n
the o ther hand , the principle of independence also does not prevent those meanings
th a t the sub-expressions are assigned from interacting w ith each o ther to p roduce
complex m eanings (cf. S e c tio n 4.2). We only want to exclude the dependency
of the m eanings of complex expressions on the formal properties (shapes) of th e ir
sub-expressions.

10

3.2. A d d it iv ity
The variab ility of m eaning assignment is not the only reason why the meanings of
com m and names and param eters are no t constant in Unix commands. Even if we
assume th e principle of independence, the programs invoked by these commands
may deal w ith the m eanings of the param eters in idiosyncratic ways, because they
can do anything a co m pu ter program can do. T hat is how, for exam ple, the
program mount may behave in two entirely differently ways depending on w hether
it is passed an argum ent a t all. This peculiar, heterogeneous behaviour is not
related to th e way in w hich its eventual param eter is assigned a value.

To achieve a uniform behaviour of commands, we should be able to stipulate
th a t the meaning con tribu tion of the com m and name cannot be radically altered
by the presence or absence of param eters, and the o ther way round, the m eaning
con tribu tion of a p aram eter or a type of argument m ust not be radically altered by
the com m and that it is given to. This implies a non-destructive way of combining
constituents: whatever each constituent contributes to the m eaning of the entire
complex expression m ust b e constant from one expression to the other. This can
be form ulated as a sep ara te principle:

(4) A dditiv ity
T h e function th a t combines the meanings of the sub-expressions of a com­
p lex expression m u s t not destroy the information contained in those m ean­
ings.

The nam e ‘additivity’ is m otivated by the fact tha t, if a function obeys th is p rin­
ciple, th e n the meanings o f the sub-expressions are simply ‘sum m ed u p ’ in some
technical sense of the w ord . Obviously, the definition presupposes a concept of
information content for meanings. Usually, this kind of concept is defined by
a ttr ib u tin g an algebraic struc tu re to the domain(s) of meanings. The structu re
must co n ta in an ordering in terms of informativity, and an operation of combin­
ing pieces of information, which should not lead out of the structure . Assuming
such a concept, A dditivity means th a t the combination of two members of such a
domain m u st yield a th ird member th a t is ordered higher than b o th operands in
the inform ativity hierarchy.

For example, assum e th a t the m eaning (denotation) of the com m and nam e rra
is a set o f processes the on ly effect of which is the removal of some file. To combine
the m eaning of rm w ith th e meaning of a param eter, the param eter in question
must be assigned a m eaning in the sam e domain. For example, an argum ent (file)
could be assigned the set o f all processes that affect the file called (file), and the
flag - f could denote all processes th a t do not take certain precautions. Then the
m eaning o f ‘rm - f (file) ’ could be produced by taking the intersection of the three
sets. T h is operation clearly satisfies A dditivity if the domain of m eanings is the
powerset o f possible processes.

11

In general, A dditivity is always satisfied if the dom ain of m eanings is a pow-
erset and the only operation th a t may combine m eanings is intersection. Note
th a t A dditivity presupposes th a t the meanings of the sub-expressions combined
are of the sam e type (i.e., they are comparable in term s of the inform ativ ity or­
dering). This is an unorthodox requirem ent, which calls for fu rther explanation
and m otivation. I will tu rn back to it in S e c tio n 4.

A dditivity makes it very cumbersome to deal w ith non-m onotonicity , i.e.,
phenom ena in which so-called default values are involved. For exam ple, if we
invoke the program cc (which compiles source program s w ritten in the C language
into object files) w ithout specifying w hat the o u tpu t (executable) file is to be
called, the compiler will create a file called a .o u t . We can override th is default
nam e w ith the -o option letter. Now, if we were to in terpre t cc as the set of
processes th a t result in compiling a source file into some object file, and the option
‘-o (objfile)’ as the processes in which the output file is (objfile), then we get the
correct in terp re ta tion of their combination by just intersecting the two denotations.
In th a t case, however, we will not get the right result for the in te rp re ta tio n of cc
invoked w ithout a -o option (in which case the o u tpu t file nam e is a .o u t) . On
the o ther hand, if we were to build the name a . ou t into the denotation of cc,
then the intersection w ith th a t set w ith the denotation of ‘-o (objfile)’ would
be em pty (unless (objfile) happens to be a .o u t) . The form er set would contain
processes in which the ou tpu t file is called a .o u t , and the other would possibly
contain processes in which it is called differently. So A dditivity excludes those
com binations of meanings in which one meaning destroys or blocks som e default
inform ation associated w ith another. I will tu rn back to th is problem in a m om ent
(in S e c tio n 3 .2 .1 below).

Note th a t the denotation of ‘-o (objfile)’ above is re la ted to w hat a certain
file (referred to as ‘the ou tpu t file’ above) is called, and the denotation of cc m ust
involve the sam e file. Obviously, the semantic object corresponding to ‘the ou tpu t
file’ in the denotation of cc m ust be a variable the value of which is to be (objfile)
in term s of the denotation of ‘-o (objfile)’. T hat is, we have to assum e th a t
variables are present in the sem antic domains w ith respect to which com m ands
are in terpreted (e.g., in the states of the computer; in the Unix operating system,
so-called environment variables can play this role). In w hat follows, the term
‘variable’ will refer to such objects ra ther than variables in the language of sem antic
representations.

3 .2 .1 . D ea lin g W ith D efa u lts
As is clear from the above, Additivity makes it impossible to combine m eanings
in such a way th a t one m eaning overrides the defaults associated w ith another

12

m eaning. As an example, I quo ted Unix command lines like

cc -o (objfile) (sourcefile),

w here the default object file nam e associated w ith the com m and cc can be over­
rid d en by the file nam e in troduced with -o. Obviously, it is not possible to solve
th is problem by ju s t designing a command in terpreter (a shell) which preprocesses
th e u ser’s input com m and lines and obeys strong com positionality.8 In particular,
a m eaning th a t would include a piece of inform ation like ‘if there is no -o option
in m y command line, my o u tp u t file name is a .o u t ’, which we should assign to
th e com m and nam e cc, is p robab ly not a possible meaning.

