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0. In troduction
T he aim of th is  paper is to examine the trad itional concept of compositionality. 
We will be dealing w ith a language, namely, the language of com m ands used 
in  the  Unix operating  system, the in terp re ta tion  of which is in tu itively  far from 
com positional, a lthough it fits the trad itional definition of com positionality. We 
will outline th e  reason of this discrepancy, then  we will show how to  m odify the 
language so th a t  it receives an intuitively com positional in terp re ta tion . We show 
th a t this will get us closer to a more reasonable definition of the  principle of 
com positionality and its significance for the  sem antics of n a tu ra l languages.

The paper is organized as follows. In section 1 we present the  Principle of 
Com positionality and argue tha t it is to be strengthened, because it is too  loose 
in  its original form ulation. In particular, we introduce the  Principle o f Indepen
dence, and propose to include it into the Principle of Com positionality. The rest 
of the  paper discusses a language, namely, the language of com m ands used  in the 
Unix operating system , the in terpretation of which is far from com positional in 
th e  intuitive sense of the word. However, the trad itional Principle o f Composi
tionality  does no t preclude such an in terpreta tion . F irst, in section 2, we explain 
the  concept of shells (command in terpreters), and show how the U nix command 
language is non-com positional. Then we present an alternative com m and language 
which has a  m ore na tu ra l in terpretation, based on our version of th e  concept of 
com positionality. Section 3 informally presents the way in which such  a  ‘com
positional U nix shell’ should work. Then we develop a  language to  ta lk  about 
the  semantic dom ains relevant to our in terpreta tion , i.e., various com ponents of 
a  simplified concept of machine states (section 4). T hen we explain th e  concept 
of denotational semantics (section 5), a non-procedural view of the in te rp re ta tion  
of com puter program s, which underlies the particu lar s truc tu re  th a t we a ttribu te  
to  our sem antic domains (section 6). The actual syntax and sem antics of the 
language in which we can talk about those objects is given in section 7, and the 
description of the  semantics of command lines (com m ands followed by param e
ters) will be explained in section 8. The way in which we produce those meanings 
from  those of the  com m and names and the param eters in a com positional way is 
explained in section 9. Finally, we offer some conclusions (section 10).

1. C om positionality
Let us first define the concept which will be in the centre of our a tte n tio n  through
out this paper. The in terpretation of a  language can be said compositional if and 
only if it obeys the Principle of Compositionality, which runs as follows:

1.1. T h e  P r in c ip le  o f  C o m p o sit io n a lity
The m eaning of a complex expression is a function of the m eanings of its 
constituents and their mode of combination.
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T his definition leaves it open whether ‘the  meanings of the constituents’ may 
depend  on each other or on th e  function th a t we use to calculate the m eaning of 
the  complex expression. However, it seems th a t the Principle of Com positionality 
would be ra th e r vacuous if we were to allow for such dependencies. T h a t is, we 
understand  th a t  the  intended content of the Principle of Com positionality implies 
a  Principle o f Independence:

1 .2 . T he P r in c ip le  o f  In d ep en d en ce
The m eanings of the constituents of a complex expression are assigned 
independently of each o th e r and the function th a t yields the m eaning of 
the com plex expression.

T he reason why we propose to  ad d  this principle is tha t, as we will see shortly, 
languages th a t obey the P rincip le of Compositionality may still be ra th e r ‘non- 
com positional’ if  they fail to satisfy  the Principle of Independence. In such lan
guages, the m eaning of an expression may vary depending on what it is a  con
s titu en t of. As a  result, very similar constructions (e.g., containing the same 
expression in th e  same syntactic role) may be interpreted in  heterogeneous (or 
even unrelated) ways. We su b m it that this contradicts the in tuition behind the 
concept of compositionality.

Note th a t th e  in terpre ta tion  of compositionality proposed here implies th a t 
the  meaning contributions of th e  constituents of an expression are constant, i.e., 
they  do not vary from  one construction to the other. This m eans a certain context- 
independence as well, which m any  would deny. We conceive of this as a  price to 
pay for a reasonable concept o f compositionality. In our approach, the  context of 
u tte ran ce  (and th e  u tterance-in ternal context of any sub-expression) can only play 
a role inasm uch as both the m eanings and the  functions th a t combine them  are 
underspecißed. T h a t is, by v irtu e  of their underspecification, contextual factors 
(including the in te rn a l context, i.e ., the presence of the others) may enrich these 
meanings. This k ind  of m echanism  does not contradict the Principle of Indepen
dence, because it is not the meanings assigned th a t depend on each other, but 
w hat they becom e later on.

I t is easy to  see tha t the P rincip le  of Independence is not vacuous a t all. The 
in teraction of m eanings is by definition contentful, i.e., the Principle of Indepen
dence prevents m eaning assignm ents from depending on formal properties of the 
context (e.g., th e  shape of a co-occurring constituent). Only genuine homonyms 
(homophonous expressions w ith independent meanings) challenge this principle; 
those have to be considered different expressions which accidentally are of the 
sam e shape. So w hether an am biguity  is due to  an accidental surface coincidence 
or a  system atic sem antic phenom enon must be determ ined independently.
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2. U nix shells
A shell is a  program  th a t establishes contact between the  operating system  of a 
com puter and  its user. Its task is to forward the user’s commands to the  operating  
system  (after a check of correctness). (A com m and is also called a com m and line; 
we will refer to it as a cml.) Many shells offer additional features to the  u ser (such 
as abbreviatory  m echanisms and ways of referring to com m ands issued earlier), 
as well as built-in  commands. The shells used w ith the Unix opera ting  system  
(especially the C-shell) offer many such features. The com m ands th a t  do not 
exploit the  ex tra  possibilities offered by the  shell may contain a com m and name 
(cmn) and various types of parameters th a t follow it. The com m and nam e is simply 
the nam e of a com puter program; the program  processes the param eters, so their 
in terp re ta tion  is its ‘internal affair’. (Built-in shell com m ands do not correspond to 
program s, the  param eters of such com m ands are processed by the shell itself.) The 
language also has certain  operators (opr), which can be prefixed to any com and 
line. They correspond to programs th a t run  the rem aining com m and line, and 
perform  some uniform  com putation in the  m eantim e.1

The inform al syntactic and semantic description of com m and lines is available 
in the form  of m anual pages provided w ith  the operating system. A m an u al page 
contains the  sum m ary of the syntax associated w ith a com m and nam e followed by 
the description of w hat the command lines do. Let us take a look at th e  syntactic 
description of the com m and called g rep:

2.1. E x a m p le
g rep  [ -b c h iln s v y ]  [ - f  expfile] [ [—ell expression] [hies]

F irst comes the specification of the com m and nam e, followed by the list o f Bags (Ü). 
In the case of g rep , these are one-character strings th a t can be concatenated  in any 
order and  their concatenation must be preceded by a  m inus sign. In general, we can 
think of a  flag as any string containing no blank space and  preceded by a  minus 
sign. (Flags are in principle optional; in m anual pages, [•] means optionality.) 
Then come two options, each consisting of an option letter and its argument. (An 
option le tte r is like a flag, bu t it has an argum ent.) The option le tter in th e  second 
option is itself optional. Finally, the last item  is an optional argument (opt),  i.e., 
a param eter th a t has a fixed position in the  com m and line which is n o t preceded 
by an option letter. In fact, the above syntactic sum m ary is the abbrev iation  of 
two different syntactic possibilities:

2.1'. E x a m p le
a. g rep  [ -b c h iln s v y ]  [ - f  exp hie'] [ -e  expression] [files]
b. g rep  [ -b c h iln s v y ]  [ - f  exphle] [expression] [hies]

1 For exam ple, the  operator tim e will re tu rn  the tim e the process given as its 
argum ent has taken to run.
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In 2 .1 'a, we have nine flags, two options an d  an optional argum ent; in 2 .1 'b , there 
are nine flags, one option an d  two optional argum ents.2

In general, the syntax of the relevant fragm ent of the language of Unix com
m and lines (L/cm|)) in B N F is as follows:

2.2. D efin it io n
1. cml =  opr cml \ emo | cml Ü | cml o p t;
2. cm n =f c° I . . .  I cm n+1 expr | cmn _ x opl;
Ó. op t — expr;
4. expr  d=  n | c° | . . .  | var° | __

c” stands for n-a.rgument com m and name constants, n stands for na tu ra l num bers, 
and cn s tan d s  for a nam e constant denoting elements of the  universe —  files, 
directories, etc., as we will see. As one can see from the definition, we assum e 
th a t flags an d  options come a t the end of command lines ra th e r th an  between 
the  com m and name and its  argum ents. T h is modification does not m ake any 
difference except for the fact th a t the description of the semantics of the relevant 
constructions will be far sim pler. In what follows, we will not discuss the sem antics 
of most of th e  constructs specific for the shell language; we will concentrate on the 
semantics o f commands.

