
Theoretical Linguistics Programme, Budapest University (ELTE)

c o m p o s it io n a l in t e r p r e t a t io n
OF COMPUTER COMMAND LANGUAGES

Gábor Rádai and László Kálmán

Research Institute for Linguistics, Hungarian Academy of Sciences

Working Papers in the Theory of Grammar, Vol. 2, No. 2

Received: June 1995

COMPOSITIONAL INTERPRETATION
OF COMPUTER COMMAND LANGUAGES

Gábor Radau* and László Kálmán**

‘ Department of Symbolic Logic, Budapest University (ELTE)
*Research Institute for Linguistics, HAS, Room 119

* T heoretical Linguistics Programme, Budapest University (ELTE)
E-mail: radaiOnytud.hu, kalmau8nytud.hu

Working Papers in the Theory of Grammar, Vol. 2, No. 2
Supported by the Hungarian National Research F und (OTKA)

Theoretical Linguistics Programme, Budapest University (ELTE)
Research Institute for Linguistics, Hungarian Academy of Sciences

Budapest I., P.O. Box 19. H-1250 Hungary
Telephone: (36-1) 175 8285; Fax: (36-1) 212 2050

% 'L
ß Kyelvraäomänyi intézel

Kandiára ■■■"
leltári száffli 5 _ é 6 0 0

0. In troduction
T he aim of th is paper is to examine the trad itional concept of compositionality.
We will be dealing w ith a language, namely, the language of com m ands used
in the Unix operating system, the in terp re ta tion of which is in tu itively far from
com positional, a lthough it fits the trad itional definition of com positionality. We
will outline th e reason of this discrepancy, then we will show how to m odify the
language so th a t it receives an intuitively com positional in terp re ta tion . We show
th a t this will get us closer to a more reasonable definition of the principle of
com positionality and its significance for the sem antics of n a tu ra l languages.

The paper is organized as follows. In section 1 we present the Principle of
Com positionality and argue tha t it is to be strengthened, because it is too loose
in its original form ulation. In particular, we introduce the Principle o f Indepen
dence, and propose to include it into the Principle of Com positionality. The rest
of the paper discusses a language, namely, the language of com m ands used in the
Unix operating system , the in terpretation of which is far from com positional in
th e intuitive sense of the word. However, the trad itional Principle o f Composi
tionality does no t preclude such an in terpreta tion . F irst, in section 2, we explain
the concept of shells (command in terpreters), and show how the U nix command
language is non-com positional. Then we present an alternative com m and language
which has a m ore na tu ra l in terpretation, based on our version of th e concept of
com positionality. Section 3 informally presents the way in which such a ‘com
positional U nix shell’ should work. Then we develop a language to ta lk about
the semantic dom ains relevant to our in terpreta tion , i.e., various com ponents of
a simplified concept of machine states (section 4). T hen we explain th e concept
of denotational semantics (section 5), a non-procedural view of the in te rp re ta tion
of com puter program s, which underlies the particu lar s truc tu re th a t we a ttribu te
to our sem antic domains (section 6). The actual syntax and sem antics of the
language in which we can talk about those objects is given in section 7, and the
description of the semantics of command lines (com m ands followed by param e
ters) will be explained in section 8. The way in which we produce those meanings
from those of the com m and names and the param eters in a com positional way is
explained in section 9. Finally, we offer some conclusions (section 10).

1. C om positionality
Let us first define the concept which will be in the centre of our a tte n tio n through
out this paper. The in terpretation of a language can be said compositional if and
only if it obeys the Principle of Compositionality, which runs as follows:

1.1. T h e P r in c ip le o f C o m p o sit io n a lity
The m eaning of a complex expression is a function of the m eanings of its
constituents and their mode of combination.

2 1. Comp ősi ti on ali ty

T his definition leaves it open whether ‘the meanings of the constituents’ may
depend on each other or on th e function th a t we use to calculate the m eaning of
the complex expression. However, it seems th a t the Principle of Com positionality
would be ra th e r vacuous if we were to allow for such dependencies. T h a t is, we
understand th a t the intended content of the Principle of Com positionality implies
a Principle o f Independence:

1 .2 . T he P r in c ip le o f In d ep en d en ce
The m eanings of the constituents of a complex expression are assigned
independently of each o th e r and the function th a t yields the m eaning of
the com plex expression.

T he reason why we propose to ad d this principle is tha t, as we will see shortly,
languages th a t obey the P rincip le of Compositionality may still be ra th e r ‘non-
com positional’ if they fail to satisfy the Principle of Independence. In such lan
guages, the m eaning of an expression may vary depending on what it is a con
s titu en t of. As a result, very similar constructions (e.g., containing the same
expression in th e same syntactic role) may be interpreted in heterogeneous (or
even unrelated) ways. We su b m it that this contradicts the in tuition behind the
concept of compositionality.

Note th a t th e in terpre ta tion of compositionality proposed here implies th a t
the meaning contributions of th e constituents of an expression are constant, i.e.,
they do not vary from one construction to the other. This m eans a certain context-
independence as well, which m any would deny. We conceive of this as a price to
pay for a reasonable concept o f compositionality. In our approach, the context of
u tte ran ce (and th e u tterance-in ternal context of any sub-expression) can only play
a role inasm uch as both the m eanings and the functions th a t combine them are
underspecißed. T h a t is, by v irtu e of their underspecification, contextual factors
(including the in te rn a l context, i.e ., the presence of the others) may enrich these
meanings. This k ind of m echanism does not contradict the Principle of Indepen
dence, because it is not the meanings assigned th a t depend on each other, but
w hat they becom e later on.

I t is easy to see tha t the P rincip le of Independence is not vacuous a t all. The
in teraction of m eanings is by definition contentful, i.e., the Principle of Indepen
dence prevents m eaning assignm ents from depending on formal properties of the
context (e.g., th e shape of a co-occurring constituent). Only genuine homonyms
(homophonous expressions w ith independent meanings) challenge this principle;
those have to be considered different expressions which accidentally are of the
sam e shape. So w hether an am biguity is due to an accidental surface coincidence
or a system atic sem antic phenom enon must be determ ined independently.

2. Unix shells 3

2. U nix shells
A shell is a program th a t establishes contact between the operating system of a
com puter and its user. Its task is to forward the user’s commands to the operating
system (after a check of correctness). (A com m and is also called a com m and line;
we will refer to it as a cml.) Many shells offer additional features to the u ser (such
as abbreviatory m echanisms and ways of referring to com m ands issued earlier),
as well as built-in commands. The shells used w ith the Unix opera ting system
(especially the C-shell) offer many such features. The com m ands th a t do not
exploit the ex tra possibilities offered by the shell may contain a com m and name
(cmn) and various types of parameters th a t follow it. The com m and nam e is simply
the nam e of a com puter program; the program processes the param eters, so their
in terp re ta tion is its ‘internal affair’. (Built-in shell com m ands do not correspond to
program s, the param eters of such com m ands are processed by the shell itself.) The
language also has certain operators (opr), which can be prefixed to any com and
line. They correspond to programs th a t run the rem aining com m and line, and
perform some uniform com putation in the m eantim e.1

The inform al syntactic and semantic description of com m and lines is available
in the form of m anual pages provided w ith the operating system. A m an u al page
contains the sum m ary of the syntax associated w ith a com m and nam e followed by
the description of w hat the command lines do. Let us take a look at th e syntactic
description of the com m and called g rep:

2.1. E x a m p le
g rep [-b c h iln s v y] [- f expfile] [[—ell expression] [hies]

F irst comes the specification of the com m and nam e, followed by the list o f Bags (Ü).
In the case of g rep , these are one-character strings th a t can be concatenated in any
order and their concatenation must be preceded by a m inus sign. In general, we can
think of a flag as any string containing no blank space and preceded by a minus
sign. (Flags are in principle optional; in m anual pages, [•] means optionality.)
Then come two options, each consisting of an option letter and its argument. (An
option le tte r is like a flag, bu t it has an argum ent.) The option le tter in th e second
option is itself optional. Finally, the last item is an optional argument (opt), i.e.,
a param eter th a t has a fixed position in the com m and line which is n o t preceded
by an option letter. In fact, the above syntactic sum m ary is the abbrev iation of
two different syntactic possibilities:

2.1'. E x a m p le
a. g rep [-b c h iln s v y] [- f exp hie'] [-e expression] [files]
b. g rep [-b c h iln s v y] [- f exphle] [expression] [hies]

1 For exam ple, the operator tim e will re tu rn the tim e the process given as its
argum ent has taken to run.

4 2. Unix shells

In 2 .1 'a, we have nine flags, two options an d an optional argum ent; in 2 .1 'b , there
are nine flags, one option an d two optional argum ents.2

In general, the syntax of the relevant fragm ent of the language of Unix com
m and lines (L/cm|)) in B N F is as follows:

2.2. D efin it io n
1. cml = opr cml \ emo | cml Ü | cml o p t;
2. cm n =f c° I . . . I cm n+1 expr | cmn _ x opl;
Ó. op t — expr;
4. expr d= n | c° | . . . | var° | __

c” stands for n-a.rgument com m and name constants, n stands for na tu ra l num bers,
and cn s tan d s for a nam e constant denoting elements of the universe — files,
directories, etc., as we will see. As one can see from the definition, we assum e
th a t flags an d options come a t the end of command lines ra th e r th an between
the com m and name and its argum ents. T h is modification does not m ake any
difference except for the fact th a t the description of the semantics of the relevant
constructions will be far sim pler. In what follows, we will not discuss the sem antics
of most of th e constructs specific for the shell language; we will concentrate on the
semantics o f commands.