To treat cases like the above in an additive way, we m ust assum e more complex
dom ains for m eanings (with th e appropriate ordering in term s of inform ativity).
For example, the denotation of the command nam e cc has to contain the set
corresponding to its underspecified meaning (in which the nam e of the ou tpu t
file is not specified), plus an indication on how default values can be provided if
necessary. T h a t is, I propose a separation of meanings from sources of default
values: the denotation of a program name is to be an ordered pair (S , V), where
S is the set of processes corresponding to the largely underspecified meaning,
w hereas V is some indication of how default values can be produced.9 For the
sake o f simplicity, we can say th a t V is an assignment function assigning (default)
values to variables.

Technically speaking,

V C Var x (J £>(r),
rSTYPE

w here Var is th e set of variables (as semantic objects, as I explained in S ec­
t i o n 3 .2), T Y P E is the set o f types, and D is the function th a t assigns a dom ain
to each type. Since V is a function, we have

(x,<*),(x,ß) € V => a = /?;

so we can say

V(x) =def { " if (x ,a) € V;
elsewhere

8 This is a lim itation th a t we had to face in our earlier paper m entioned in
footnote 7.

9 The two components can be seen as the committing vs. deferred inform ation
content of denotations, as explained in Kálm án (1990).

13

(assum ing th a t * £ U rg T Y P E -^(r))- Obviously, we also stipulate th a t, if x T G V arr
(i.e., if x is a variable of type r) , then

V (x r) e D(t),

i.e., V assigns an object of the appropriate type to each variable. T he ‘in tersec tion’
of the two pairs P\ — (S j, Vj) and P2 = (S2, Vj), w ritten Pi n P 2 , can be defined
as follows:

P \ n P 2 = def (*Sj 0 S j , Vj + V j) ,

where Vj + V2 s tands for the ‘com bination’ of the valuations Vj and Vj, defined as
follows:

Vj + Vj = d e f { (x ,a) G Vj U Vj: / \ (x , ß) G Vj U Vj a = ß}.
ß

T h a t is, we take the union of Vj and Vj w ithout those ordered pairs th a t assign
incom patible values to the same variable. The inform ativity ordering over ordered
pairs of the form (S ,V) can now be defined as

Pi < p2 ^def Pl fl P2 = Pi .

T h a t is, P i is more inform ative than P 2 if its first component is a subset of the
first com ponent of P 2, and its valuation is a subset of the valuation in P 2.

Now, assum ing th a t the first component of Pi is the set of processes corre­
sponding to the underspecified meaning of cc, and the first com ponent of P 2 is the
set of processes in which the ou tpu t file is called (objfile), then the first com ponent
of P i n P 2 is exactly the set of processes th a t we want ‘cc -o (objfile)’ to denote,
irrespective of w hat its second component contains.

As a m a tte r of fact, default values may be layered in such a way th a t assigning
a default value to a variable changes the default values available for o ther variables.
Therefore, in actual fact, the second com ponent, which produces default values,
should be enriched. For example, it could be a set of nodes in a default inheritance
hierarchy from which default values can be inherited if necessary. I will not dwell
on th is possibility here, because it is not directly relevant to the issue of s trong
compositionality.

14

3.3. S tron g C o m p o s it io n a lity
The definition of strong compositionality is the conjunction of Com positionality,
Independence and A dditiv ity . I subm it Strong Compositionality as an alternative
to the principle of com positionality.

(5) Strong Compositionality
T he meaning of a complex expression is strongly com positional if and only
if it obeys

(i) the Principle o f Compositionality (cf. (1) in Section 1);
(ii) the Principle o f Independence (cf. (3) in S ectio n 3.1); and

(iii) the Principle o f A dditivity (cf. (4) in S ec t io n 3.2).
It should be clear from th e above th a t the three sub-principles are independent.
Notice how the weaknesses of Compositionality (cf. (2) in S ection 1) are rem edied
by S trong Compositionality. Additivity is an answer to the arb itra ry character of
com bination functions (cf. (2i)), and Independence constrains the assignm ent of
meanings to simple sub-expressions (cf. (2iii)). As I m entioned earlier, the th ird
weakness of Com positionality (i.e., the arbitrary character of meanings, cf. (2ii))
is probably harmless if th e two other problems are discarded.

4. S tro n g C o m p o s it io n a lity in N atu ra l L anguage
This section deals w ith some consequences of Strong Com positionality on the
sem antics of natural language. F irst, in Section 4.1, I will examine the effect of
A dditivity (and Strong Com positionality in general) on common views of sem antic
com bination and types, a n d I will conclude that the trad itional (Fregean) m etaphor
o f ‘incom plete’ linguistic expressions as functors and ‘complete’ ones as operands is
to be abandoned. Second, in Section 4.2, I will say a few words how the meanings
of sub-expressions can interact during the process of additive meaning com position
to produce the m eanings of complex expressions. Finally, in S ec t io n 4.3, I will
sketch a technical so lu tio n for combining meanings w ithout m aking reference to
‘globally available’ variab le names. This will involve an operation called coalesced
intersection, and I will a lso elaborate on what kind of semantic dom ains we might
need for the in terpre ta tion of natural-language expressions.

4 .1 . A b a n d o n in g t h e F u n cto r M etap h or
I have touched upon various consequences of Strong Com positionality on natural-
language semantics a lready. In particu lar, I argued th a t the idiom atic aspects
of expressions must be accounted for in terms of special ways of com bination
(in S e c t io n 1), and I argued th a t the influence of expression-internal contexts
on in terpretation are d u e either to genuine ambiguity or underspecification (in

15

S e c tio n 3 .1 .1). In this section, I will dwell on a very p a rticu la r consequence
of S trong Com positionality, originating from the principle of additivity. If the
com bination of the meanings of constituents is to be additive in the technical sense
explained in S e c tio n 3 .5 , then the denotations of the im m ediate constituents of a
complex expressions m ust be com parable in term s of inform ativity. Were they not,
we could not perform intersection-like operations on them. T his implies th a t the
trad itiona l functor/operand metaphor of combining meanings m ust be abandoned.