The language presented above is an idealisation of the  currently available 
languages, as the construction rules in the  given form are context free, whereas 
in the ac tua l command language as specified in the m anual pages construction 
rules are separately given for every com m and as can be seen from the syntax of 
the  command grep  above. It is obvious th a t, for example, the  syntactic rule th a t 
combines com m and names w ith  flags is context sensitive in the sense th a t the 
program  will report a syntax erro r if a flag is not explicitly listed in the program  
description. O n the one hand , it would be desirable to have a context free language 
as L(cm|) and , on the o ther hand , it is m ore in line with our in tuition th a t if a 
modifier comes from a closed syntactic class, bu t is not applicable in a  certain  
context, th en  this is a sem antic, ra ther th an  a syntactic phenomenon. It should 
be explained in  terms of sem antic incom patibility or vacuous semantic operations 
ra th e r th an  in  syntactic term s. In what follows, we will assume the above language 
and  let our sem antic apparatus be such th a t it accounts for the problems connected 
w ith the relevant constructions.

There are  also more im p o rtan t problem s, related to the  com positionality of 
th e  in terpreta tion  of com m ands. Besides th e  fact tha t com m and nam es come

2 The above description is n o t quite correct, since exactly one of the expfíle and 
expression arguments is in  fact obligatory.
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w ith  some predefined sets of possible param eters (flags and op tion  le tters), the 
in te rp re ta tio n  of these also depends on the com m and nam e a t hand. For exam ple, 
the  flag -1  m eans roughly ‘long, verbose listing’ in connection w ith  the com m and 
nam e I s ,3 whereas as an argum ent to  wc it means som ething like ‘count lines 
on ly’.4 Similarly, while the option le tte r - f  (standing for ‘file’) introduces the 
nam e of an auxiliary file (containing expressions or com m ands) w ith g rep  and 
sim ilar com m ands (make, awk, sed etc.), it is a flag th a t s tands for ‘force’ w ith the 
com m and rm (remove), and has a totally  different effect.5

A second problem is the issue of m ultiple flags. In general, the  order of flags 
does not m ake any difference and m ultiple occurrences of the  sam e flag in one 
com m and cause the same change in behaviour as single occurrences, as one would 
expect. Yet we have to face the problem of dependent hags, i.e., the  problem  th a t 
certain  flags can only appear in the presence of some o ther flag. For example, 
the  flag -u  depends on the presence of - t  in this sense w ith the  com m and nam e 
I s . 6 Though even the informal sem antics makes this perfectly understandable, 
currently  th is is treated  as a syntactic constraint, which again clearly does not 
agree w ith one’s intuition.

As a m a tte r of course, the idiosyncratic behaviour of flags can be explained 
away by assum ing th a t flags are functors over com m and nam es as argum ents.

3 I s  -1

4 WC

5 rm

6 I s  - t

-u

lists the files specified by its argum ent in long fo rm at, giving mode, 
num ber of links, owner, group, size in bytes, and  tim e of last m od
ification for each file. If the file is a symbolic link, the  filename is 
printed followed by ‘-> ’ and the pathnam e of the  referenced file. If 
the file is a special file, the size field will contain the  m ajor and m i
nor device num bers, ra th e r than  a size. A to ta l count of blocks in 
the directory, including indirect blocks, is prin ted  a t the top of long 
form at listings.
counts lines, words and characters in the nam ed files, or in the s tan 
dard  input if no names appear. It also keeps a  to ta l count for all 
nam ed files. A word is a maximal string  of characters delim ited by 
spaces, tabs, or newlines. The flags -1 , -w and - c  m ay be used in any 
com bination to  specify th a t a subset of lines, words, and  characters 
are to be reported.
removes each given file. By default, it does not remove directories. 
If the - f  (‘force’) flag is used, it ignores nonexistent files and does 
not prom pt the user if the file is unw ritable.
sorts the files listed by last modification tim e (la test first) ra th e r 
th an  by nam e.
uses time of last access instead of time of last m odification for sorting; 
can only be used w ith the - t  flag.
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Since there  is only a finite num ber of commands, the m eaning of a flag could 
be a p a rtia l function defined pointwise, i.e., one whose action is determ ined by 
first looking a t its argum ent.7 A similar issue is raised by the  ways in which the 
presence vs. absence of options and optional argum ents is significant. For example, 
if the com m and s e t  is followed by two argum ents (a  name and a value), it causes 
the variable name to be set to value, whereas if it stands w ithout an argum ent, 
the corresponding action is to display the currently set variables w ith their values. 
This can again be dealt w ith  using several m athem atical tricks such as polym orphic 
functions or em pty strings as argum ents, defining the  function again pointwise.

Obviously, under the current wording of the Principle of Compositionality, a 
com positional in terpreta tion  of Unix commands can be given th a t uses only func
tional application,8 although we have the very strong feeling th a t, under a more 
appropriate  view of compositionality, this should not be possible. In particular, 
the heterogeneous in terpre ta tion  of flags (and other option letters) as well as the 
heterogeneous behaviour of absent optional argum ents are incom patible w ith our 
Principle of Independence. In w hat follows, we will specify a  semantics th a t we 
feel comes closer to the original idea behind compositionality and th a t will remedy 
some of the  problems m entioned above. We will see th a t this type of in terpretation  
will satisfy the Principle of Independence.

3. C om positional Unix: A n Informal O utline
Anomalies like the homonymy of the - f  flag m entioned earlier should not occur 
in a  Unix shell w ith com positional semantics (and they occur to a very lim ited 
extent in n a tu ra l languages). In a compositional Unix shell, there must be a flag 
—f o r c e  to be used w ith rm (and similar com m ands)9, and a different flag - - f i l e  
to be used w ith g rep  (and sim ilar commands). (Needless to  say, what nam e we 
choose for these flags is im m aterial.) The meanings of —f o r c e  and —f i l e  m ust

7 T his m ethod would give us a function tha t is as good as any other m athe
m atically. Even if we assume th a t the num ber of com m ands is infinite and 
th a t  the function is to tally  defined, we just have to define the result of the 
application of a flag to  some command for which it is undefined as the action 
of issuing some error message — again an action th a t makes exactly as much 
sense as any other from the m athem atical point of view.

8 For example, the m eaning of a flagged command is the  action it performs. 
Com positionality in the above sense is not even destroyed by the fact th a t the 
flag as a function does not necessarily preserve anything of the original action 
perform ed by its argum ent.

9 As it is conventional, we will use — instead of - to indicate th a t something is 
a  m ultile tter flag ra th e r th an  the concatenation of independent flags.
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be assigned uniformly and independently of the context. For exam ple, - - f o r c e  
could be in terpreted  as ‘overwrite the file argum ent if you own the  file, even if you 
do not have w rite permission for i t ’. (Eventually, it can also cover ‘do not check 
if the file argum ent exists at all’, although it would be cleaner to  separate  these 
two m eanings, so th a t the la tte r is to be expressed by, say, - - ig n o r e . )  Similarly, 
the  in terp re ta tion  of the option le tter - - f i l e  would be in te rp re ted  as ‘the nam e 
of an auxiliary file (containing com m ands etc.) follows’.