The language presented above is an idealisation of the currently available
languages, as the construction rules in the given form are context free, whereas
in the ac tua l command language as specified in the m anual pages construction
rules are separately given for every com m and as can be seen from the syntax of
the command grep above. It is obvious th a t, for example, the syntactic rule th a t
combines com m and names w ith flags is context sensitive in the sense th a t the
program will report a syntax erro r if a flag is not explicitly listed in the program
description. O n the one hand , it would be desirable to have a context free language
as L(cm|) and , on the o ther hand , it is m ore in line with our in tuition th a t if a
modifier comes from a closed syntactic class, bu t is not applicable in a certain
context, th en this is a sem antic, ra ther th an a syntactic phenomenon. It should
be explained in terms of sem antic incom patibility or vacuous semantic operations
ra th e r th an in syntactic term s. In what follows, we will assume the above language
and let our sem antic apparatus be such th a t it accounts for the problems connected
w ith the relevant constructions.

There are also more im p o rtan t problem s, related to the com positionality of
th e in terpreta tion of com m ands. Besides th e fact tha t com m and nam es come

2 The above description is n o t quite correct, since exactly one of the expfíle and
expression arguments is in fact obligatory.

2. Unix shells 5

w ith some predefined sets of possible param eters (flags and op tion le tters), the
in te rp re ta tio n of these also depends on the com m and nam e a t hand. For exam ple,
the flag -1 m eans roughly ‘long, verbose listing’ in connection w ith the com m and
nam e I s ,3 whereas as an argum ent to wc it means som ething like ‘count lines
on ly’.4 Similarly, while the option le tte r - f (standing for ‘file’) introduces the
nam e of an auxiliary file (containing expressions or com m ands) w ith g rep and
sim ilar com m ands (make, awk, sed etc.), it is a flag th a t s tands for ‘force’ w ith the
com m and rm (remove), and has a totally different effect.5

A second problem is the issue of m ultiple flags. In general, the order of flags
does not m ake any difference and m ultiple occurrences of the sam e flag in one
com m and cause the same change in behaviour as single occurrences, as one would
expect. Yet we have to face the problem of dependent hags, i.e., the problem th a t
certain flags can only appear in the presence of some o ther flag. For example,
the flag -u depends on the presence of - t in this sense w ith the com m and nam e
I s . 6 Though even the informal sem antics makes this perfectly understandable,
currently th is is treated as a syntactic constraint, which again clearly does not
agree w ith one’s intuition.

As a m a tte r of course, the idiosyncratic behaviour of flags can be explained
away by assum ing th a t flags are functors over com m and nam es as argum ents.

3 I s -1

4 WC

5 rm

6 I s - t

-u

lists the files specified by its argum ent in long fo rm at, giving mode,
num ber of links, owner, group, size in bytes, and tim e of last m od
ification for each file. If the file is a symbolic link, the filename is
printed followed by ‘-> ’ and the pathnam e of the referenced file. If
the file is a special file, the size field will contain the m ajor and m i
nor device num bers, ra th e r than a size. A to ta l count of blocks in
the directory, including indirect blocks, is prin ted a t the top of long
form at listings.
counts lines, words and characters in the nam ed files, or in the s tan
dard input if no names appear. It also keeps a to ta l count for all
nam ed files. A word is a maximal string of characters delim ited by
spaces, tabs, or newlines. The flags -1 , -w and - c m ay be used in any
com bination to specify th a t a subset of lines, words, and characters
are to be reported.
removes each given file. By default, it does not remove directories.
If the - f (‘force’) flag is used, it ignores nonexistent files and does
not prom pt the user if the file is unw ritable.
sorts the files listed by last modification tim e (la test first) ra th e r
th an by nam e.
uses time of last access instead of time of last m odification for sorting;
can only be used w ith the - t flag.

6 2. Unix shells

Since there is only a finite num ber of commands, the m eaning of a flag could
be a p a rtia l function defined pointwise, i.e., one whose action is determ ined by
first looking a t its argum ent.7 A similar issue is raised by the ways in which the
presence vs. absence of options and optional argum ents is significant. For example,
if the com m and s e t is followed by two argum ents (a name and a value), it causes
the variable name to be set to value, whereas if it stands w ithout an argum ent,
the corresponding action is to display the currently set variables w ith their values.
This can again be dealt w ith using several m athem atical tricks such as polym orphic
functions or em pty strings as argum ents, defining the function again pointwise.

Obviously, under the current wording of the Principle of Compositionality, a
com positional in terpreta tion of Unix commands can be given th a t uses only func
tional application,8 although we have the very strong feeling th a t, under a more
appropriate view of compositionality, this should not be possible. In particular,
the heterogeneous in terpre ta tion of flags (and other option letters) as well as the
heterogeneous behaviour of absent optional argum ents are incom patible w ith our
Principle of Independence. In w hat follows, we will specify a semantics th a t we
feel comes closer to the original idea behind compositionality and th a t will remedy
some of the problems m entioned above. We will see th a t this type of in terpretation
will satisfy the Principle of Independence.

3. C om positional Unix: A n Informal O utline
Anomalies like the homonymy of the - f flag m entioned earlier should not occur
in a Unix shell w ith com positional semantics (and they occur to a very lim ited
extent in n a tu ra l languages). In a compositional Unix shell, there must be a flag
—f o r c e to be used w ith rm (and similar com m ands)9, and a different flag - - f i l e
to be used w ith g rep (and sim ilar commands). (Needless to say, what nam e we
choose for these flags is im m aterial.) The meanings of —f o r c e and —f i l e m ust

7 T his m ethod would give us a function tha t is as good as any other m athe
m atically. Even if we assume th a t the num ber of com m ands is infinite and
th a t the function is to tally defined, we just have to define the result of the
application of a flag to some command for which it is undefined as the action
of issuing some error message — again an action th a t makes exactly as much
sense as any other from the m athem atical point of view.

8 For example, the m eaning of a flagged command is the action it performs.
Com positionality in the above sense is not even destroyed by the fact th a t the
flag as a function does not necessarily preserve anything of the original action
perform ed by its argum ent.

9 As it is conventional, we will use — instead of - to indicate th a t something is
a m ultile tter flag ra th e r th an the concatenation of independent flags.

3. Compositional Unix: An Informal Outline 7

be assigned uniformly and independently of the context. For exam ple, - - f o r c e
could be in terpreted as ‘overwrite the file argum ent if you own the file, even if you
do not have w rite permission for i t ’. (Eventually, it can also cover ‘do not check
if the file argum ent exists at all’, although it would be cleaner to separate these
two m eanings, so th a t the la tte r is to be expressed by, say, - - ig n o r e .) Similarly,
the in terp re ta tion of the option le tter - - f i l e would be in te rp re ted as ‘the nam e
of an auxiliary file (containing com m ands etc.) follows’.

Assum ing th a t the programs corresponding to rm, g rep etc. op era te as they
usually do in Unix (i.e., th a t we are not to rewrite them), the shell will interpret
these program nam es independently of their original in te rp re ta tion (or relying on
the original in terpreta tion if needed). To achieve th is, we will assum e th a t the shell
m aintains a lexicon which contains a program specifícation for each possible com
m and nam e. Program specifications contain variables corresponding to the possi
ble effects of param eters. For example, the value of the variable W R ITEC H EC K
determ ines w hether write permission is to be checked before overw riting a file; the
variable EX ISTCH ECK determines w hether the non-existence of a file will trig
ger a special action; and the value of AUXFILE stores the nam e o f the auxiliary
(com m and) file. If necessary, program specifications assign default values to such
variables, which can be overridden by param eters.

The procedure described above corresponds to a certain underspecifícation of
the actual effect of running the program s. The program specifications will ensure
th a t the external context (the so-called environment, a set of variable bindings)
and the (obligatory and optional) param eters together specify the exact action to
take when invoking a program.