In the in terp re ta tion mechanism th a t I have proposed for Unix com m and
lines, b o th the nam e of a com m and and the option a ttached to it denote sets of
processes (or more complex structures th a t contain them as com ponents). Note,
however, th a t an option on its own is not complete in the syntactic sense: no op tion
occurs w ithout a com m and name. In the trad itional fu nc to r/operand approach,
an incom plete expression m ust be a functor, which can be com pleted by providing
it w ith the operands th a t it expects.10 T hat is, options should be tran sla ted as
functions expecting denotations of command names and yielding denotations of
com m and lines. B ut, in general, functors are of different types th an their operands.
So A dditiv ity seems to exclude the functor/operand m etaphor.

A bandoning the functo r/operand m etaphor raises two problem s:
(6) Problems with A dditiv ity

(i) syntactic obligatoriness cannot be expressed in term s of sem antic in ­
completeness; and

(ii) sem antic incompleteness cannot be expressed in term s of functional
types (expecting argum ents).

The problem in (6i) does not seem too big a price to pay for A dditivity. In cases
like th a t of com m and nam es and options in Unix commands, the obligatoriness of
a com m and nam e in com m and lines has to be stated somehow, anyway, an d the
fact th a t options do not occur on their own will follow from th a t statem ent. As
a m a tte r of fact, in m ost n a tu ra l languages, adjuncts can occur on their own as
u tterances.

The problem in (6ii) looks more serious at first sight. How can we tell from
the denotation of, say, a verb, i f i t is complete w ithout ‘in tersecting’ it w ith th e de­
no ta tion of an argum ent? W hat is it in the denotation of a determ iner th a t m akes
it so incom plete th a t determ iners seldom occur on their own in n a tu ra l languages?
The functo r/argum ent m etaphor explains this type of facts very straightforw ardly,
to the extent th a t it seems alm ost unquestionable. For example, if a verb expresses
a relation betw een two entities, then it is only na tu ra l th a t its occurrences are in ­
com plete unless it is complemented w ith two other expressions, denoting entities.

10 The idea th a t syntactically incomplete expressions are to be considered
functors originates from Frege (1870).

16

I propose a radical so lu tion to this problem. M aybe ‘semantic com pleteness’
is not an indispensable concept at all. If we are ready to accept a m odel in which
meanings are ordered in te rm s of informativity, it is not clear at all w hether we have
to posit th e existence of ‘com plete’ m eanings on formal, ontological or linguistic
grounds. In formal term s, it is certainly possible th a t the algebraic s truc tu re of
meanings is not atomic, i.e., there need no t be any meanings in the s tru c tu re th a t
can only be enriched in such a way th a t a contradiction arises. A lthough it is not
ontologically implausible th a t certain entities in the m odel are ‘com plete’, it is not
a t all clear whether any linguistic expression, even a large piece of discourse, can
successfully denote such an entity. In sum , I see no compelling reason why the
Fregean theory, in which sentences and individual nam es are ‘com plete’, should be
adopted.

In te rm s of this rad ica l solution, a transitive verb w ith missing argum ents
or a determ iner without a noun are never semantically, bu t at m ost syntactically
incom plete. This need n o t imply a ‘m ism atch’ between semantic and syntactic
struc tu re , however. In th e same way as a Unix com m and line m ust s ta r t w ith
a com m and name syntactically, and is system atically associated w ith a type of
m eanings, uttering a tran sitiv e verb phrase may syntactically require the u tte rance
of a transitive verb and a d irec t object, and denote a certain type of states of affairs.
If there is any ‘m ism atch’ a t all between syntactic and semantic struc tu res (from
this perspective), it is betw een the ‘com pleteness’ properties of certain syntactic
constructs and their sem an tic counterparts: ‘incompleteness’ may m ake sense for
some syntactic constructs, b u t not for the corresponding semantic objects.

4 .2 . In tera ctio n o f M ea n in g s
A lthough Independence prohibits the meanings assigned to sub-expressions from
depending on each o ther, there are clear cases when the meanings of sub-expres­
sions interact in the process of in terpretation. For example, consider the following
expressions:

(7) Uses of coffee
a. some ground coffee

‘some ground coffee (seeds)’
b. a hot coffee

‘a hot coffee (liq u id)’
c. a quick coffee

‘a coffee p re p a red /co n su m ed /... quickly’
d. after a coffee

‘after consuming a coffee’
These expressions illu s tra te what we m ight call productive ambiguity: it is very
common for names of p lan ts (like coffee) to stand for their consumable p a rts (like

17

coffee beans) as well as its derivatives in various stages of p reparation (like the
roasted seeds and the liquid in (7a-b)). On the o ther hand, nouns referring to
food quite often take modifiers tha t refer to their p reparation or consum ption (as
quick in (7c)), and the nouns themselves may stand for the consum ption of the
food in question (as coffee in (7d)). If, however, we assigned the m eanings ‘quickly
p repared ’ or ‘quickly consum ed’ to quick in (7c) or the m eaning ‘consum ption of
coffee’ to coffee in (7d), we would violate Independence. It is also clear th a t we
would ‘miss generalizations’ if we were to trea t the ambiguities in (7) as accidental
surface coincidences (homonymy). On the o ther hand, since the form al properties
of the sub-expressions play no role in the in terpreta tion of the above exam ples, it
m ust be possible to explain ‘productive am biguities’ of this sort w ithou t violating
Independence.