Assum ing th a t the programs corresponding to  rm, g rep  etc. op era te  as they 
usually do in Unix (i.e., th a t we are not to rewrite them ), the  shell will interpret 
these program  nam es independently of their original in te rp re ta tion  (or relying on 
the  original in terpreta tion  if needed). To achieve th is, we will assum e th a t the shell 
m aintains a lexicon which contains a program specifícation for each possible com
m and  nam e. Program  specifications contain variables corresponding to  the possi
ble effects of param eters. For example, the value of the variable W R ITEC H EC K  
determ ines w hether write permission is to be checked before overw riting a file; the 
variable EX ISTCH ECK  determines w hether the non-existence of a  file will trig 
ger a special action; and the value of AUXFILE stores the nam e o f the  auxiliary 
(com m and) file. If necessary, program  specifications assign default values to such 
variables, which can be overridden by param eters.

The procedure described above corresponds to a certain  underspecifícation of 
the  actual effect of running the program s. The program  specifications will ensure 
th a t the external context (the so-called environment, a set of variable bindings) 
and  the (obligatory and optional) param eters together specify the exact action to 
take when invoking a program.

4. M achine States
To give a  sem antics for the language of Unix com m ands, we assum e th a t the 
relevant basic domain is th a t of machine states (MS).  For the sake of simplicity, 
we will represent a machine state  w ith the disjoint union of a typed directed 
acyclic graph ( TD AG ), standing for the directory structure and  th e  files stored,
and  a  dom ain NC_l d=  N  ® Char* for the denotation  of the  n a tu ra l numbers 
and  character strings,10 forming the universe of in terp re ta tion , an  interpretation 
function  and a  valuation corresponding to the environment. In th is  section we 
will m ainly be concerned w ith the graphs belonging to a m achine s ta te , the o ther 
tree  com ponents will be explained in detail in section 7. A typed  directed  acyclic 
g raph  is defined as follows:

10 The exact meaning of the above notation will be defined la te r, cf. defini
tion 5.4.
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4 .1 .  D efin it ion
def1. Given strings v and u, v is a prefix of u 3w.u = vw.

2. A tree domain D is a  non-em pty subset of strings ( tree addresses) in N* 
such th a t:
a. for each u E D, every prefix of u is also in D\
b. for each u E D, for every i E N* if ui E D then, for every j  such th a t 

1 <  j  <  i, u j  is also in  D.
3. Two tree  addresses are independent if neither is a prefix of the other.

def4. A tree address u is terminal <£> there is no tree address v in D such th a t 
u is a  prefix of v.

5. Given a  set T  of types an d  E =  lJ reT E r of labels, a typed tree is a to tal 
function t?  : D —> E, w here D is a tree domain.

6. A typed directed acyclic graph is an ordered pair (t r , R ), where t?  is a 
typed tree and R  is an  equivalence relation on D  (dom(ÍT’)) such th a t 
for all u , v  E dom (tr), if  (u , v ) E R,  then:
a. ui E dom(ÍT’) &  vi E dom(fy);
b. ui E dom (fy) =4- (u i , v i ) E R ;
c. tT {u) = tT(v).

N ot all TD A G ’s are acceptable in machine states. In our case, the TDAG 
associated  with N C j_, an in te rp re ta tion  function and a valuation has some further 
special properties, as shown by th e  following definition.11 We suppose th a t T  — 
{dir,file, Char*}, i.e., the relevant types are directory, file and character string.

4 .2 .  D efin it ion
(tdag © N C i ,  p, v) E MS 44 tdag =  (tr,  R)  is a TDAG, and
1. p: Con dom (i'r) © N C _l
2. v: Var i—>• dom (fr) © N C ^
3. tT{u) E E dir =>• Vi € N .f r (ui) E Edir V t T (ui) E E fiIe;
4. í t (u) E Efiie t r (u  1) E Echar* A —*3» E N  \  { l} .u i E do m (fr);
5. tr{u)  € Echar* ->3i E N .ui E dom (ir);
6. ít (0) €  S d;r;
7. 1,11, 111 € dom(<T), *t ( 1) € Ed|r, í t (H )  € 53fiie, fT (H l)  € Elchar*, and 

->3i E N . l i  E dom(Í7’) V I l i  E d o m ^ )  V l i  E dom(fx)-

T h e  above definitions form ulate the following constraints on w hat ordered 
triples o f universe, in terpretation  function and valuation we accept as machine

11 T h e  identity of the labels does not play any role in what follows. © in clauses 
1 an d  2 m eans roughly the disjoint union of the  two domains. A lthough the 
dom ain consists of the disjoint union of a TDAG and NC_l, we are only 
in terested  in the disjoint un ion  taken with the  domain of the TDAG, as the 
subsequent clauses show. For the  exact definition, see definition 5.4.
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states proper. The in terpretation  and the valuation associated w ith the  universe 
are functions th a t assign either a numerical value, a character string  or a tree  ad
dress to a  constant or a variable of the language to  be given in section 7, depending 
on its type, as we shall see. Furtherm ore, in an MS labels associated w ith th e  te r
minal addresses of the underlying tree have to be of type ‘d ir’ or ‘C har*’,12 i.e., 
em pty directories or finite lists of characters corresponding to  contents of files.13 
We have to  impose some further constraints guaranteeing th a t character strings 
are only im m ediately prefixed14 by files and the la tte r are im m ediately prefixed 
by directories and th a t files only im m ediately prefix one character s tring  which 
im m ediately prefixes nothing. As the sorts form domains of their own, add ition 
ally, ít  has to contain three special elements: _l_char* , -bfi]e and  J_dir —- th e ir tree 
addresses are 1 ,11  and 111, respectively — , neither being the  prefix of any other 
tree address. These will serve as the so-called bo ttom  elem ents of their respective 
domains —  as required by domain theory (cf. sections 5 -6 ), b u t they will also be 
p u t to special use in our semantics, as will be explained la te r on.

We will provide the compositional Unix com m and language w ith a  so-called 
denotational semantics. This makes it necessary to introduce some concepts before 
specifying w hat the domains of the sem antic values of the various expressions in 
our language will be.

5. D enotational Sem antics
We will use denotational semantics — as worked out and described in Scott and 
Strachey (1971) — for the description of the relevant fragm ent of a Unix com m and 
language. To illustrate the basic points, let us take a look a t the following two 
programs:

5.1 . E x a m p le
F(n)  <= If n =  0 then  n else F(n  — 1)
G(n)  «= 0

Obviously, the two program s do quite different things. T he program  F  —  on 
receiving an  argum ent n of type N  — will recursively com pute a  value, nam ely  the 
value 0. Program  G, on the other hand, will im m ediately produce the sam e result. 
A lthough we see th a t the two programs produce the same o u tp u t on appropria te

12 We will use the term s hie, directory and character string  to refer to  tree 
addresses labelled w ith objects of the appropriate  type.

13 As costum ary, we th ink of empty files as containing the em pty string  of char
acters, i.e., the string of length 0.

14 Let u ,v  G N*. v is an immediate prefix of u 3i € N .u  =  vi.
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input, i.e ., they are equivalent under the  standard  set theoretic in terpre ta tion  of 
functions, com putationally they are as different as any two program s can b e .15 The 
idea beh ind  denotational semantics is exactly this: for m any purposes it is be tter 
if we can abstract away from accidental properties of program m ing languages and 
the realizations of specific programs, so th a t we can regard program s essentially as 
realizations of some (set theoretic) functions on domains appropriate  for whatever 
can serve as the input and  the ou tpu t in the language under investigation.

B ut things are m ore complicated th an  they seem at first sight. If we interpret 
the functions to be of type / :  N  i-> N , we have no problems. B ut w hat happens if 
we let th e ir type be / :  Z H¥ Z? The program  G will still produce 0 on every input. 
But F  is in trouble as when it is given some n <  0 as an argum ent, it will go 
straight in to  an infinite loop. W hy is th a t a problem for our semantics? Because 
we have to  do som ething about the infinite loop, and the semantics th a t we chose 
forces us to  give a  denotation to this result — a denotation th a t can appear as 
values of functions. Additionally, it has to  be of type Z to meet the constraints. 
For th is purpose we introduce a special constant in every dom ain, called bottom
( -L).