4. M achine States
To give a sem antics for the language of Unix com m ands, we assum e th a t the
relevant basic domain is th a t of machine states (MS). For the sake of simplicity,
we will represent a machine state w ith the disjoint union of a typed directed
acyclic graph (TD AG), standing for the directory structure and th e files stored,
and a dom ain NC_l d= N ® Char* for the denotation of the n a tu ra l numbers
and character strings,10 forming the universe of in terp re ta tion , an interpretation
function and a valuation corresponding to the environment. In th is section we
will m ainly be concerned w ith the graphs belonging to a m achine s ta te , the o ther
tree com ponents will be explained in detail in section 7. A typed directed acyclic
g raph is defined as follows:

10 The exact meaning of the above notation will be defined la te r, cf. defini
tion 5.4.

8 4. Machine States

4 .1 . D efin it ion
def1. Given strings v and u, v is a prefix of u 3w.u = vw.

2. A tree domain D is a non-em pty subset of strings (tree addresses) in N*
such th a t:
a. for each u E D, every prefix of u is also in D\
b. for each u E D, for every i E N* if ui E D then, for every j such th a t

1 < j < i, u j is also in D.
3. Two tree addresses are independent if neither is a prefix of the other.

def4. A tree address u is terminal <£> there is no tree address v in D such th a t
u is a prefix of v.

5. Given a set T of types an d E = lJ reT E r of labels, a typed tree is a to tal
function t? : D —> E, w here D is a tree domain.

6. A typed directed acyclic graph is an ordered pair (t r , R), where t? is a
typed tree and R is an equivalence relation on D (dom(ÍT’)) such th a t
for all u , v E dom (tr), if (u , v) E R, then:
a. ui E dom(ÍT’) & vi E dom(fy);
b. ui E dom (fy) =4- (u i , v i) E R ;
c. tT {u) = tT(v).

N ot all TD A G ’s are acceptable in machine states. In our case, the TDAG
associated with N C j_, an in te rp re ta tion function and a valuation has some further
special properties, as shown by th e following definition.11 We suppose th a t T —
{dir,file, Char*}, i.e., the relevant types are directory, file and character string.

4 .2 . D efin it ion
(tdag © N C i , p, v) E MS 44 tdag = (tr, R) is a TDAG, and
1. p: Con dom (i'r) © N C _l
2. v: Var i—>• dom (fr) © N C ^
3. tT{u) E E dir =>• Vi € N .f r (ui) E Edir V t T (ui) E E fiIe;
4. í t (u) E Efiie t r (u 1) E Echar* A —*3» E N \ { l} .u i E do m (fr);
5. tr{u) € Echar* ->3i E N .ui E dom (ir);
6. ít (0) € S d;r;
7. 1,11, 111 € dom(<T), *t (1) € Ed|r, í t (H) € 53fiie, fT (H l) € Elchar*, and

->3i E N . l i E dom(Í7’) V I l i E d o m ^) V l i E dom(fx)-

T h e above definitions form ulate the following constraints on w hat ordered
triples o f universe, in terpretation function and valuation we accept as machine

11 T h e identity of the labels does not play any role in what follows. © in clauses
1 an d 2 m eans roughly the disjoint union of the two domains. A lthough the
dom ain consists of the disjoint union of a TDAG and NC_l, we are only
in terested in the disjoint un ion taken with the domain of the TDAG, as the
subsequent clauses show. For the exact definition, see definition 5.4.

4. Machine States 9

states proper. The in terpretation and the valuation associated w ith the universe
are functions th a t assign either a numerical value, a character string or a tree ad
dress to a constant or a variable of the language to be given in section 7, depending
on its type, as we shall see. Furtherm ore, in an MS labels associated w ith th e te r
minal addresses of the underlying tree have to be of type ‘d ir’ or ‘C har*’,12 i.e.,
em pty directories or finite lists of characters corresponding to contents of files.13
We have to impose some further constraints guaranteeing th a t character strings
are only im m ediately prefixed14 by files and the la tte r are im m ediately prefixed
by directories and th a t files only im m ediately prefix one character s tring which
im m ediately prefixes nothing. As the sorts form domains of their own, add ition
ally, ít has to contain three special elements: _l_char* , -bfi]e and J_dir —- th e ir tree
addresses are 1 ,11 and 111, respectively — , neither being the prefix of any other
tree address. These will serve as the so-called bo ttom elem ents of their respective
domains — as required by domain theory (cf. sections 5 -6), b u t they will also be
p u t to special use in our semantics, as will be explained la te r on.

We will provide the compositional Unix com m and language w ith a so-called
denotational semantics. This makes it necessary to introduce some concepts before
specifying w hat the domains of the sem antic values of the various expressions in
our language will be.

5. D enotational Sem antics
We will use denotational semantics — as worked out and described in Scott and
Strachey (1971) — for the description of the relevant fragm ent of a Unix com m and
language. To illustrate the basic points, let us take a look a t the following two
programs:

5.1 . E x a m p le
F(n) <= If n = 0 then n else F(n — 1)
G(n) «= 0

Obviously, the two program s do quite different things. T he program F — on
receiving an argum ent n of type N — will recursively com pute a value, nam ely the
value 0. Program G, on the other hand, will im m ediately produce the sam e result.
A lthough we see th a t the two programs produce the same o u tp u t on appropria te

12 We will use the term s hie, directory and character string to refer to tree
addresses labelled w ith objects of the appropriate type.

13 As costum ary, we th ink of empty files as containing the em pty string of char
acters, i.e., the string of length 0.

14 Let u ,v G N*. v is an immediate prefix of u 3i € N .u = vi.

10 5. Denotations! Semantics

input, i.e ., they are equivalent under the standard set theoretic in terpre ta tion of
functions, com putationally they are as different as any two program s can b e .15 The
idea beh ind denotational semantics is exactly this: for m any purposes it is be tter
if we can abstract away from accidental properties of program m ing languages and
the realizations of specific programs, so th a t we can regard program s essentially as
realizations of some (set theoretic) functions on domains appropriate for whatever
can serve as the input and the ou tpu t in the language under investigation.

B ut things are m ore complicated th an they seem at first sight. If we interpret
the functions to be of type / : N i-> N , we have no problems. B ut w hat happens if
we let th e ir type be / : Z H¥ Z? The program G will still produce 0 on every input.
But F is in trouble as when it is given some n < 0 as an argum ent, it will go
straight in to an infinite loop. W hy is th a t a problem for our semantics? Because
we have to do som ething about the infinite loop, and the semantics th a t we chose
forces us to give a denotation to this result — a denotation th a t can appear as
values of functions. Additionally, it has to be of type Z to meet the constraints.
For th is purpose we introduce a special constant in every dom ain, called bottom
(-L).

Furtherm ore, we will need an ordering which roughly m irrors the relations
of inform ation content of the elements of the domain. This gives us an algebraic
structure called a Scott domain. The official definition of Scott domains is as
follows:16

5.2. D e f in it io n

Hpf
sd = (U, T sd , E) € SD & U 7̂ 0 , T sd € U, E a cpo, and Vx € U.T sd E x -

Examples are the dom ains N x and T x , i.e., the domains of n a tu ra l num bers and
tru th values w ith their respective bo ttom elements. These dom ains are also exam
ples of an o th er im portan t notion, the so-called üat domains, defined as follows:

10 In w hat follows, we will use the term s extensions1 equivalence vs. intensional
equivalence: F and G are extensionally, but not intensionally, equivalent.

16 U is the universe of the domain containing at least Xstj, the inform ation
content of which is m inim al according to the complete partial ordering E- A
cpo is a po which has limits |_|n x n for all (countable) increasing sequences
Xq E X\ E ■ • • E x n E • • •• C ertain fu rther conditions on domains are imposed
in G un ter and Scott (1990), bu t these need not concern us here, as they are
m eant prim arily to ensure th a t the class of domains are closed under various
constructions.

5. Denotational Semantics 11

5.3. D e f in it io n

sd € FD Vx, y 6 U.x / ± sd A y ^ ± sd => x £ y .

It is obvious th a t if we take the ordering to be about the inform ation content
of the elem ents of the respective domains, then neither _L C T , nor T C _L,
i.e., neither tru th value carries more inform ation than the o ther, w hereas lack of
inform ation abou t a tru th value certainly carries less inform ation then they do
and, similarly, no natu ra l number is less inform ative than any o ther, except for
the bo ttom element representing the ‘resu lt’ of non-term inating com putations.

If we take some previously given dom ains as basic, all o ther dom ains can be
defined using certain operations on domains. These other dom ains include function
domains, p roduct domains and sum domains. Some of the relevant opera tions are
defined below:17

5.4. D efin it io n
• d\ —>■ d2 the dom ain of all functions from d\ into d2, where

/ g Vx e di . f (x) C d2 g(x).

Thus Ld1->d2 is the function th a t maps every elem ent o f d\ into
-f d2 i
the Cartesian product dom ain where

(x j , X 2) ^ d i X d 2 (2/l 5 2/2) ^4* Vz £ { 1 , 2 } . X i 2/i)

the ‘coalesced’ sum, where elements originating from different
di's are incomparable and bo th J_dt are identified w ith JLdl0 d2;
the lifted domain obtained by adding a new bo tto m elem ent
under d;
the lists of finite length — including strings of length 0 — with
non-T components in d.