Q uite obviously, languages like the Unix com m and language do no t exhibit
phenom ena like the ‘productive am biguities’ in (7), because these phenom ena stem
from the im portan t role of implicitness in natural-language in te rp re ta tion . The
exam ples in (7) are compact expressions corresponding to more com plex m ean­
ings, which no com petent speaker would have any trouble to paraphrase. On the
o ther hand, there is some non-determinism in the in terpreta tion of such com pact
expressions. For example, it is not absolutely excluded for hot coffee in (7b) to
s tan d for ‘hot coffee pow der’ or ‘hot coffee beans’ in certain contexts.

W hat the exam ples in (7) show, then, is th a t natural-language m eanings can
be combined in m ore than one way, and how exactly the hearer is supposed to
proceed is often left implicit by the speaker. Both the fact th a t com petent speakers
can produce equivalent, more explicit paraphrases and the fact th a t th e actual
choice of the paraphrase is not entirely determ ined indicate tha t the processes
involved are sim ilar to other cases related to implicit inform ation. For exam ple,
it is usually left im plicit why two sentences are pu t one after the o ther in a piece
of discourse (because they are part of the same story, they support th e same
argum ent, etc.). Similarly, definite descriptions are usually com pact descriptions
th a t can be m ade m ore explicit by attaching relative clauses to them . In sum , the
process of in terpreting expressions like those in (7) involves som ething very sim ilar
to certain discourse processes in which the speaker expects the hearer to establish
‘missing links’ such as anaphoric and rhetorical relations.

This suggests th a t combining the meanings of natural-language expressions
may involve more th an the simple ‘intersection’ operation th a t I have proposed in
connection w ith Unix commands. The meanings assigned to the constituen ts of
such expressions are processed and brought into harm ony w ith each o th e r before
‘in tersecting’ them . We can th ink of this ‘pre-processing’ as analogous to those
phonological processes (e.g., assimilation) which affect the lexical phonem es when
they en ter into contact through affixation. M ost im portantly, A dditiv ity requires

18

the pre-processing operations to be non-destructive. For example, in the expres­
sions in (7), it m ust be possible to derive the meanings of coffee (and quick) from
m ore abstract (less specific) meanings. T hat is, using the phonological m etaphor,
phenom ena analogous to genuine morphological (not phonologically m otivated)
stem or affix a lternation are excluded from semantics.

W hat does the difference between Unix commands and natural-language ex­
pressions lie in? As I said earlier, in S ectio n 3 .2 , an analysis of Unix com m and
lines th a t respects A dditiv ity must posit variables th a t both command names
an d options have access to. For example, the definition of cc makes reference
to the variable corresponding to ‘the ou tpu t file’ (called, say, OUTPUTFILE), and
the meaning of the option ‘-o (objfile)’ assigns a value to the same variable. I
also mentioned, in S ec tio n 3 .2 .1 , th a t the definition of cc may assign a default
value to the sam e variable, which can be retrieved if necessary. W hat I have not
dealt with so far, though, is how and when such default values are assigned. In
practice, it is the program cc which, when invoked, checks for relevant param eters
and assigns default values if none is present. Be it as it may, we can th ink of this
process as if a program different from cc was invoked, one in which the value of the
variable OUTPUTFILE is set to its default value. Such a different cc program would
qualify as an instance of the original, as its denotation would be more informative
th a n tha t of the original.

It is clear th a t, since the in terpretation of Unix commands is the ‘internal
affa ir’ of the program s th a t they invoke, the in terpreta tion process m ust lack a
m echanism of the above sort, i.e., a module th a t would deal with the assignment
of default values by creating or invoking various instances of programs. On the
o th e r hand, we are free to posit such mechanisms for the in terpretation of natural-
language expressions if we can justify them. For example, we could say th a t the
default value of the direct object of the verb leave is the reference location:

(8) Default direct object o f leave
a. I haven’t seen him. Maybe he left already.

‘M aybe he left here already’
b. He went to Paris, but he left already.

‘He left Paris already’
We could also say th a t some interpretation mechanism converts the m eaning as­
signed to leave into an instance of tha t m eaning, in which the variable corre­
sponding to the direct object is assigned the reference location as a value. As this
qualifies as an instan tiation , it does not contradict Additivity (no inform ation gets
destroyed).

The instan tia tion m echanism has nothing to do w ith Independence, which
only constrains the context-dependency of m eaning assignment. So the in stan tia­
tio n of meanings is free to be sensitive to the internal context. T hat is, a strongly

19

com positional analysis o f ‘productive am biguities’ (cf. (7)) would be feasible if only
we could do it in term s of this kind of mechanism.

Obviously, the examples in (7) are not similar to the working of the cc com ­
m and in Unix. For example, it would be difficult to argue th a t the denotation of
coffee refers to a variable th a t the denotation of quick also m entions. In p a rtic u ­
lar, we do not want to say tha t the denotation of coffee is necessarily re lated to a
particu lar process w ith regard to which ‘quick’ makes sense at all (cf. the exam ples
(7a-b), which show no trace of any process). On the o ther hand , by relying on
the (lexical or encyclopedic) knowledge th a t coffee is prepared and drunk by peo­
ple, such processes are somehow licensed. The licensing process can be analogous
to w hat the instan tia tion would do to the program cc in our hypothetical Unix
com m and in terpreter. T h a t is, we can assume th a t the denotation of coffee con­
tains some indication on how to assign default values to a variable th a t expresses
‘w hat we do w ith coffee’, and the instantiation process assigns one of the default
values. (T he existence of multiple default values is a separate, unrelated issue.)
Then quick m ay modify th a t process in the same way as ‘-o (objfile)’ does to ‘the
ou tpu t file’ w ith cc. This is why a quick window does not seem to m ake m uch
sense unless m aybe in a workshop where the relevant variable can be assigned a
default value (i.e., there is a typical process a ffec tin g /c rea tin g /.. . windows, as in
a carpen ter’s workshop).