Furtherm ore, we will need an ordering which roughly m irrors the relations 
of inform ation content of the elements of the domain. This gives us an algebraic 
structure called a Scott domain. The official definition of Scott domains is as 
follows:16

5.2. D e f in it io n

Hpf
sd =  (U, T sd ,  E )  € SD &  U 7̂  0 ,  T sd € U, E  a cpo, and Vx € U.T sd E  x -

Examples are the dom ains N x and T x , i.e., the domains of n a tu ra l num bers and 
tru th  values w ith their respective bo ttom  elements. These dom ains are also exam 
ples of an o th er im portan t notion, the so-called üat domains, defined as follows:

10 In w hat follows, we will use the term s extensions1 equivalence vs. intensional 
equivalence: F  and G are extensionally, but not intensionally, equivalent.

16 U is the  universe of the domain containing at least Xstj, the inform ation 
content of which is m inim al according to the complete partial ordering E- A 
cpo is a  po  which has limits |_|n x n for all (countable) increasing sequences 
Xq E  X\ E  ■ • • E  x n E  • • •• C ertain fu rther conditions on domains are imposed 
in G un ter and Scott (1990), bu t these need not concern us here, as they are 
m eant prim arily to ensure th a t the class of domains are closed under various 
constructions.
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5.3. D e f in it io n

sd € FD Vx, y 6 U.x /  ± sd A y ^  ± sd => x £ y .

It is obvious th a t if we take the ordering to be about the inform ation content 
of the elem ents of the respective domains, then  neither _L C T , nor T  C _L,
i.e., neither tru th  value carries more inform ation than  the o ther, w hereas lack of 
inform ation abou t a tru th  value certainly carries less inform ation then  they  do 
and, similarly, no natu ra l number is less inform ative than  any o ther, except for 
the bo ttom  element representing the ‘resu lt’ of non-term inating com putations.

If we take some previously given dom ains as basic, all o ther dom ains can be 
defined using certain  operations on domains. These other dom ains include function 
domains, p roduct domains and sum domains. Some of the relevant opera tions are 
defined below:17

5.4. D efin it io n
• d\ —>■ d2 the dom ain of all functions from  d\ into d2, where

/  g Vx e di . f ( x )  C d2 g(x).

Thus Ld1->d2 is the function th a t maps every elem ent o f d\ into 
-f d2 i
the Cartesian product dom ain where

( x j , X 2 )  ^ d i X d  2 (2/l 5 2/2 ) ^4* Vz £  { 1 ,  2 } . X i  2/i)

the ‘coalesced’ sum, where elements originating from  different 
di's are incomparable and  bo th  J_dt are identified w ith  JLdl0 d2; 
the lifted domain obtained by adding a new bo tto m  elem ent 
under d;
the lists of finite length —  including strings of length 0 —  with 
non-T  components in d.

There are two more notions tha t are im portan t in the theory  of dom ains as

17 d \ ,d 2 denote a rb itrary  domains. The standard  function space is the  space of 
continuous functions. Continuous functions are defined as follows: A function 
/  is continuous iff

/  (Ux„) =  U /(x n).

This notion is im portan t from a technical point of view, as there  are non-triv ial 
domains (the so called reflexive domains) which satisfy the following equation: 
d = d —̂ d and can serve as the denotation  of some special constructs, but 
this will no t concern us further in the paper.

• d\ x C?2

• d\ © d2

• d±_

• d*
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well as in  w hat will follow:

5.5 . D e f in it io n
def

1. A function /  is monotone f ( x ) E  f{y)-
2. A function /  is strict /(_L) =  _L.

These properties are defined for functions on domains bu t there is a very intuitive 
analogy w ith  computer program s. The first property  is one we generally expect 
com puter programs to satisfy, namely th a t they respect the richness of the in p u t,18
i.e., an in p u t that is richer — according to  some obvious ordering —  is never 
taken in to  an  output th a t is poorer th an  the  ou tpu t for some poorer inpu t. The 
second p roperty  is less obvious, but for program s it means tha t we cannot design a 
program  th a t  saves us if it is given some erronous input, e.g., if its input is provided 
by the o u tp u t of some program  tha t does not term inate — as would be the  case 
if we gave the  output of program  F  in 5 .1  on input —7 as the input to itself19. If 
we give th e  above output as an input to th e  program  G in 5.1, then its behaviour 
depends on whether we suppose it to operate  call-by-value or call-by-name. In the 
former case, we get the sam e result as above; in the la tte r, we get a program  th a t 
is m onotone bu t not stric t, since it assigns the same value to every inpu t — thus 
satisfying the  condition o f m onotonicity — , but it does not respect the  bo ttom  
element. Similarly, it is easy to define a num erical program  th a t is s tric t b u t not 
m onotone —  take one th a t takes every n a tu ra l num ber except T into some n £ N  
bu t it takes some k € N  in to  n — 1 (and T  into _L). Thus we see th a t the two 
properties are independent.

One m ore remark has to  be m ade a t th is point. We said before th a t deno
ta tional sem antics is used so tha t we can abstrac t away from certain accidental 
properties of programs, i.e., we can see extensionally equivalent program s as hav
ing the sam e denotation. This will pose the  problem  th a t certain program s of 
the Unix com m and language are extensionally equivalent, bu t they have different 
side effects th a t we may be interested in capturing. For example, a program  th a t 
simply displays the content of a file does no t affect the machine sta te  in any ob
vious way. So we can e ither take the decision to drop denotational sem antics as 
our tool or we can simply no t take account of these features of program s. But 
we can also try  to mirror certain  intensional differences — i.e., differences due to 
the  im plem entation of program s tha t do no t show under the set theoretical repre
sentation b u t which we consider relevant —  as extensional ones, thus sticking to 
denotational semantics. In  w hat follows, we take the la tte r path.

18 In our case, inputs an d  outputs will be machine states.

19 In our case this means th a t we can never recover from the error state .
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6. T he Sem antic Dom ains
To make MS into a Scott domain, we need a bottom  elem ent ± ms and  a  cpo. The 
form er is the unstructured  error state (JLm s); the la tte r is defined as follows:

6 .1 . D e f in it io n
def

1. Vi < v 2 &  Vx.(ui(x) =  1 A  v2(x) ^  T) V (t>i(:r) =  v2{x))\
2. m sj C Ms ms2 ^

m si =  ± ms V
msi =  {tdagi © N C x , Pi, Uj) (for i G 2) A tdagx = tdag2 A p\ — p2 A v\ < 

V2-

T h at is, the error state  is less ‘inform ative’ th an  any o ther sta te , and  w hereas all 
o ther states w ith different underlying trees or in terpre ta tion  functions are  incom
parable, in com parable states the ordering is simply inherited  from th e  ordering 
on the valuation, which says th a t a valuation is more inform ative th a n  ano ther if 
and only if it is ‘defined’ in some sense for m ore values.20

Now we are ready to define the sem antic domains for the  language o f our Unix 
shell:21

6.2 . D e f in it io n
1. [n] G Nj_;
2. [cl G dom(<T);
3. [varj G dom(í-r) ® iV±;
4. [cm„] G Un -> . . .  -> Ui MS -> MS;
5. [optjj 6 (MS -> MS) ->■ MS MS;
6. [f?l G (MS -4 MS) -» MS -> MS;
7. [oplj G (Un —>• . . .  —t U\ —̂ MS —> MS) —> U^n+i —t . . .  —y Ui —y MS —y MS;
8. [cmij G MS -> MS;
9. [opr] G (MS -> MS) -> MS -> MS.