There are two more notions tha t are im portan t in the theory of dom ains as

17 d \ ,d 2 denote a rb itrary domains. The standard function space is the space of
continuous functions. Continuous functions are defined as follows: A function
/ is continuous iff

/ (Ux„) = U /(x n).

This notion is im portan t from a technical point of view, as there are non-triv ial
domains (the so called reflexive domains) which satisfy the following equation:
d = d —̂ d and can serve as the denotation of some special constructs, but
this will no t concern us further in the paper.

• d\ x C?2

• d\ © d2

• d±_

• d*

12 5. Denotational Semantics

well as in w hat will follow:

5.5 . D e f in it io n
def

1. A function / is monotone f (x) E f{y)-
2. A function / is strict /(_L) = _L.

These properties are defined for functions on domains bu t there is a very intuitive
analogy w ith computer program s. The first property is one we generally expect
com puter programs to satisfy, namely th a t they respect the richness of the in p u t,18
i.e., an in p u t that is richer — according to some obvious ordering — is never
taken in to an output th a t is poorer th an the ou tpu t for some poorer inpu t. The
second p roperty is less obvious, but for program s it means tha t we cannot design a
program th a t saves us if it is given some erronous input, e.g., if its input is provided
by the o u tp u t of some program tha t does not term inate — as would be the case
if we gave the output of program F in 5 .1 on input —7 as the input to itself19. If
we give th e above output as an input to th e program G in 5.1, then its behaviour
depends on whether we suppose it to operate call-by-value or call-by-name. In the
former case, we get the sam e result as above; in the la tte r, we get a program th a t
is m onotone bu t not stric t, since it assigns the same value to every inpu t — thus
satisfying the condition o f m onotonicity — , but it does not respect the bo ttom
element. Similarly, it is easy to define a num erical program th a t is s tric t b u t not
m onotone — take one th a t takes every n a tu ra l num ber except T into some n £ N
bu t it takes some k € N in to n — 1 (and T into _L). Thus we see th a t the two
properties are independent.

One m ore remark has to be m ade a t th is point. We said before th a t deno
ta tional sem antics is used so tha t we can abstrac t away from certain accidental
properties of programs, i.e., we can see extensionally equivalent program s as hav
ing the sam e denotation. This will pose the problem th a t certain program s of
the Unix com m and language are extensionally equivalent, bu t they have different
side effects th a t we may be interested in capturing. For example, a program th a t
simply displays the content of a file does no t affect the machine sta te in any ob
vious way. So we can e ither take the decision to drop denotational sem antics as
our tool or we can simply no t take account of these features of program s. But
we can also try to mirror certain intensional differences — i.e., differences due to
the im plem entation of program s tha t do no t show under the set theoretical repre
sentation b u t which we consider relevant — as extensional ones, thus sticking to
denotational semantics. In w hat follows, we take the la tte r path.

18 In our case, inputs an d outputs will be machine states.

19 In our case this means th a t we can never recover from the error state .

6. The Semantic Domains 13

6. T he Sem antic Dom ains
To make MS into a Scott domain, we need a bottom elem ent ± ms and a cpo. The
form er is the unstructured error state (JLm s); the la tte r is defined as follows:

6 .1 . D e f in it io n
def

1. Vi < v 2 & Vx.(ui(x) = 1 A v2(x) ^ T) V (t>i(:r) = v2{x))\
2. m sj C Ms ms2 ^

m si = ± ms V
msi = {tdagi © N C x , Pi, Uj) (for i G 2) A tdagx = tdag2 A p\ — p2 A v\ <

V2-

T h at is, the error state is less ‘inform ative’ th an any o ther sta te , and w hereas all
o ther states w ith different underlying trees or in terpre ta tion functions are incom
parable, in com parable states the ordering is simply inherited from th e ordering
on the valuation, which says th a t a valuation is more inform ative th a n ano ther if
and only if it is ‘defined’ in some sense for m ore values.20

Now we are ready to define the sem antic domains for the language o f our Unix
shell:21

6.2 . D e f in it io n
1. [n] G Nj_;
2. [cl G dom(<T);
3. [varj G dom(í-r) ® iV±;
4. [cm„] G Un -> . . . -> Ui MS -> MS;
5. [optjj 6 (MS -> MS) ->■ MS MS;
6. [f?l G (MS -4 MS) -» MS -> MS;
7. [oplj G (Un —>• . . . —t U\ —̂ MS —> MS) —> U^n+i —t . . . —y Ui —y MS —y MS;
8. [cmij G MS -> MS;
9. [opr] G (MS -> MS) -> MS -> MS.

There is little to say about the domain of integers; constants will evaluate to dis
tinguished nodes of the tree, variables to nodes or na tu ra l num bers in accordance
w ith their types. Command lines (com m ands) will be in terpre ted as functions
from m achine states to machine states, whereas n-argum ent com m and nam es yield
com m ands when supplied w ith the appropriate num ber of argum ents. O ptions and

20 This is justified by the fact tha t the relevant inform ation is basically stored
in the valuation function, whereas the underlying tree and the in terp re ta tion
function carry little information.

21 Cf. definition 2.2, Furtherm ore, we use the convention th a t bracketing is right
associative. For example, X —y Y -* Z = (X —y (Y —y Z)).

14 6. The Semantic Domains

flags, like operators, are functions from com m ands to commands; nevertheless, we
shall see th a t there is a difference between operators and options/flags. O ption
le tters create new argum ent places. By the definition of the domains resulting
from coalesced sum, C artesian product and function form ation22, and the flatness
of NCj_, Tj_ and dom(i;r), th e ordering relations and the bottom elements are
given. For exam ple, the least ‘informative’ program (-1-ms->m s) is the one th a t
takes every m achine state in to the error state.

The in terpreta tion of the expressions of the language L^cml ̂ will proceed via a
translation function into the language of specifications — the topic of the following
section. T h a t is, command lines will be transla ted into the specification language
first, then th a t language will be interpreted using the sem antic domains defined
here.

7. A Language for Program Specifications
As we have said above, com plex expressions will receive a denotation in two steps.
F irst we define a translation function r:L^cm^ (->■ L(spec), he., we translate ex
pressions of the shell language into expressions of the language of specifications.
These expressions will be given a denotation via an in terpreta tion function and
a valuation. As we shall see, these will be the desired denotations of the shell
expressions. We will proceed in two steps. We first specify an auxiliary language
I > s> and a function rj: Z /cml) Z /ps) which will serve as the basis for specifying
the language L^spec ̂ and the function r.

Com m ands (cmi) will be translated into program specifications (PS), which
can be in terpreted directly in the semantics. The translations of all other expres
sions (such as flags and option letters) will be given relative to PS. F irst of all we
need a typed dynamic first-order language w ith equality (TD FO LE)23 th a t will
be sufficient to specify — i.e., to describe — functions from machine states to
m achine states. The set of types is defined as follows:

7.1 . D e f in it io n
1. t, dir, file, natnum, char*, € T;
2. a , ß 6 T (a ß) G T .

T he types dir and file are self-explanatory, t is the type truth value — i.e., the
type of form ulae — , natnum is the type of natural numbers and char* stands for
character strings, (a ß) is th e type of functions from objects of type ß to objects

22 Cf. definition 5.4.
23 The language and its sem antics will be very similar to the one given in Groe-

nendijk and Stokhof (1991) w ith some m odifications required by the typing.

7. A Language for Program Specihcations 15

of type a . The typed first order language based on the above set T is defined as
follows:

7 .2 . D efin it ion
1. l / ps) d=f (LCps, Con, Var, Expr);

2. LC ps d= { (,) , = , A, 3};
3. Con d= (J r gT Conr ;

a. Cont d= { T } ;
b. C ondir d= { ro o t,± dir};

c. Conßle = { tty ,m ail, l file};
d. Connaf;nurn — N;

e - C onchar* =f C h a r ;
f- C on(natnum file) = {write.perm ission};

S- Con(char" file) =f {content};

h. C on((Cjjar' char") char") = { }>
4. V a r d̂ f U re T V a r^ U U re T V a 4 ;

a. V arsdir =f {HOME, CW D, dirx
Hpf

b. V arJJe = {KBD, SCREEN, f i le i,.. .} ;

c. Varnatnum =f {W RITECH ECK , E X IS T C H E C K ,..
d. Var^ = {x.c\ x £ Var^ A c £ Con*a/J^};

5. E xpr = f U reT E xprr ;
6. C onr U V ar“ C Exprr ;
7. 4» £ E x p r(a ß),rj £ Expr^ => $(77) £ E xpra ;
8. T7,C 6 E xpra ^ p = (e E xprt ;
9. 4>, T £ Expr, =>■ ->($), ($ A $) £ E xprt ;

10. $ £ E x p r,,£ £ V arf => 3£.<f> £ Expr,.