The o ther examples in (7) can be explained in an analogous m anner. We can
assume th a t, in the prototypical (‘intersective’) adjectival m odification s tructu res
exemplified in (7a-b), the adjective usually modifies a relevant p a r t of w hat the
noun denotes, as in pink grapefruit ‘pink on the inside’ vs. pink apple ‘pink on the
outside’ (cf. Quine (1960), Partee (1984)). So, in these cases, it seems th a t we
have to in stan tia te the denotation of the adjective ra ther th an th a t of the n o u n .11
W hat p a rt (or, in the case of coffee, w hat stage) of an object is relevant for the
adjective to modify depends on the noun, bu t yields a specialized denotation of
the adjective (which often lexicalizes as such, like adjectives referring to colours
of hum an skin or hair in m any languages). Finally, after coffee in (7d) makes it
necessary to instan tia te the denotation of coffee (so th a t a process affecting the
coffee appears in it explicitly). The analogy of (7c) and (7d) is also shown by
the fact th a t the same class of nouns can occur in both contexts (after quick and
after).

For some other examples of interactions of meanings, let m e have a quick
look at verbs and their arguments. The phrase eat the grapefruit usually is no t

11 The difference between the in terpretation of various types of ad jec tive /noun
constructs is not predicted by K eenan’s (1974) ‘functional princip le’, which
says th a t the in terpreta tion of a functor may depend on its operand, b u t no t
vice versa. This should not bother us a t all, since we have ju s t abandoned
the fu nc to r/operand m etaphor.

20

in terp re ted as eating th e fru it w ithout leaving anything from it, bu t as ‘eating the
edible p a r t of it’. As a m a tte r of course, the definite description in this paraphrase
is alm ost always left im plic it, to the extent tha t we can almost think of it as p a rt
of the lexical meaning o f eat. But in m any cases the relationship between a verb
and a certa in type of argum ent varies depending on the argum ent. For exam ple,
consider:

(9) Ambiguity o f bake
a. I baked a cake.

‘I created a cake by baking’
^ ‘1 subjected a cake to dry heat on a hot surface’

b. I baked a potato.
‘I created a p o ta to by baking’
‘I subjected a p o ta to to dry heat on a hot surface’

The re la tio n between bake and its direct object is one of creation in (9a), whereas
it is a re la tion of affection in (9b). We could take e ither bake or the gram m atical
relation ‘direct object o f’ to be ambiguous, and let the implausible in terpretations
(m arked w ith a *#’ above) be filtered out by some m echanism. On the o ther hand,
we could also think o f th e two cases in (9a) vs. (9b) as triggering two different
in stan tiations of the deno ta tion of bake. In the ‘correct’ in terpretation of (9a), the
ab strac t meaning of bake is enriched in such a way th a t a variable corresponding
to the ob ject produced is explicitly present in it, and the interpretation of ‘direct
object o f ’ is perfectly w illing to affect such objects, ju s t like the option le tte r -o
is w illing to affect o u tp u t files. In the same way, in the preferred in terpre ta tion
of (9b), we produce an instance of ‘bake’ in which the variable th a t we explicitly
in troduce is the m ain ingredient of the food prepared, and the relation ‘direct
object o f’ is again w illing to take it to be the object m ost directly affected. The
concept of ‘explicit in tro d u c tio n ’ will be clarified to some extent in the next section.

I am aware th a t th e analyses presented in th is section are much too sketchy
and far from complete. Rem em ber th a t their m ain point is simply th a t we need not
violate e ither Independence or Additivity to account for the interactions of m ean­
ings if we can think o f th e processes involved as instantiation, i.e., specification
operations, which lead to more informative denotations.

4 .3 . C oa lesced In te r se c t io n
In S e c t io n 3.2 we have seen how the meanings of the command name cc and
the option ‘-o (objfile)’ can be combined through intersection: cc denotes the
set o f computations that compile a C source file into some object file, namely,
the one referred to by the value of some distinguished variable, say, OUTPUTFILE,
and ‘-o (objfile)’ denotes the set of processes in which the value of OUTPUTFILE
is set to (objfile) for the time of the computation. Obviously, the intersection

21

of these two m eanings yields the expected result because they b o th refer to the
variable OUTPUTFILE. We cannot always proceed in this way, however, because it
is not always the case th a t the meaning of each constituent specifies how exactly it
contributes to the meanings of complex expressions. For example, the constituents
of ‘-o (objfile)’ are -o and (objfile), and the denotation of the la tte r does not
indicate w hat role the file th a t it refers to will play in complex m eanings. It
is the fact th a t it acts as an argum ent of -o th a t determines its role. Thus, it
would be tem pting to consider -o a functor and (objfile) its operand. B u t we said
earlier th a t it is undesirable to allow for function application as a way of combining
m eanings, so a different solution is called for.

The solution I propose is to introduce ad hoc distinguished variables in such
cases, thereby im ita ting the ‘norm al’ way of combining meanings seen above. To
introduce such ‘local’ distinguished variables, we will use the A -notation, so th a t
the m eanings of -o and (objfile) will be represented as follows:

(10) Meanings with local variables
a. Meaning o f - o: Ax [OUTPUTFILE = x],
b. Meaning o f (objfile): Ay[y = (objfile)].

Here the square brackets abbreviate th a t we are talking about a set o f com puta­
tions during which the expression(s) th a t they enclose hold. T hat is, th e m eaning
of -o is a function from the values of x to the processes in which th e value of
OUTPUTFILE is identical to the value of x, and the meaning of (objfile) is a func­
tion from the values of y to the set of processes in which the value of y is (objfile).
Obviously, although the above meanings are functions, we are m ainly in te rested in
their ranges (co-dom ains), i.e., the sets of processes th a t their bodies denote. On
the o ther hand, the simple intersection of the two sets of processes would no t yield
the desired result, i.e., the meaning of ‘-o (objfile)’: it would give us th e set of
processes in which OUTPUTFILE is assigned some value, and (objfile) is th e value of
some variable. W h at we want is a set of processes in the values of b o th functions
applied to the same argum ent, which ensures th a t OUTPUTFILE is assigned a value
identical to (objfile). The operation tha t produces this set will be called coalesced
intersection. T he coalesced intersection of the meanings of -o and (objfile) above
m ust be som ething equivalent to

(11) Meaning o f ‘-o (objfile)’
Xz[z = OUTPUTFILE = (objfile)].