There is little  to say about the domain of integers; constants will evaluate  to dis
tinguished nodes of the tree, variables to nodes or na tu ra l num bers in accordance 
w ith their types. Command lines (com m ands) will be in terpre ted  as functions 
from m achine states to machine states, whereas n-argum ent com m and nam es yield 
com m ands when supplied w ith the appropriate  num ber of argum ents. O ptions and

20 This is justified by the fact tha t the relevant inform ation is basically  stored 
in the valuation function, whereas the underlying tree and the in terp re ta tion  
function carry  little information.

21 Cf. definition 2.2, Furtherm ore, we use the convention th a t bracketing is right 
associative. For example, X  —y Y  -*  Z  =  (X  —y (Y  —y Z )).
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flags, like operators, are functions from com m ands to commands; nevertheless, we 
shall see th a t there is a difference between operators and options/flags. O ption 
le tters create new argum ent places. By the  definition of the domains resulting 
from coalesced sum, C artesian product and function form ation22, and the flatness 
of NCj_, Tj_ and  dom(i;r), th e  ordering relations and the bottom  elements are 
given. For exam ple, the least ‘informative’ program  (-1-ms->m s) is the one th a t 
takes every m achine state in to  the  error state.

The in terpreta tion  of the  expressions of the  language L^cml  ̂ will proceed via a 
translation  function into the  language of specifications — the topic of the following 
section. T h a t is, command lines will be transla ted  into the specification language 
first, then th a t language will be  interpreted using the sem antic domains defined 
here.

7. A Language for Program  Specifications
As we have said  above, com plex expressions will receive a denotation in two steps. 
F irst we define a  translation function r:L^cm^ (->■ L(spec), he., we translate  ex
pressions of the  shell language into expressions of the language of specifications. 
These expressions will be given a  denotation via an in terpreta tion  function and 
a  valuation. As we shall see, these will be the  desired denotations of the shell 
expressions. We will proceed in  two steps. We first specify an auxiliary language 
I > s> and a  function rj: Z /cml) Z /ps) which will serve as the basis for specifying 
the  language L^spec  ̂ and the  function r.

Com m ands (cmi) will be  translated  into program  specifications (PS), which 
can be in terpreted  directly in  the  semantics. The translations of all other expres
sions (such as flags and option letters) will be  given relative to PS. F irst of all we 
need a typed dynamic first-order language w ith  equality (TD FO LE)23 th a t will 
be sufficient to  specify — i.e., to  describe —  functions from machine states to 
m achine states. The set of types is defined as follows:

7.1 . D e f in it io n
1. t, dir, file, natnum, char*, € T;
2. a ,  ß  6 T  (a  ß) G T .

T he types dir and file are self-explanatory, t is the type truth value — i.e., the 
type of form ulae — , natnum  is the  type of natural numbers and char* stands for 
character strings, (a  ß) is th e  type of functions from objects of type ß  to objects

22 Cf. definition 5.4.
23 The language and its sem antics will be very similar to the one given in Groe- 

nendijk and  Stokhof (1991) w ith some m odifications required by the typing.
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of type a . The typed first order language based on the  above set T  is defined as 
follows:

7 .2 . D efin it ion
1. l / ps) d=f (LCps, Con, Var, Expr);

2. LC ps d=  { ( , ) , = ,  A, 3};
3. Con d=  (J r gT Conr ;

a. Cont d= { T } ;
b. C ondir d=  { ro o t,± dir};

c. Conßle = { tty ,m ail, l file};
d. Connaf;nurn — N;

e - C onchar* =f C h a r ;
f- C on(natnum  file) =  {write.perm ission};

S- Con(char" file) =f {content};

h. C on((Cjjar' char") char") = { }>
4. V a r d̂ f U re T V a r^ U U re T V a 4 ;

a. V arsdir =f {HOME, CW D, dirx
Hpf

b. V arJJe =  {KBD, SCREEN, f i le i,.. .} ;

c. Varnatnum  =f {W RITECH ECK , E X IS T C H E C K ,..
d. Var^ =  {x.c\ x £ Var^ A c £ Con*a/J^};

5. E xpr = f U reT E xprr ;
6. C onr U V ar“ C Exprr ;
7. 4» £ E x p r(a ß),rj £ Expr^ => $(77) £ E xpra ;
8. T7,C 6 E xpra ^  p = (  e  E xprt ;
9. 4>, T £ Expr, =>■ ->($), ($  A $ )  £ E xprt ;

10. $  £ E x p r,,£  £ V arf => 3£.<f> £ Expr,.

T he constants and  simple variables of the  language serve to nam e th e  elem ents of 
the  m achine s ta tes — i.e., files, directories, na tu ra l num bers and ch arac te r strings 
—  in  accordance w ith our requirem ents. O ur exam ples of special variables are 
‘H O M E’ for the user’s home directory; ‘CW D ’ for the  current working directory; 
‘K B D ’ for the current keyboard input file ; ‘SC R EE N ’ for the cu rren t screen 
o u tp u t file, ‘ro o t’, ‘m ail’ and ‘tty ’ are special files and  directories. T h e  use of the 
rem aining constants and simple variables should be obvious from th e ir  semantics 
th a t we specify la te r on. The functional constants are again self-explanatory, 
except for "" which is the symbol of concatenation. T he deno tation  of x ^ y  is 
the  concatenation of (the strings) x and y. We usually omit it, a n d  indicate 
concatenation by mere juxtaposition. V arc is the set of complex variables. The
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value of a complex variable depends on its com ponents. The opera to r is sim ilar 
to those operators of program m ing languages which select a  particu lar member 
of a  structure. W e can think of unary  name functions as selectors of m em bers of 
such structures. We stipulate th a t

x.c  6 V arc x.c = c(x).

T h a t is, the values of name functions applied to  variables can be autom atically  
referred  to by complex variables. For example, the  content of the file file can be 
referred  to either as ‘content(fiie)’ or ‘file.content’. The operato r associates to 
the  left (i.e., x.c.d  =  (x.c).d). A p art from and  the language itself is given 
by th e  standard  construction ru les for expressions of type r  in a TD FO LE. In 
w hat follows we will be especially interested in expressions of type t24.

We need certa in  further opera to rs defined in term s of the  above:

7 .3 .  D efin it ion
1. ($  V T ) d=  A -iT );
2. (<E> -> T ) d=  - ( $  A - T ) ;

3. !(*) d=* - ( - ( * ) ) .

T he definition of V and -> is standard , whereas T  is a unary  logical sentential 
o p era to r, i.e., it takes formulae in to  formulae.25

T he semantic value of the well-formed expressions of the language in a  m achine 
s ta te  m s  is produced via the function [-Jm s . F irst we define a  function D th a t 
assigns semantic domains to types, i.e., it specifies which kinds of objects serve as 
th e  denotation o f expressions given the set of m achine states26:

7 .4 .  D efin it ion
1. D (t) d=  P(M S);

2. D(file) d=  { u :tT(u) £ £fiie}j
3. D (dir) = f {u:fT(u) € E dir};
4. D(natnum) d=  N x;
5. D(cfiar*) d=  Char*;
6. D ((a  ß ))  d=  D(/?) —>• D (a ).

T h a t is, the denotation  of a form ula is a set of machine states, whereas nam es of 
files, directories, n a tu ra l num bers and  character strings evaluate to  elements of the

24 In  what follows, we will refer to  expressions of type t as formulae.
25 T his is Groenendijk and S tokhof’s closure operator o.
26 Cf. definitions 4.1 and 4 .2 .
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appropriate  type of the universe — e.g., a file nam e evaluates to a node  of type 
file of the underlying tree of the tdag — whereas functional expressions evaluate 
to functions of the appropriate type.