T he constants and simple variables of the language serve to nam e th e elem ents of
the m achine s ta tes — i.e., files, directories, na tu ra l num bers and ch arac te r strings
— in accordance w ith our requirem ents. O ur exam ples of special variables are
‘H O M E’ for the user’s home directory; ‘CW D ’ for the current working directory;
‘K B D ’ for the current keyboard input file ; ‘SC R EE N ’ for the cu rren t screen
o u tp u t file, ‘ro o t’, ‘m ail’ and ‘tty ’ are special files and directories. T h e use of the
rem aining constants and simple variables should be obvious from th e ir semantics
th a t we specify la te r on. The functional constants are again self-explanatory,
except for "" which is the symbol of concatenation. T he deno tation of x ^ y is
the concatenation of (the strings) x and y. We usually omit it, a n d indicate
concatenation by mere juxtaposition. V arc is the set of complex variables. The

16 7. A Language for Program Specifications

value of a complex variable depends on its com ponents. The opera to r is sim ilar
to those operators of program m ing languages which select a particu lar member
of a structure. W e can think of unary name functions as selectors of m em bers of
such structures. We stipulate th a t

x.c 6 V arc x.c = c(x).

T h a t is, the values of name functions applied to variables can be autom atically
referred to by complex variables. For example, the content of the file file can be
referred to either as ‘content(fiie)’ or ‘file.content’. The operato r associates to
the left (i.e., x.c.d = (x.c).d). A p art from and the language itself is given
by th e standard construction ru les for expressions of type r in a TD FO LE. In
w hat follows we will be especially interested in expressions of type t24.

We need certa in further opera to rs defined in term s of the above:

7 .3 . D efin it ion
1. ($ V T) d= A -iT);
2. (<E> -> T) d= - ($ A - T) ;

3. !(*) d=* - (- (*)) .

T he definition of V and -> is standard , whereas T is a unary logical sentential
o p era to r, i.e., it takes formulae in to formulae.25

T he semantic value of the well-formed expressions of the language in a m achine
s ta te m s is produced via the function [-Jm s . F irst we define a function D th a t
assigns semantic domains to types, i.e., it specifies which kinds of objects serve as
th e denotation o f expressions given the set of m achine states26:

7 .4 . D efin it ion
1. D (t) d= P(M S);

2. D(file) d= { u :tT(u) £ £fiie}j
3. D (dir) = f {u:fT(u) € E dir};
4. D(natnum) d= N x;
5. D(cfiar*) d= Char*;
6. D ((a ß)) d= D(/?) —>• D (a).

T h a t is, the denotation of a form ula is a set of machine states, whereas nam es of
files, directories, n a tu ra l num bers and character strings evaluate to elements of the

24 In what follows, we will refer to expressions of type t as formulae.
25 T his is Groenendijk and S tokhof’s closure operator o.
26 Cf. definitions 4.1 and 4 .2 .

7. A Language for Program Specifications 17

appropriate type of the universe — e.g., a file nam e evaluates to a node of type
file of the underlying tree of the tdag — whereas functional expressions evaluate
to functions of the appropriate type.

Now we are ready to define the semantics of the well form ed expressions of the
language L^ps\ F irst we give the definition of expressions o ther th an form ulae:27

7.5 . D efin it ion
1. c 6 Con =$> fcj d= p(c);
2. x G V ar3 =>• |x] d= v(x);
3. x.c € V arc => [x.c] =f [c]([x]);
4. [EXISTCHECK] d= n € 2;

5. [rootj d= 0 € d o m (tr);
6. I-Ldir] =f 1 € d o m (ir);
7. [-Lfiie] =f 11 € doin(tr);
8. [± C har*]= f l l l € d o m (< T);
9. [w rite.perm issionj € F —» 2, where F C dom (t r) such th a t =

^file •

Thus the sem antic values of constants and simple variables are p roduced by the
in terpreta tion and valuation functions, respectively. T he values of com plex vari
ables are determ ined as was seen before. The rem aining clauses can b e regarded
as constraints on v and p. ‘EX ISTCH ECK ’ is a variable th a t can only be set to
0 or 1 (the same holds for ‘W R ITEC H EC K ’); ‘ro o t’ has to denote the roo t of the
TDAG. The nam e constants will represent ‘im m utable’ objects in th e machine.
Some of them (especially ‘m ail’ and ‘t ty ’) will help us avoid com plications in con
nection w ith program s th a t do not change a m achine s ta te under th e standard
in terpre ta tion (since norm ally we are only interested in their side effects): we con
ceive of them as files th a t can grow indefinitely as strings are concatenated to their
content (when m ail is sent or character strings are displayed, respectively). _Lr

27 We assume th a t

Vxa .|x]-Lms = _La , where a G T \ {f}

i.e., the denotation of all well-formed expressions except for form ulae in the
error s ta te is the bo ttom element of the appropria te type, as th is will not
influence w hat follows in any way. The definition below applies to all other
cases. We will drop the superscript ‘m s’ and the type subscripts w hen this
gives rise to no m isunderstanding. u[X] stands for the range of th e function
v when constrained to the set X.

18 7. A Language for Program Specifications

denotes the b o tto m element of type r; these are ‘degenerate’ objects such as non
existent files; th e ir use will be explained la te r on. ‘write_permission’ is a function
from tree addresses to 0 or 1, th u s relating a tree address of type file to its w rite

oopermission.

The sem antic value of form ulae in a m achine state will be the set of m achine
s ta tes tha t can result after th e formula has been processed. Thus we specify the
meanings as sets of ordered pa irs of machine states. The definition runs as follows:

7 .6 . D e f in it io n
1. <E E xprt . (l MS, 1 m s) € [$];
2. (m sim s2) G [T | m si = ms2;
3. (m s i , m s 2) G [t i = t 2 j <=> m s i = m s 2 A [[i iJ raSl - [f 2J m s i ;

def4. (m s i,m s2) G |p $] m sj = ms2 A ->3ms3.(m si,m s3) G [$J;
5. (m s i,m s2) G [$ A T] 3ms3.(m s i, m s3) G |$] A (m s3,m sx) G ['kJ;
6. (m s1,m s 2) G [3x.<k] tdagj = td a g 2 A p\ = p2A

A 3m s3.(tdag3 = td a g j A p3 = pi A u3[x]vx A (ms3,m s2) G f$]).

C lause 1 s ta tes th a t the e rro r s ta te verifies every formula and no form ula can
recover from it. The form ula T denotes th e diagonal relation on the set MS,
i.e., it is always true without any dynamic effects. The rem aining clauses are the
s tandard ones for DPL, though clause 6 looks a bit more complicated, bu t this is
the only clause introducing dynam ic effects, and it simply says th a t we are only
in terested in changes of the valuation function28 29 if this leads to a valuation th a t
can serve as an inpu t to the em bedded form ula. This justifies what we said above,
nam ely tha t th e denotation of a formula in a machine state is a set of valuations.

Now it is easy to compute th e semantic clauses for the defined operators:

7 .7 Facts
1. (m s i,m s2) G [$ V T] <=>

m si = ms2 A 3m s3.(m si,m s3) G [$J V (msa,m s3) G [T];
2. (m s1,m s 2) G [$ —* T] msi = m s2 A Vms3.(m si,m s3) G [$] =£■

3ms4.(m s3,m s4) G [T];
3. (m s i,m s2) G |!$1 ^ m si = ms2 A 3m s3.(m si,m s3) G [$J;

28 We are m aking unforgivable simplifications here. Among others, we simply
ignore the difference betw een character files and special files (such as character
devices); also, we ignore o th e r types of permissions altogether (norm ally the
permissions of a file are encoded in four octal digits in the file system).