As can be seen, the basic equivalence th a t we want to hold for coalesced
intersection is the following (the symbol ‘©’ stands for coalesced in tersection):

(12) Basic equivalence for Coalesced Intersection
Xx(tp) © Ay(ip) = Xz(v?[x/z] A ip[y/z])

whenever z does no t occur free in either or ip. (As usual, ipfx/z] is th e sam e as
<p, w ith the free occurrences of x replaced w ith z.) To ensure this equivalence, we
need to define the sem antic value of coalesced intersection as follows:

22

(13) Coalesced Intersection
[f ® 9 Í v =def {(a,ß)- I / lv (a) n fc]v(a) = ß},

w here |* |v is the sem antic-value function th a t assigns denotations to expressions
for any assignment v.

We can prove th a t the equivalence in (12) holds using the s tandard definition
of th e A-operator, and taking conjunction to m ean intersection:

(14) Proof o f (12)
1 . [Aa:(v?)Iv = def { (a ,/?): M„[x:a] = ß},

where v[x : a] is the same as v except that it assigns a to x:

” 1* : “ K») = d" { v(y) o theiw lk

2. [Ax(^) © Ay(rp)jv = {{a,ß): |Ax((p)lv(a) n [Ay(i/>)|„(a) = ß}
by the definition in (13), which is the same as
{(<*,/?): n I l̂w[y:or] = ß}
by the definition in (14.1) above. This is the semantic value of the left-
hand side of the equivalence in (12).

3. [<p[x/z\Jv = [¥>]»[*:»(*)]
if z does not occur free in ip. This is trivial.

4. [<p[x/z] A rj>[y/z]]„ = Iv?]„[*:V(,)] n I01w[y:w(*)]
by the in te rp re ta tion of conjunction and using (14.3) above.

5. [Az(ip[x/z] A rp[y/z])\v = [<p[x/z\ A rp[y/z\ = ß}
by the definition in (14.1) above. This is the same as
{ { ^ i ß) - fl [V’lv[z:a][j(:v(r)] ß}
by (14.4) above. Now, using the definition of v[x : a] in (14.1) above, it
is easy to see th a t

I/Jv[z:a!][x:v(z)] 1 /J v[:r:a]

if 0 does not occur free in / . Since we have assumed in (12) th a t z does
not occur free in either <p or xp, we can use this equivalence to reduce the
sem antic value of the right-hand side of (12) to
{{a , ß) : M]r[x:a] H = ß },
which is identical to the semantic value of the left-hand side, as can be
seen in (14.2). Q.E.D.

As a m a tte r of fact, we can even use coalesced intersection for combining
m eanings which could also be combined w ith simple intersection. I will assume
th a t A-abstraction can be p a rt of the ‘harm onization’ process m entioned in S ec­
t io n 4.2. So the m eaning of the command nam e cc, which is a set of com putations,
can be converted into som ething equivalent to

(15) Meaning o f cc
Ax[cc' A OUTPUTFILE = x],

23

which can be combined w ith the meaning of ‘-o (objfile)’ (see (11) above) using
coalesced intersection:

(16) Meaning o f ‘cc -o (objfile)’
Aa;[cc' A OUTPUTFILE = x] © Az[z = OUTPUTFILE = (objfile)] =
= Au[cc' A u = OUTPUTFILE = (objfile)].

Obviously, in term s of the definition in (13), coalesced intersection is defined
for any two functions th a t assign sets to the sam e type of entities. If the dom ain of
denotations is ordered in term s of informativity, and an intersection-type o p era tio n
is defined for its elem ents (i.e., we have an operation th a t produces the jo in t
inform ation content of two elements), as we have assumed, then we can generalize
coalesced intersection to functions which m ap to th a t domain. Therefore, we m u st
be able to use coalesced intersection as the basic operation for combining n a tu ra l-
language m eanings as well.

The sem antics of Unix commands is much more complex than I have sketched
so far. In an earlier paper, we proposed ordered quadruples to characterize sets of
processes in a radically simplified model;12 if we add default m echanisms (cf. S e c ­
t io n 3 .2 .1), the situation becomes even m ore complex. But, for obvious reasons,
the sem antics of n a tu ra l language has enorm ous complexities when com pared to
Unix com m ands.

The semantic domains th a t underlie the in terpre ta tion of n a tu ra l languages
are much m ore complex than those in the Unix com m and language. W hile the
la tte r consists of ‘m achine s ta te s ’ (basically, file structures, in which each file has
certain a ttrib u te s , such as its nam e and the character string it contains), the m o d ­
els th a t we need for in terpreting natural languages include various possible worlds
(hypothetical or real, actual or past/fu tu re) in which various individuals (and ,
eventually, groups of individuals, if they have properties th a t are not p red ic tab le
from those of the ir m em bers) exist, various relations hold for them . These possible
worlds are also dynamic in the sense that they m ay also change in tim e, which cor­
responds to the various eventualities that we can talk about in na tu ra l languages.
(This type of dynam ism is not to be confused w ith the one to be touched u p o n
prom ptly.)

In m odern form al sem antics (called dynamic sem antics), n a tu ra l language
meanings are seen as instructions for the hearer to update h is /h e r information
state about entities in the model. So we can th ink of denotations as sets of u p d a tes

12 In K álm án and Rádai (1994), a set of processes is characterized by (i) an
assignm ent function expressing the local environment of the com putation;
(ii) a set of preconditions for the execution; (iii) a form ula describing th e
maximal change effected by the process; and (iv) an environment change
corresponding to the list of variables the values of which may change as a
result of the com putation.

24

in the sam e way as U nix command lines denote sets of com putations, which may
change inform ation s ta tes ju s t like com putations change machine states. B ut an
inform ation state is m uch more complex than a machine state, because it is not a
complete description o f a model, bu t some representation of w hat inform ation is
available abou t it.