Now we are ready to define the semantics of the well form ed expressions of the 
language L^ps\  F irst we give the definition of expressions o ther th an  form ulae:27

7.5 . D efin it ion
1. c 6 Con =$> fcj d=  p(c);
2. x G V ar3 =>• |x ] d=  v(x);
3. x.c € V arc => [x.c] =f [c]([x]);
4. [EXISTCHECK] d=  n € 2;

5. [rootj d=  0 € d o m (tr);
6. I-Ldir] =f 1 € d o m (ir);
7. [-Lfiie] =f 11 € doin(tr);
8. [± C har* ]= f l l l € d o m ( < T);
9. [w rite.perm issionj € F  —» 2, where F  C dom ( t r )  such th a t  =

^file •

Thus the sem antic values of constants and simple variables are p roduced  by the 
in terpreta tion  and valuation functions, respectively. T he values of com plex vari
ables are determ ined as was seen before. The rem aining clauses can b e  regarded 
as constraints on v and p. ‘EX ISTCH ECK ’ is a variable th a t can only be set to 
0 or 1 (the same holds for ‘W R ITEC H EC K ’); ‘ro o t’ has to denote the  roo t of the 
TDAG. The nam e constants will represent ‘im m utable’ objects in th e  machine. 
Some of them  (especially ‘m ail’ and ‘t ty ’) will help us avoid com plications in con
nection w ith program s th a t do not change a m achine s ta te  under th e  standard  
in terpre ta tion  (since norm ally we are only interested in their side effects): we con
ceive of them  as files th a t can grow indefinitely as strings are concatenated  to their 
content (when m ail is sent or character strings are displayed, respectively). _Lr

27 We assume th a t

Vxa .|x ]-Lms =  _La , where a  G T  \  {f}

i.e., the denotation  of all well-formed expressions except for form ulae in the 
error s ta te  is the bo ttom  element of the appropria te  type, as th is  will not 
influence w hat follows in any way. The definition below applies to  all other 
cases. We will drop the superscript ‘m s’ and the type subscripts w hen this 
gives rise to  no m isunderstanding. u[X] stands for the range of th e  function 
v when constrained to the set X.
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denotes the b o tto m  element of type  r; these are  ‘degenerate’ objects such as non
existent files; th e ir  use will be explained la te r on. ‘write_permission’ is a function 
from  tree addresses to 0 or 1, th u s  relating a  tree  address of type file to its w rite

oopermission.

The sem antic value of form ulae in a m achine state will be the set of m achine 
s ta tes  tha t can result after th e  formula has been processed. Thus we specify the 
meanings as sets of ordered pa irs  of machine states. The definition runs as follows:

7 .6 . D e f in it io n
1. <E E xprt . ( l MS, 1 m s ) € [$];
2. (m sim s2) G [T | m si =  ms2;
3. ( m s i , m s 2 ) G [ t i  =  t 2 j  <=> m s i  =  m s 2 A [ [ i iJ raSl - [ f 2J m s i ;

def4. (m s i,m s2) G |p $ ]  m sj =  ms2 A ->3ms3.(m si,m s3) G [$J;
5. (m s i,m s2) G [$  A T ] 3ms3.(m s i, m s3) G |$ ]  A (m s3,m sx) G ['kJ;
6. (m s1,m s 2) G [3x.<k] tdagj =  td a g 2 A p\ =  p2A

A 3m s3.(tdag3 =  td a g j A p3 = pi A u3[x]vx A (ms3,m s2) G f$ ]).

C lause 1 s ta tes th a t the e rro r s ta te  verifies every formula and no form ula can 
recover from it. The form ula T  denotes th e  diagonal relation on the set MS, 
i.e., it is always true  without any  dynamic effects. The rem aining clauses are the 
s tandard  ones for DPL, though clause 6 looks a  bit more complicated, bu t this is 
the  only clause introducing dynam ic effects, and  it simply says th a t we are only 
in terested  in changes of the valuation  function28 29 if this leads to a valuation th a t 
can serve as an  inpu t to the em bedded form ula. This justifies what we said above, 
nam ely tha t th e  denotation of a  formula in a  machine state  is a set of valuations.

Now it is easy  to compute th e  semantic clauses for the defined operators:

7 .7  Facts
1. (m s i,m s2) G [$ V T ] <=>

m si =  ms2 A 3m s3.(m si,m s3) G [$J V (msa,m s3) G [T];
2. (m s1,m s 2) G [$  —* T ] msi =  m s2 A Vms3.(m si,m s3) G [$ ] =£■ 

3ms4.(m s3,m s4) G [T ];
3. (m s i,m s2) G |!$1 ^  m si =  ms2 A 3m s3.(m si,m s3) G [$J;

28 We are m aking  unforgivable simplifications here. Among others, we simply 
ignore the  difference betw een character files and special files (such as character 
devices); also, we ignore o th e r types of permissions altogether (norm ally the 
permissions of a file are encoded in four octal digits in the file system).

29 Vi[x\v2 m eans that the tw o valuations are  the same except perhaps for the 
value they assign to x.
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As for the first two definitions, there is little  to say. In the case of clause 3. it 
should be now obvious why Groenendijk and Stokhof call it the closure operator: 
it closes off any dynam ic effects a formula may have had. Now we have a  DFOLE 
th a t has enough expressive power to describe relations between m achine states. 
We will use this language to specify the semantics of program s. But we have to  face 
two fu rther problems. The denotation of a form ula is a p a rtia l relation, i.e ., it is 
neither functional nor complete. But we think of program s as total functions  from 
m achine states to m achine states — i.e., program s are defined everyw here, and 
they are determ inistic. This means th a t not every form ula of the above language 
is appropriate  as a  translation  of a program . To single out the class th a t  we 
need, we will introduce a representation for the form ulae and impose th e  relevant 
constrain ts on this representation, which is basically a shorthand  for the  form ulae 
of

8. Program  Specifications
We will take the  formulae th a t represent the translations of our program s 

ap art and give them  a representation in term s of their p a rts . The sentences of 
this representation will be the ones of Z /ps\  bu t we will not use all the  pow er of 
this language. B ut now we will think about this language as an o rd inary  typed 
first o rder language w ith equality w ith its s tandard  sem antics. Two sentences of 
this new representation will play a key role in specifying program s. The first one, 
which we will call the precondition (PC)  of the program , will contain th e  input 
conditions for the execution of a program ; the other, called the  maximal change 
(MC),  specifies its o u tpu t conditions. The intended in te rp re ta tion  is as follows: 
a form ula (j) is applicable to a machine s ta te  ms  — i.e., ms  G dom ([</>]) —  if and 
only if the m achine sta te  satisfies all sentences in the p rog ram ’s P C ,30 an d  if a 
program  is not applicable to a machine state , we will take it to have no effect.31 
This is basically the same behaviour as th a t of standard  shells, where an  error 
message is issued in such a situation, bu t the m achine s ta te  is not affected. The 
only way a  program  can lead to the error s ta te  is by leading out of th e  set of 
m achine states, e.g., by removing one of the objects required by definition 4.1. 
The m axim al change brought about by the program  is th a t sentences in th e  MC 
of the program  are satisfied by the new m achine state , and all other sentences not

30 We take this to m ean th a t all formulae in this com ponent are satisfied by the

m achine s ta te  under some appropriate first-order definition, i.e., m s [= T 
V7 G T.ms 7.

31 We do th a t in order to get complete functions in accordance w ith  th e  re
quirem ents of definition 6.2. The general idea is th a t we explicitly lis t the 
presuppositions imposed by a program  on the input m achine states.
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affected by M C retain their t r u th  value.32

In actual fact, program specifications will be more complex. First, the PC  will 
no t be checked against the in itia l machine s ta te  directly, b u t a modified m achine 
sta te , in which some variables are assigned local values for the execution of the 
program . So each program specification will contain a component describing a 
modification o f the valuation of the initial machine state. We will call this com
ponent the local environment (L E N V ) of the  program. The role of LENV is th a t 
we do not expect the input m achine state  to  verify it, nor do we want it to live on 
in  the ou tpu t machine sta te , unless as a consequence of some property of the  MC 
in  the program  specification. Second, since MC is ju s t a sentence in a FOLE, we 
have to keep a  separate com ponent describing the dynamic aspect of the change 
of state effected by the program , i.e., the list of those variables the semantic value 
of which m ay change from th e  input s ta te  to  the ou tpu t s ta te  (through changes 
in  the valuation). We will call this com ponent the environment change (E N V C ) 
th a t the p rogram  can effect.