29 Vi[x\v2 m eans that the tw o valuations are the same except perhaps for the
value they assign to x.

7. A Language for Program Specifications 19

As for the first two definitions, there is little to say. In the case of clause 3. it
should be now obvious why Groenendijk and Stokhof call it the closure operator:
it closes off any dynam ic effects a formula may have had. Now we have a DFOLE
th a t has enough expressive power to describe relations between m achine states.
We will use this language to specify the semantics of program s. But we have to face
two fu rther problems. The denotation of a form ula is a p a rtia l relation, i.e ., it is
neither functional nor complete. But we think of program s as total functions from
m achine states to m achine states — i.e., program s are defined everyw here, and
they are determ inistic. This means th a t not every form ula of the above language
is appropriate as a translation of a program . To single out the class th a t we
need, we will introduce a representation for the form ulae and impose th e relevant
constrain ts on this representation, which is basically a shorthand for the form ulae
of

8. Program Specifications
We will take the formulae th a t represent the translations of our program s

ap art and give them a representation in term s of their p a rts . The sentences of
this representation will be the ones of Z /ps\ bu t we will not use all the pow er of
this language. B ut now we will think about this language as an o rd inary typed
first o rder language w ith equality w ith its s tandard sem antics. Two sentences of
this new representation will play a key role in specifying program s. The first one,
which we will call the precondition (PC) of the program , will contain th e input
conditions for the execution of a program ; the other, called the maximal change
(MC), specifies its o u tpu t conditions. The intended in te rp re ta tion is as follows:
a form ula (j) is applicable to a machine s ta te ms — i.e., ms G dom ([</>]) — if and
only if the m achine sta te satisfies all sentences in the p rog ram ’s P C ,30 an d if a
program is not applicable to a machine state , we will take it to have no effect.31
This is basically the same behaviour as th a t of standard shells, where an error
message is issued in such a situation, bu t the m achine s ta te is not affected. The
only way a program can lead to the error s ta te is by leading out of th e set of
m achine states, e.g., by removing one of the objects required by definition 4.1.
The m axim al change brought about by the program is th a t sentences in th e MC
of the program are satisfied by the new m achine state , and all other sentences not

30 We take this to m ean th a t all formulae in this com ponent are satisfied by the

m achine s ta te under some appropriate first-order definition, i.e., m s [= T
V7 G T.ms 7.

31 We do th a t in order to get complete functions in accordance w ith th e re
quirem ents of definition 6.2. The general idea is th a t we explicitly lis t the
presuppositions imposed by a program on the input m achine states.

20 8. Program Specifications

affected by M C retain their t r u th value.32

In actual fact, program specifications will be more complex. First, the PC will
no t be checked against the in itia l machine s ta te directly, b u t a modified m achine
sta te , in which some variables are assigned local values for the execution of the
program . So each program specification will contain a component describing a
modification o f the valuation of the initial machine state. We will call this com
ponent the local environment (L E N V) of the program. The role of LENV is th a t
we do not expect the input m achine state to verify it, nor do we want it to live on
in the ou tpu t machine sta te , unless as a consequence of some property of the MC
in the program specification. Second, since MC is ju s t a sentence in a FOLE, we
have to keep a separate com ponent describing the dynamic aspect of the change
of state effected by the program , i.e., the list of those variables the semantic value
of which m ay change from th e input s ta te to the ou tpu t s ta te (through changes
in the valuation). We will call this com ponent the environment change (E N V C)
th a t the p rogram can effect.

So program specifications will be quadruples of the form

(LENV; PC; MC; ENVC),

where LENV 6 Var -> (V ar U Con U {*}) (where V represents the undefined
funcion value). We will use th e notation m s + LENV to refer to the modified
machine s ta te which differs from ‘ms’ in its valuation only, and

* ± £ = LENV(x) =* [x lms+LENV = [e r s.

O n the o ther hand, ENVC C Var. As a m a tte r of course, if a variable is in ENVC
then , even if LENV assigns it a local value, its old value is not restored after the
com putation.

The com ponent called M C does not use the full force of our language Z /psA
This is due to the fact th a t th e operation of a program is to be deterministic.
Therefore, a sentence in MC does not contain negation: there may be several ways
of falsifying a formula. (In th is way, we also exclude conditionals and disjunctions,
which also lead to non-determ inism , because they are defined in term s of negation.)
A nother problem atic type of sentence in our FOLE is equality: there are two ways
of verifying th e equality of tw o variables, namely, the valuation of either one (or
bo th) can be modified in o rd er to make the ir values identical. Accordingly, we will
stipulate th a t a t most one variable on either side of an equality is in ENVC, and
all variables o f ENVC appear in some equality — otherwise we could change the
machine s ta te arbitrarily w ith respect to th e variables in ENVC but not in MC.

32 Except for those changes th a t MC entails, of course.

8. Program Specifications 21

This way, an equality in the MC will correspond uniquely to a change of m achine
s ta te (if a change is to be effected at all).33

We will refer to the language of MC as L^mc ̂ and the language of PC as
L(pc)_ We now give the form al definitions for the above concepts and a function
[•]:PS i-> (MS —»• MS), which interprets the above quadruples:

8 .1 . D efin it io n
1. £ (m c)=' <LC(mc),Con,Var,Exprmc),

where LC(mc) d=f LCps \ {->}; otherwise it follows definition 7.8;
As we have m entioned above, there are two additional constrain ts on sen
tences in l / m<d, namely, at most one variable on either side of an equality
is in ENVC and every variable of ENVC appears in some equality.
3. PS d= (LENV; PC; MC; ENVC),

where PC C Form, LENV C Var —>• (Var U Con U {*}), M C C Form mc
and ENVC C Var;

4. Let msi £ MS, and ps = (lenv; pc; me; envc) £ PS. Then

(m s1,m s2) € [ps]
(a) msj + lenv |= pc A ms2 |= me A msj [envc]ms2; or
(b) msi + lenv ^ pc A msi = m s2
The notation msi[envc]ms2 is a shorthand for ‘the valuations of msi and
m s2 differ at m ost in the values th a t they assign to the variables in envc’.

As we said before, this ordered quadruple encodes some local assum ptions (LENV),
the presuppositional content of the program (PC), and the effected change (MC
and ENVC). How exactly this is done is shown in the next section, using some ex
amples. As we m entioned above, we take these constructions to be abbreviations
for sentences of the language L^ps\ and we spell out the corresponding form u
lae of the above language as illustrations in some cases. Officially however the
abbreviation reads as follows:34

33 If a variable x £ ENVC did not occur in an equality w ithin M C, bu t ano ther
sub-form ula, say, F(x) , then we would face non-determ inism again: P(x) can
be verified in as m any ways as there are possible values of x th a t make P (x)
true.

34 The operato r FV assigns to an expression the set of free variables it contains.

22 8. Program Specifications

8.2 . D efin it ion
(LENV; PC; MC; ENVC) = f -,<£ v <j>, where
<f> =\{3xu . . . , x n .LENV' A PC)A

A 3yu . . . , ym(!(3zj, . . . , zfc.LENV' A M C)),
w ith { x i , . = dom (LENV), { y i , . . . , y m} = ENVC, {zu . . . , z k} =
dom(LENV) \ ENVC, and

LEN V ' = lxi = LE N V (xj) A . . . A x n = L E N V (xn)’.

The above expression expresses exactly what we have described in this section.
First we check the precondition under the local changes — the closure operator
here serves to close off dynamic effects of the first conjunct — then we reassign the
variables of ENVC and perform the checking again under the modified valuation
and close off unw anted dynamic effects. The purpose of using the set LEN V \EN V C
in the translation is to avoid unw anted reassignment to the variables in ENVC. The
first — negated — disjunct serves to achieve the effect of to talising the relation.
It is easy to see th a t either a m achine state satisfies the precondition, in which
case it will be in the domain of the form ula due to the second disjunct, or it does
not, in which case it will be due the first disjunct th a t the denotation contains
an ordered pair consisting of this m achine state. Thus we have a total functional
expression, exactly as we wanted. It is also easy to see th a t the denotation of
program specifications under [■] an d the TD FOLE formulae under |-J will be the
same. B ut we still use our quadruples for the sake of perspicuity.

8.1. Som e Exam ples
Now we are ready to look at a few examples. As a m a tte r of course, we will
make gross simplifications again to avoid complications. We will also drop type
subscripts on variables when they are obvious.

8.3. E xam p le
Ti(rm file) d= (0;

(EXISTCHECK = 1 file ± _L) A
(W RITECH ECK = 1 —> fiIe.write_permission = 1) ;

file = -L;
{file}).

This definition says the following. F irst, we assume no changes for the local envi
ronm ent. Second, a machine s ta te satisfies the input condition of this program if
and only if the value of file — i.e., the first argum ent — is an existing file (if EX
ISTCH ECK is set to 1), and the user has write perm ission to it (if W RITEC H EC K
is set to 1). The m axim al change th a t the program effects is th a t the file’s value

8.1. Some Examples 23

is the non-existent file in the output s ta te (J_fiie denotes non-existent files, and file
is the only m em ber of the environment change).

To show how the mechanism works, we spell out th is form ula in L /ps);

8 .4 . E x a m p le
!(EXISTCHECK = 1 -> -.(file = X))A

(W R ITECH ECK = 1 —> file.write_permission = 1))A
3 file [! (file = _L)]

By calculating the semantics of this form ula according to the rules given in def
inition 7.6, it is easy to see tha t it expresses exactly the conditions on pairs of
m achine states spelt out above. The closure operators are vacuous in th is case,
b u t they will be needed later on, when LENV will not be empty, to close off dy
namic effects, as we explained above. As the mechanism should be obvious, we
do not give these translations later except when we want to illustra te som e point
explicitly.