Owing to all these complexities, the deferred information content of a natural-
language denotation (if we posit such a thing, as was suggested in S e c tio n 3 .2 .1)
is also m uch larger an d m uch complex th an what we need for the in terpreta tion
of Unix commands. It m ust encode a large body of linguistic and non-linguistic
(scientific and cultural) knowledge th a t may influence interactions of m eanings (cf.
S e c tio n 4 .2).

In sum , the com plexities of natural-language semantics are enorm ous. So
enormous, in fact, th a t they prevent me from presenting short and illustrative
examples of the use o f coalesced intersection, even simple examples like those
th a t I have presented from the Unix com m and language. In w hat follows, I will
try to ju s t point at som e features of the syntax/sem antics interface th a t Strong
Com positionality requires.

Ju s t the same as in the in terpretation of Unix command nam es and param e­
ters, which we in terp re ted as functions m apping to the same domain (namely, tha t
of sets of processes), natural-language meanings will also be functions th a t m ap to
the sam e domain. Ignoring the complexities of th a t domain, let us sim ply think of
it as a struc tu re of pieces of inform ation about first-order models. We can think
of such a piece of inform ation as a set of model fragments, which represent partial
inform ation on models com patible w ith the current information s ta te .13 W hat we
ignore in th is way includes (i) deferred inform ation altogether (i.e., the interaction
of m eanings will be done by deus ex machina)', (ii) the dynamic aspect of m od­
els (so I will assume th a t we are talking about static states of affairs); (iii) the
possibility of talking ab o u t various possible worlds (the assum ption being th a t the
u tterances are about one single possible world). For the sake of completeness, here
is the definition of a first-order model:

13 Given the way we will define it, the concept of a model fragm ent can be
seen as a form al rendering of the concept of situations in K ratzer (1986),
B erm an (1987) an d Heim (1990).

25

(17) First-Order Models
A4 = (7/, X) is a first-order model of language £ iff
1. U 0 (U is the universe of the model);
2. I C Con x U rgT Y P E D(r,U), where Con = (JrgTY PE Con,- is the set

of non-logical constants in £ , T Y P E is the set of types (to be defined
below), and D{t ,U) is the domain of type r given the universe U. X is
called the interpretation function of the model;

4. If (a, a) E X, and (a ,ß) E X, then a — ß. T h a t is, X is a function.
3. If a E Conr , and (a, a) E X, then a E D(t ,U). T hat is, X m aps non-

logical constants of type r to an element of the domain of r .
(18) Types

The set T Y P E of types is the smalles set such th a t
(i) e E TY PE;

(ii) t E TY PE;
(iii) If a E TY PE, and ß E TY PE, then (a,ß) E TY PE.

(19) Domains o f types
T he domain of a type r given a universe U, w ritten D(t ,U), is defined as
follows:

(i) D (e ,U) =def U. T h a t is, e is the type of individuals.
(ii) D(t ,U) =def {0, . T ha t is, t is the type of truth values, w ith the

em pty set and the entire universe representing false and truth, respec­
tively. (Note th a t false and true coincide when U is em pty; this m ay
never be the case when U is the universe of a model.)

(ill) D ((c¥, /?) , 77) ^def D(°i,U) D[ß,U). T hat is, (a ,ß) is the type of func­
tions m apping from the domain of a to the dom ain of ß.

Now we are ready to define w hat a model fragm ent is:
(20) Model fragments

If A4 = (77, X) is a first order model, then (U, I) is a model fragment over
^ (w r i t t e n (U, I) E P m) if and only if:

(i) U CU ;
(ii) I is an interpretation function w ith respect to U, as we have seen in

the definition of first-order models (see (17));
(iii) If a E C one, then (a,u) E X if and only if (a,u) E X, and u E U\
(iv) If p E Con«, then (p,a) E U if and only if (p, ß) E X for some ß such

th a t either (a) a — ß = 0 or (b) a = U and ß — U\
(v) If P E C onr (for r ^ {e, t}), then (P,&) E 7 if and only if (P, ß) E X

for some ß such th a t a = ß C\ D(t ,U). T h a t is, if the in te rp re ta tio n of
a constant is a function in the dom ain of r , then we only keep those
ordered pairs from it which also figure in the domain of r restric ted to
U.

26

As a m atter of course, we will need an inform ativity ordering over sets of
model fragments. This will be som ewhat more complex th an the subset relation.
To define it properly, we will first define the relation over model fragments:

(21) Informativity o f model fragments
If ifi = (Ui , I \) and — {U2 1 I 2) are model fragm ents, then if\ if2

(read: l(fi is at least as informative as if 2 ') if and only if <f \ is a first-order
model, and if 2 £ T Vl, i.e., if if 2 is itself a model fragm ent w ith regard to
¥>i-

We can now define the relation ‘< ’ over sets of model fragments:
(22) Informativity

If $ 1 and $ 2 are sets of m odel fragments, then $ 1 < $ 2 (read: ‘$ 1 is at
least as informative as $ 2 ’) if and only if

A V Vh - T V t -
tpi <E$1 <P2G*&2

T h at is, $ 1 contains a t m ost those model fragments th a t figure in $ 2 , bu t possibly
less (leaving less possibilities open); and possibly contains m ore informative
versions of some fragm ents in $ 2 -

It should be now possible to show th a t an expression th a t is syntactically
‘incom plete’, e.g., one th a t denotes a relation, may correspond to the same kind of
entities as a ‘less incom plete’ one (e.g., a one-place predicate) or even a ‘complete
one’, like a sentence or an individual name.

Let me first consider an expression th a t denotes a relation, like the verb
loves. Since it is a relation, any in terpreta tion function m ust assign it an entity
in the domain of the type (e, (e ,i)) . (T hat is, if (U , I) is a m odel fragm ent, then
I(loves) € D((e, (e, í)) , U).) If, for the sake of simplicity, we assume th a t the
m odel fragments in our domain are over one and the same model M. = (£/,Z),
then the set of m odel fragm ents corresponding to loves will be

{(U,I) e T M --I(loves) ^ 0 } .