So program  specifications will be quadruples of the form

(LENV; PC; MC; ENVC),

where LENV 6  Var -> (V ar U Con U {*}) (where V  represents the undefined 
funcion value). We will use th e  notation m s +  LENV to  refer to the modified 
machine s ta te  which differs from  ‘ms’ in its valuation only, and

* ±  £ =  LENV(x) =* [x lms+LENV =  [ e r s.

O n the o ther hand, ENVC C Var. As a m a tte r  of course, if a  variable is in ENVC 
then , even if LENV assigns it a  local value, its old value is not restored after the 
com putation.

The com ponent called M C  does not use the full force of our language Z /psA 
This is due to  the fact th a t  th e  operation of a program  is to  be deterministic. 
Therefore, a  sentence in MC does not contain negation: there  may be several ways 
of falsifying a  formula. (In th is  way, we also exclude conditionals and disjunctions, 
which also lead  to  non-determ inism , because they are defined in term s of negation.) 
A nother problem atic type of sentence in our FOLE is equality: there are two ways 
of verifying th e  equality of tw o variables, namely, the valuation of either one (or 
bo th) can be modified in o rd er to  make the ir values identical. Accordingly, we will 
stipulate th a t  a t most one variable on either side of an equality is in ENVC, and 
all variables o f ENVC appear in  some equality — otherwise we could change the 
machine s ta te  arbitrarily w ith  respect to th e  variables in ENVC but not in MC.

32 Except for those changes th a t MC entails, of course.
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This way, an equality in the MC will correspond uniquely to a change of m achine 
s ta te  (if a change is to be effected at all).33

We will refer to the language of MC as L^mc  ̂ and  the language of PC  as 
L(pc)_ We now give the form al definitions for the above concepts and  a function 
[•]:PS i-> (MS —»• MS), which interprets the above quadruples:

8 .1 . D efin it io n
1. £ (m c)=' <LC(mc),Con,Var,Exprmc),

where LC(mc) d=f LCps \  {->}; otherwise it follows definition 7.8;
As we have m entioned above, there are two additional constrain ts on sen
tences in l / m<d, namely, at most one variable on either side of an equality 
is in ENVC and every variable of ENVC appears in some equality.
3. PS d=  (LENV; PC; MC; ENVC),

where PC C Form, LENV C Var —>• (Var U Con U {*}), M C C Form mc 
and ENVC C Var;

4. Let msi £ MS, and ps =  (lenv; pc; me; envc) £ PS. Then 

(m s1,m s2) € [ps]
(a) msj +  lenv |= pc A ms2 |= me A msj [envc]ms2; or
(b) msi +  lenv ^  pc A msi =  m s2
The notation msi[envc]ms2 is a shorthand for ‘the valuations of msi and 
m s2 differ at m ost in the values th a t they assign to the variables in envc’.

As we said before, this ordered quadruple encodes some local assum ptions (LENV), 
the presuppositional content of the program  (PC), and the effected change (MC 
and ENVC). How exactly this is done is shown in the next section, using some ex
amples. As we m entioned above, we take these constructions to be abbreviations 
for sentences of the language L^ps\  and we spell out the corresponding form u
lae of the above language as illustrations in some cases. Officially however the 
abbreviation reads as follows:34

33 If a  variable x £ ENVC did not occur in an equality w ithin M C, bu t ano ther 
sub-form ula, say, F(x) ,  then we would face non-determ inism  again: P(x)  can 
be verified in as m any ways as there are possible values of x  th a t  make P ( x ) 
true.

34 The operato r FV assigns to an expression the set of free variables it contains.
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8.2 . D efin it ion
(LENV; PC; MC; ENVC) = f -,<£ v <j>, where 
<f> =\{3xu . . . , x n .LENV' A PC)A

A 3yu . . . ,  ym(!(3zj, . . . ,  zfc.LENV' A M C)), 
w ith { x i , . =  dom (LENV), { y i , . . . , y m} = ENVC, {zu . . . , z k} = 
dom(LENV) \  ENVC, and

LEN V ' =  lxi  =  LE N V (xj) A . . .  A x n =  L E N V (xn)’.

The above expression expresses exactly what we have described in this section. 
First we check the precondition under the local changes — the  closure operator 
here serves to close off dynamic effects of the first conjunct — then  we reassign the 
variables of ENVC and perform the  checking again under the  modified valuation 
and close off unw anted dynamic effects. The purpose of using the  set LEN V \EN V C 
in the translation  is to avoid unw anted reassignment to the variables in ENVC. The 
first —  negated — disjunct serves to  achieve the effect of to talising the relation. 
It is easy to see th a t either a m achine state  satisfies the precondition, in which 
case it will be in the  domain of the  form ula due to  the second disjunct, or it does 
not, in which case it will be due the  first disjunct th a t the  denotation contains 
an ordered pair consisting of this m achine state. Thus we have a total functional 
expression, exactly as we wanted. It is also easy to see th a t the denotation of 
program  specifications under [■] an d  the TD FOLE formulae under |-J will be the 
same. B ut we still use our quadruples for the sake of perspicuity.

8.1. Som e Exam ples
Now we are ready to  look at a few examples. As a m a tte r of course, we will 
make gross simplifications again to  avoid complications. We will also drop type 
subscripts on variables when they are obvious.

8.3. E xam p le
Ti(rm file) d=  (0;

(EXISTCHECK =  1 file ±  _L) A 
(W RITECH ECK  =  1 —> fiIe.write_permission = 1 ) ;  

file =  -L;
{file}).

This definition says the  following. F irst, we assume no changes for the local envi
ronm ent. Second, a  machine s ta te  satisfies the input condition of this program  if 
and only if the value of file — i.e., the  first argum ent — is an existing file (if EX
ISTCH ECK  is set to  1), and the user has write perm ission to it (if W RITEC H EC K  
is set to  1). The m axim al change th a t the program  effects is th a t the file’s value
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is the  non-existent file in the output s ta te  (J_fiie denotes non-existent files, and file 
is the only m em ber of the environment change).

To show how the mechanism works, we spell out th is form ula in L /ps);

8 .4 . E x a m p le
!(EXISTCHECK =  1 -> -.(file =  X))A

(W R ITECH ECK  =  1 —> file.write_permission =  1))A 
3 file [! (file =  _L)]

By calculating the semantics of this form ula according to  the  rules given in def
inition 7.6, it is easy to see tha t it expresses exactly the  conditions on pairs of 
m achine states spelt out above. The closure operators are vacuous in  th is case, 
b u t they will be needed later on, when LENV will not be empty, to  close off dy
namic effects, as we explained above. As the mechanism should be obvious, we 
do not give these translations later except when we want to  illustra te  som e point 
explicitly.

8 .5 . E x a m p le
r i(c a t  file) d=f (0;

file ^  1  A SCREEN /  1 ;
SCREEN.content =  SCREEN.content "'fife.content;
{SCREEN, content});

This exam ple works as follows. We assum e no local changes to the environm ent; 
the file referred to by the argument as well as the file th a t  the  variable SCREEN 
refers to  m ust exist; the content of file m ust be concatenated  at the  end  of the 
content of the stream  referred to by the SCREEN variable (normally, th e  file asso
ciated w ith  the user’s screen, i.e., t t y ) .  Finally, at most th e  content of th is  stream  
will be different from the input s ta te  to the output s ta te , as the last com ponent 
of the  program  specification shows. Now, in actual fact, the  com m and c a t  only 
affects the  s ta te  of the machine if the content of its o u tp u t file is s to red  on disk. 
The u ser’s screen is usually not such a file. Nevertheless, for the  sake of uniformity, 
we consider it as if it contained the concatenation of everything th a t has appeared 
on the screen before.

8 .6 . E x a m p le
t i (cc file) =f ({(O U TPU TFILE, a . ou t)} ; 

file ±  X;
O U TPU TFILE.content =  cc(file.content);
{O U TPU TFILE.content}).