8 .5 . E x a m p le
r i(c a t file) d=f (0;

file ^ 1 A SCREEN / 1 ;
SCREEN.content = SCREEN.content "'fife.content;
{SCREEN, content});

This exam ple works as follows. We assum e no local changes to the environm ent;
the file referred to by the argument as well as the file th a t the variable SCREEN
refers to m ust exist; the content of file m ust be concatenated at the end of the
content of the stream referred to by the SCREEN variable (normally, th e file asso
ciated w ith the user’s screen, i.e., t t y) . Finally, at most th e content of th is stream
will be different from the input s ta te to the output s ta te , as the last com ponent
of the program specification shows. Now, in actual fact, the com m and c a t only
affects the s ta te of the machine if the content of its o u tp u t file is s to red on disk.
The u ser’s screen is usually not such a file. Nevertheless, for the sake of uniformity,
we consider it as if it contained the concatenation of everything th a t has appeared
on the screen before.

8 .6 . E x a m p le
t i (cc file) =f ({(O U TPU TFILE, a . ou t)} ;

file ± X;
O U TPU TFILE.content = cc(file.content);
{O U TPU TFILE.content}).

This is our first example containing a non-em pty LENV com ponent, w hich locally
assigns the value a .o u t to the variable O U TPU TFILE. As we know, th is is the

24 8.1. Some Examples

default nam e of the output of the program cc (the C compiler). (The symbol
‘a . o u t ’ is actually meant to be a variable th a t evaluates to the file nam ed th a t
way in the directory structure.) So one of the uses of LENV will be to assign
default values to variables in analogous cases. The precondition says th a t the
inpu t file has to exist, and the change effected is to store the compiled version of
the source program to O U TPU TFILE. Note th a t cc in the MC com ponent is the
actual C compiler, invoked by the shell. It is not to be confused w ith cc, which
introduces the command line th a t the shell processes. The shell looks up cc in its
lexicon and acts accordingly, whereas it sim ply passes cc to the operating system
w ith the appropriate param eters. So, in an actual im plem entation, the shell will
perform the following translation:

cc file —* cc -o a .o u t file.

As here is the first case w ith a non-em pty LENV, we will give the D FO LE
translation again:

8 .7 . E x a m p le
!(30U T P U T F IL E [0U T P U T F IL E = a .o u t] A -(file = J_))A

30U T P U T F IL E . content
[□O U TPU TFILE

[O U TPU TFILE = a.out jA
O U TPU TFILE.content = cc(file.content)]

Here again we can calculate th e semantic value of the D FO LE formula to verify
th a t it coincides with the in tended in terpreta tion of our quadruple. Furtherm ore,
we can now see how the closure operator closes off unwanted dynamic effects.

N ote th a t the output stream SCREEN in the example 8 .5 also has a default
value (namely, t t y) . The two different treatm ents of SCREEN vs. O U T PU T FIL E
in exam ples 8 .5 —8.6 reflect a distinction th a t we intend to m ake between two types
o f default values. The first type , called deictically available defaults (DAD), are
sim ilar to here and now in n a tu ra l languages. The default value of SCREEN
belongs to th is type. Similar default values include KBD (the user’s keyboard
is the default value for the cu rren t input stream), HOME (defaults to the user’s
hom e directory) etc. The o th er type is called non-deictically available defaults
(NAD), which contain all the o th er default values (for exam ple, the default nam e
of the o u tp u t file produced by the C compiler in the above example). These are
determ ined by command nam es lexically. In th is respect (bu t only in this respect)
they are sim ilar to lexically determ ined properties of missing argum ents in n a tu ra l
language. For example, the d irect object of the verb eat in I am eating has the
default p roperty ‘food’, which can be overridden by an explicit direct object, as in
I am eating sand. On the o ther hand, the optional ‘source’ argum ent of the verb

8.1. Some Examples 25

leave as in He left defaults to ‘here’, a deictically available default, an d can also
be overridden by an explicit argum ent, as in He left Los Angeles. T he different
trea tm en ts of DAD and NAD will allow us to make a sim ilar d istinction in our
shell language.

9. P u ttin g Com m and Lines Together
So far, we presented the language of program specifications, which serve as the
in terp re ta tion of com m and lines (cml, cf. definition 6 .2 .9). T h a t is, |[cml] d=f
[r^ c m l)]” 8. We have also seen the objects denoted by argum ents. W h at remains
to be done is to explain how other param eters, i.e., flags and options are combined
w ith the lexical program specifications.

To give specifications for these, we need a richer, type theoretical language
ü(spec). T he set of types remains the sam e as in the case of ld ps)35 T he language
itself is the same except th a t we introduce a new logical constant A th a t will serve
to construct functions and we now allow application to work in bo th directions.
Further we allow an infinite set of simple variables in all types th a t we do not
indicate explicitly, as they are not excluded by the definition of ld psh T he following
definition only gives the new clauses:36

9.1 . D ef in it io n
1. T (spec) d= (LCspec, Con, Var, Expr);
2. LCspec =f LCps U {A};
7. $ G Expr(a ß) ,r] <E Expr^ =» $ (77), (77)$ € ExprQ;

11. $ G E xpra ,£ e Var/j => A£.<f> G Expr<a ßy

Since the set of types is the same, the function D is not altered , e ith e r,37 and
the sem antics of the expressions present already in L^ps ̂ is also unchanged,38 so
we only give the new clauses of the definition for the in te rp re ta tion function [•].

9.2 . D ef in it io n
1- »1 = ' [*] (M) ;
2. [Ai.$] = {(>),<) 6 D (ß) x D(a):< =

T he sem antic dom ains agree w ith the requirem ents of definition 6 .2 . The

35 Cf. definition 7.1.
36 For the rem aining clauses cf. definition 7.2.
3l Cf. definition 7.4.
38 Cf. definitions 7.5 and 7.6.

26 9. Putting Command Lines Together

semantics o f compound expressions is given by functional application and the A-
operator corresponds to function abstraction .39

In w h a t follows, we will be interested in the semantics of com m and lines
in term s of their constituents, i.e., the com m and nam es and the param eters.40
Again, we assum e that there is a translation function r th a t works pointwise, i.e.,
it translates the expressions of the language lAcml) into expressions of the language
L(spec). It is easy to show th a t fA ^ .i^)] = ['P^/77]]. T h a t is, carrying out ß-
conversion is licensed by the semantics. Further, we will still represent program
specifications by our quadruples and use four functions — ‘lenv’, ‘p c ’, ‘m e’ and
‘envc’ — to refer to its com ponents which we did not introduce into our language
explicitely to avoid complications.

As we said earlier, the denotation of a command nam e is looked up in the
lexicon associated with the shell. For the sake of simplicity, we are assum ing th a t
the lexicon is a static list of specifications ra th e r than a dynamic database (i.e., we
do not consider the possibility of lexical rules). Therefore, the specification of an n-
argum ent com m and name (cm n) as looked up in the lexicon is a lam bda-expression
of the form Aaq . . . Ax„.PS.41 As a consequence, we cannot account, for the tim e
being, w ith the mechanisms governing optional arguments (and the deictically
available defaults associated w ith them). For example, the three versions of c a t
(with no command-line argum ent, with one argum ent and with two argum ents)
must be distinguished as if they were three different com m and names (c a to , c a t i
and c a t 2, respectively):

9.3. E x a m p le s
1. r (c a to) =f (0;

KBD / I A SC R EEN / 1 ;

39 v . x / u is the same function as v, except th a t it assigns u to x, i.e.,:

v: x /u(y) def f u if x = y;
v(y) elsewhere.

Hfirx/u] *s the in terpreta tion function associated w ith a machine s ta te under
the m odified valuation. 'P^/77] is the expression th a t we get by ß-conversion,
i.e., by substituting 77 for all free occurences of £ in T.

40 As we mentioned earlier, we will ignore certain expressions, such as opr's.
But it is easy to see w hat the appropriate type for those specifications would
be.

41 A gain, subscripts on variables and constants indicating their type will be
d ropped when it is obvious from the context.

9. Putting Command Lines Together 27

SCREEN.conent = SCREEN.content K B D .content);
{SCREEN.content});

2. r (c a t i) d= Ax/ i ze-(0;
A i / I A SCREEN + 1 ;
SCREEN .content = SCREEN, content '"x. content;
{ SC R EEN . content});

3. r (c a t 2) =f Aa:/l/eAy/l/e.(0;
A j / í A A) / ^ ! ;

y. content = y .con ten t^x . content;
{y. content});

Assuming th a t the translation of a file nam e is the file nam e itself, the full con
struction consisting of cat] and the file nam e file will get the translation shown
in our earlier example 8.5.