T h a t is, any model fragm ent which makes ‘somebody loves som ebody’ true is
collected into a large set. We could also take ju s t the least inform ative elements
of th is set, because the more inform ative elements are predictable from them , but
it is sim pler to proceed in this way.

Similarly, a one-place predicate like sleeps or loves Joe (or even Joe loves)
can be assigned a set of model fragm ents in a similar way:

{(U,I) £ T M-I{sleeps)^^}

27

is the set of m odel fragm ents in which ‘someone sleeps’. To show th a t the coalesced
intersection of loves and Joe (assuming th a t Joe is the direct object of loves, which
we will get by deus ex machina), produces an analogous set, let us first see w hat
model fragm ents correspond to individual names. Obviously, the set for Joe is the
following:

{ { U , I) e P M : I (J o e) e U } ,

the least inform ative element of which has {j} as its universe (w here X(Joe) — j),
and its in te rp re ta tion ju s t holds (Joe , j) and pairs of the form (P , { j}) (in which
P is a one-place predicate th a t holds for Joe).

To perform coalesced intersection, we will deal w ith functions th a t m ap ex­
pressions to sets of model fragm ents. For example,

{ (u , $) : $ = { ([/ , /) e P m -- V M € I (love)}},
veu

corresponds to iXx(x loves som eone)’, and

{<", 4): 4 = {<17, /> € T m : J (»,«) £ /(to»e)}},
v&U

corresponds to ‘Ax(someone loves x) \ Both of these can be produced from the
set of m odel fragm ents corresponding to love using the sem antic coun terpart of A-
abstraction . We will need the la tte r function for perform ing coalesced intersection
w ith the m eaning of a direct object, e.g., Joe. The m eaning of Joe is also to be
converted in to a function of the appropriate sort, namely,

{<«, $>: $ = {(U, I) € P m '- I (Joe) = u}},

which corresponds to ‘Ax(Joe = x) \ The coalesced intersection of these two
functions is

{<*, $}: $ = {(U, I) e P M : \ J (■v , z) € I(love)} D {(U, I) 6 P M -1 (Joe) = z}}
veu

or
{<*,$>: $ = {(U,I) e P M - V ((” ,*> e I (love) A I(Joe) = z)}}.

veu
As can be seen, the result is a function th a t is only defined for Jo e , and yields
the set of m odel fragm ents in which someone loves Joe. To com bine this m ean­
ing w ith th a t of a sub ject’s, we have to take this set and perform A-abstraction
again. (Rem em ber th a t the shift from functions to their co-dom ains and back is
simply a technical device to tre a t certain entities in the dom ain as distinguished.
Unlike in sem antic theories where type theory has an explanatory s ta tu s, here it
is insignificant w hether we represent denotations w ith sets or functions th a t m ap
to them .)

28

R e fe r e n c e s
B erm an, S. 1987. ‘S ituation-based semantics for adverbs of quantification’. In

J . Blevins and A. V ainikka, eds., University o f Massachusetts Occasional Pa­
pers 12. University o f M assachusetts, Amherst.

B resnan, J . 1978. ‘A rea listic transform ational gram m ar’. In M. Halle, J . B resnan
and G. Miller, eds., Linguistic Theory and Psychological Reality. M IT Press,
Cam bridge MA.

Heim, I. 1990. ‘E-type p ronouns and donkey anaphora’. Linguistics and Philoso­
phy 13 , 137-177.

Janssen, T.M .V. 1983. Foundations and Applications o f Montague Grammar.
M athem atisch C en trum , Amsterdam.

K álm án, L. 1990. ‘D eferred Information: The Semantics of C om m itm ent’. In
L. K álm án and L. P o los, eds., Papers from the Second Symposium on Logic
and Language. A kadém iai, Budapest, 125-157.

K álm án, L. and G. R ádai. 1994. ‘Compositional in terpreta tion of com puter com­
m an d languages’. P a p e r presented at the F ifth Symposium on Logic and
Language, Noszvaj, H ungary, August 1994; to appear in Working Papers in
Theoretical Linguistics, Theoretical Linguistics Program m e, B udapest Uni­
versity (ELTE), an d Research In stitu te for Linguistics, B udapest, 1995.

K eenan, E.L. 1974. ‘T he Functional Principle: Generalizing the notion o f ‘Subject-
o f’. Papers from the Tenth Regional Meeting o f the CLS, pp. 298-310.

K ratzer, A. 1986. ‘An investigation into the lumps of thought’. Linguistics and
Philosophy.

M ontague, R. 1970. ‘U niversal G ram m ar’. Theoria 36, 373-398. R eprinted in R.
Thom ason, ed., Formal Philosophy: Selected Papers o f Richard Montague.
Yale University P ress, New Haven, 1974.

Partéé , B.H. 1984. ‘C om positionality’. In F. Landm an and F. Veltm an, eds.,
Varieties of Formal Semantics. Foris, Dordrecht, pp. 281-311.

Quine, W .V .O . 1960. W ord and Object. MIT Press, Cambridge MA.
Szabó, Z. 1995. Problems o f Compositionality. Ph.D . diss., M IT, Cam bridge MA.

Previous titles in this series:

1 /1 Brody M.: Phrase Structure and Dependence
*

1 /2 E.Kiss K.: Generic and Existential Bare Plurals and the Classification
o f Predicates

1 /3 Kálmán L.: Conditionals, Quantification and Bipartite Meanings

1 /4 Bánréti Z.: Modularity in Sentence Parsing: Grammatically Judgments
by Broca’s Aphasics

2 /1 Szabolcsi A.: Strategies for Scope Taking

2 /2 Rádai G .-K álm án L.: Compositional Interpretation o f Computer Com­
mand Languages

	Oldalszámok
	_1
	_2
	_3
	_4
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	_5
	_6