It is easy to see w hat the lexical rules will do when they will exist: They will
abstrac t over variables w ith deictically available default values (such as KBD or
SCREEN), thereby converting them into obligatory argum ents. W hich variable
m ust correspond to the first, second and th ird argum ent place is determ ined by
lexical principles.42 Alternatively, we could assum e th a t the addition of optional
argum ents is a syntactic operation accom panied w ith a sem antic operation working
in parallel. To do th a t, we have to assume th a t the set DAD of deictically available
defaults has two subsets, corresponding to the two possible non-vocative argum ents
of a com m and nam e (cf. footnote 42 above):

DAD = DAD! U DAD2

(the subsets need not be disjoint). For exam ple, variables w ith deictically avail
able default values corresponding to ‘here’, ‘now’, ‘m e’ and ‘in p u t’ (e.g., HOM E,
CW D, HOST, KBD) are typically in D ADi; variables th a t default to ‘o u tp u t’
(e.g., SCREEN, PR IN T E R) are in DAD2. Moreover, we also have to stipu la te
th a t exactly one variable in each of the two subsets occurs in the program specifi
cation of the command. If these conditions are satisfied, then we can in te rp re t the
addition of the first optional argument as replacing th a t m em ber of DAD) which

42 We assum e th a t com m and names should have at m ost th ree argum ent places
as a rule, as is the usual situation in n a tu ra l languages. However, the first
argum ent (the ‘su b jec t’, so to say) is always the operating system itself, since
com m ands are in the imperative mood. So an implicit ‘su b jec t’ in the ‘voca
tive’ case is to be assumed in front of each com m and. We also believe th a t
argum ent places should be associated w ith certain types of roles in a system
atic way, as is the case with the so-called thematic roles in n a tu ra l languages.

28 9. Putting Command Lines Together

figures in th e program specification, and the second optional argum ent overriding
the relevant member of DAD2. Note th a t the system atic association of argum ent
places w ith role types (either lexically or through the syntax) is a requirem ent in
terms o f o u r in terpretation of the Principle of Compositionality.

O p tion letters do som ething very sim ilar to the lexical rules informally m en
tioned above, except th a t they affect non-deictically available defaults. For exam
ple, the o p tion letter -o used w ith the command nam e cc is used to in troduce the
ou tput file nam e, thus overriding the default value a . o u t . However, the way such
an op tion le tte r operates is different from what we outlined in connection w ith
lexical rules. Instead of ju s t abstracting over a variable name, it abstrac ts over
the value assigned to a variable in the LENV (local environment) com ponent of
the p rogram specification:

9.4. E x a m p le
r (—o) d= \ (. \ x / 27e-£[lenv(£)/lenv(£): O U TPU TFILE/x].

That is, th e option le tter -o will add an argum ent place to the com m and line th a t
it is a tta ch ed to, and m odify the LENV of the corresponding program specification
in such a way tha t it assigns the newly introduced lamb da-variable to the variable
O U T PU T FIL E (we use the same no tation as for the modification of valuations in
the sem antics, cf. footnote 39). Therefore, the semantics of -o is entirely uniform:
supplying an option in troduced with -o will be simply idle if the original program
specification does not assign a value to O U TPU TFILE, as expected, whereas it
will override the non-deictically available default otherwise.43 Accordingly, the
denotation th a t we assign to a com m and line of the form cc -0 objfíle sourcefíle
will be as follows:44

9.5. E x a m p le
r (c c -0 objfíle sourcefíle) d= ({(O U TPU TFILE, objfíle)};

sourcefíle 7̂ X;
O U TPU T FIL E .content = cc(sourcefíle. content);
{O U TPU TFILE . content}).

M ost im portantly, as can be seen in the above examples, the difference be
tween th e behaviour of optional argum ents vs. options is reflected by the shape

43 As a m a tte r of fact, we could also say th a t the shell issues an erro r mes
sage instead of passing the com m and to the operating system. In n a tu ra l
languages, using an optional param eter when it is not appropriate gives rise
to an anomaly. The procedure th a t we are taking here is ju s t a m a tte r of
convenience. Note, however, th a t the eventual anom aly would be sem antic
ra th e r th an syntactic.

44 Cf. 8 .6 and 9.4

9. Putting Command Lines Together 29

of the program specifications th a t they yield. Lexical rules replace variables w ith
lam bda-variables, whereas options just rebind them in the local environm ent. As
a consequence, options leave open the possibility of fu rth er rebinding, so, e.g., the
following equivalence will hold:

cc -o objßlei -o objßle2 = cc -o objßle2.

Lexical rules, on the other hand, make it impossible to rebind the affected variables
in any way (e.g., by using options).

Flags (fi) are of type (t t). Just like options, they modify the LENV com
ponent, but they determ ine the value th a t they assign to variables in the local
environm ent (ra ther than taking an argum ent to th a t effect). For example, the
flag - f flag forces both W RITEC H EC K and EX ISTC H EC K to be evaluated to 0
in the local environment:

9 .6 . E xam p le
r (- f) = f A£.£[lenv(£)/((lenv(£): W RITEC H EC K /O): EXISTCHECK/O)].

This is an expression of the appropriate type, i.e., it yields a program specification
when applied to a program specification, as in the following exam ple:45

9 .7 . E xam p le
r(rm file - f) =f ({(W RITECH ECK , 0), (EX ISTCH ECK , 0)};

(EXISTCHECK = 1 —> file / JL) A
(W R ITEC H EC K = 1 —> file.write_permission = 1);

file = _L;
{file}).

Obviously, the effect of the flag - f is th a t the tests on the existence of the file to
be removed and the w rite permission for it will always succeed.

10. Conclusions
T he intuitive non-com positionality of the Unix com m and language is due to the
fact th a t, in every com m and line, the in terpreta tion of the param eters is the ‘in
te rna l affair’ of the program corresponding to the com m and nam e. Even if the
m eaning of a com m and line is some function of the m eanings of its constituents,
one has the clear in tu ition th a t not all functions yield equally ‘com positional’ se
m antics. If we allow functions defined pointwise, then the trad itio n a l principle
of com positionality becomes vacuous. On the other hand, it is difficult to make

45 Cf. the exam ples 8 .3 and 9.6.

30 10. Conclusions

sense o f the concept of ‘more n a tu ra l’ or ‘sim pler’ functions from the m athem atical
point o f view. Accordingly, there are no n a tu ra l means to lim it the action th a t
a com puter program can perform . W hat we can do, though, and w hat we have
done in this paper, is in terpreting the constituents of com m and lines as well as
th e ir ways of com bination in a uniform m anner. In this way, the in terpreta tion
of com m and lines is com positional in the sense th a t it may not be construction
specific, irrespective of what the actual program carried out by the m achine will
do.

How is the behaviour of our compositional Unix shell different from a tra
d itional, non-com positional one? Instead of pre-defining a set of flags, option
le tte rs , optional argum ents etc. for each command name, we could have ‘m anual
pages’ for flags, op tion letters an d the like, which would describe w hat they do in
any com m and line. If certain com binations of commands and param eters do not
m ake sense, they will qualify as semantic anomalies ra ther th an syntactic errors,
ju s t like in n a tu ra l languages. (A lthough, in actual fact, we have trea ted certain
anom alies as ju s t ineffective in th e above.) For example, I knew the answer with a
knife is anom alous because the verb know does not license an instrum ent ‘op tion’
ju s t th e same as the option in c a t - f i l e auxßle does not make sense because
the program c a t does not use any auxiliary (com m and or expression) file. Listing
w hat argum ents, options etc. do m ake sense in com bination w ith c a t is as absurd
as it would be to list all the ad juncts tha t make sense w ith the verb know in a
d ic tionary of English.

B y the same token, our trea tm en t of Unix commands also has im plications
as to th e ‘m anual pages’ of natural-language predicates, i.e., their syntactic and
sem antic description. Even though the complexity of their meanings and the
m u ltitu d e of the types of construction tha t they occur in cannot be compared
to th e simplified command language that we have exam ined in this paper, the
concept of com positionality th a t we have forwarded here has a consequence for
th e ir study. Namely, a natural-language predicate used in two different ways m ust
be a ttr ib u te d a single meaning unless we are entirely certain th a t homonymy or
two different constructions are responsible for the two different uses.

R eferences
G roenendijk, J . and M. Stokhof. 1991. ‘Dynamic Predicate Logic’. Linguistics

and Philosophy 14.
G un ter, C.A. and D.S. Scott. 1990. ‘Semantic dom ains’. In: J . van Leeuwen,

ed ., Handbook o f Theoretical Computer Science. Vol. B. North-Holland,
A m sterdam .

M osses, P.D. 1990. ‘D enotational sem antics’. In: J . van Leeuwen, ed., Handbook
o f Theoretical Computer Science. Vol. B. North-Holland, A m sterdam .

References 31

Scott, D.S. and C. Strachey. 1971. ‘Toward a m athem atical sem antics for com
puter languages’. Proc. Symp. on Computers and Autom ata 2 1 , 19-46. Mi
crowave Research Institu te Symposia Series, Polytechnic In s titu te of Brook
lyn.

	Oldalszámok
	_1
	_2
	_3
	_4
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	_5
	_6