This is our first example containing a  non-em pty LENV com ponent, w hich locally 
assigns the  value a .o u t  to the variable O U TPU TFILE. As we know, th is  is the
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default nam e of the output of the  program cc (the C compiler). (The symbol 
‘a . o u t ’ is actually  meant to be a  variable th a t evaluates to  the file nam ed th a t 
way in  the  directory structure.) So one of the  uses of LENV will be to assign 
default values to  variables in analogous cases. The precondition says th a t the 
inpu t file has to  exist, and the  change effected is to store the  compiled version of 
the source program  to O U TPU TFILE. Note th a t cc in the MC com ponent is the 
actual C compiler, invoked by the  shell. It is not to be confused w ith cc, which 
introduces the  command line th a t  the shell processes. The shell looks up cc in its 
lexicon and acts accordingly, whereas it sim ply passes cc to the operating system  
w ith the  appropriate  param eters. So, in an actual im plem entation, the  shell will 
perform  the  following translation:

cc file —* cc -o a .o u t  file.

As here is the  first case w ith  a non-em pty LENV, we will give the D FO LE 
translation  again:

8 .7 . E x a m p le
!(30U T P U T F IL E [0U T P U T F IL E  =  a .o u t]  A -(file  =  J_))A 

30U T P U T F IL E . content 
[□O U TPU TFILE

[O U TPU TFILE =  a.out jA
O U TPU TFILE.content =  cc(file.content)]

Here again we can calculate th e  semantic value of the D FO LE formula to  verify 
th a t it coincides with the in tended in terpreta tion  of our quadruple. Furtherm ore, 
we can now see how the closure operator closes off unwanted dynamic effects.

N ote th a t the  output stream  SCREEN in the example 8 .5  also has a  default 
value (namely, t t y ) .  The two different treatm ents of SCREEN vs. O U T PU T FIL E  
in exam ples 8 .5 —8.6 reflect a  distinction th a t we intend to m ake between two types 
o f default values. The first type , called deictically available defaults (DAD),  are 
sim ilar to here and now in n a tu ra l languages. The default value of SCREEN 
belongs to  th is type. Similar default values include KBD (the user’s keyboard 
is the  default value for the cu rren t input stream ), HOME (defaults to the  user’s 
hom e directory) etc. The o th er type is called non-deictically available defaults 
(NAD),  which contain all the o th er default values (for exam ple, the default nam e 
of the  o u tp u t file produced by the  C compiler in the above example). These are 
determ ined by command nam es lexically. In th is respect (bu t only in this respect) 
they  are sim ilar to  lexically determ ined properties of missing argum ents in n a tu ra l 
language. For example, the d irect object of the  verb eat in I  am eating has the 
default p roperty  ‘food’, which can be overridden by an explicit direct object, as in 
I  am eating sand. On the o ther hand, the optional ‘source’ argum ent of the  verb
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leave as in He left defaults to ‘here’, a deictically available default, an d  can also 
be overridden by an explicit argum ent, as in He left Los Angeles. T he  different 
trea tm en ts of DAD and NAD will allow us to  make a sim ilar d istinction  in our 
shell language.

9. P u ttin g  Com m and Lines Together
So far, we presented the language of program  specifications, which serve as the
in terp re ta tion  of com m and lines (cml, cf. definition 6 .2 .9 ). T h a t is, |[cml] d=f 
[ r^ c m l) ]” 8. We have also seen the objects denoted by argum ents. W h at remains 
to be done is to explain how other param eters, i.e., flags and  options are combined 
w ith the  lexical program  specifications.

To give specifications for these, we need a richer, type theoretical language 
ü(spec). T he set of types remains the sam e as in the case of ld ps)35 T he language 
itself is the  same except th a t we introduce a  new logical constant A th a t will serve 
to construct functions and we now allow application to work in bo th  directions. 
Further we allow an infinite set of simple variables in all types th a t we do not 
indicate explicitly, as they are not excluded by the definition of ld psh T he following 
definition only gives the new clauses:36

9.1 . D ef in it io n
1. T (spec) d=  (LCspec, Con, Var, Expr);
2. LCspec =f LCps U {A};
7. $  G Expr(a ß ) ,r] <E Expr^ =» $ (77), (77)$ € ExprQ;

11. $  G E xpra ,£ e  Var/j => A£.<f> G Expr<a ßy

Since the  set of types is the same, the function D is not altered , e ith e r,37 and 
the sem antics of the expressions present already in L^ps  ̂ is also unchanged,38 so 
we only give the new clauses of the definition for the in te rp re ta tion  function  [•].

9.2 . D ef in it io n
1- »1  = ' [ * ] (M ) ;
2. [Ai.$] =  {(>),<) 6 D ( ß )  x D(a):< =

T he sem antic dom ains agree w ith the requirem ents of definition 6 .2 . The

35 Cf. definition 7.1.
36 For the  rem aining clauses cf. definition 7.2.
3l Cf. definition 7.4.
38 Cf. definitions 7.5 and 7.6.
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semantics o f compound expressions is given by functional application and  the A- 
operator corresponds to function  abstraction .39

In w h a t follows, we will be interested in the semantics of com m and lines 
in term s of their constituents, i.e., the com m and nam es and the param eters.40 
Again, we assum e that there  is a translation function r  th a t works pointwise, i.e., 
it translates the  expressions of the  language lAcml) into expressions of the  language 
L(spec). It is easy to show th a t  fA ^ .i^ ) ]  =  ['P^/77]]. T h a t is, carrying out ß- 
conversion is licensed by the  semantics. Further, we will still represent program  
specifications by our quadruples and use four functions — ‘lenv’, ‘p c ’, ‘m e’ and 
‘envc’ — to  refer to its com ponents which we did not introduce into our language 
explicitely to  avoid complications.

As we said  earlier, the denotation of a  command nam e is looked up in the 
lexicon associated  with the  shell. For the sake of simplicity, we are assum ing th a t 
the lexicon is a  static list of specifications ra th e r than  a  dynamic database (i.e., we 
do not consider the possibility of lexical rules). Therefore, the specification of an n- 
argum ent com m and name (cm n ) as looked up in the lexicon is a lam bda-expression 
of the form  Aaq . . .  Ax„.PS.41 As a consequence, we cannot account, for the  tim e 
being, w ith  the  mechanisms governing optional arguments (and the deictically 
available defaults associated w ith  them). For example, the three versions of c a t  
(with no command-line argum ent, with one argum ent and with two argum ents) 
must be distinguished as if they  were three different com m and names (c a to , c a t i  
and c a t 2, respectively):

9.3. E x a m p le s
1. r ( c a to )  =f (0;

KBD /  I  A SC R EEN  /  1 ;

39 v . x / u  is the  same function as v, except th a t it assigns u to x, i.e.,:

v: x /u(y) def f u if x = y; 
v(y)  elsewhere.

Hfirx/u] *s the in terpreta tion  function associated w ith a machine s ta te  under 
the m odified valuation. 'P^/77] is the expression th a t we get by ß-conversion, 
i.e., by substituting 77 for all free occurences of £ in T.

40 As we mentioned earlier, we will ignore certain expressions, such as opr's. 
But it is easy to see w hat the  appropriate type for those specifications would 
be.

41 A gain, subscripts on variables and constants indicating their type will be 
d ropped  when it is obvious from the context.
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SCREEN.conent =  SCREEN.content K B D .content);
{SCREEN.content});

2. r (c a t i )  d=  Ax/ i ze-(0;
A i / I A  SCREEN + 1 ;
SCREEN .content =  SCREEN, content '"x.  content;
{ SC R EEN . content});

3. r ( c a t 2) =f Aa:/l/eAy/l/e.(0;
A j / í A A ) / ^ ! ;  

y. content =  y .con ten t^x . content;
{y. content});

Assuming th a t the translation  of a file nam e is the file nam e itself, the full con
struction  consisting of cat] and the file nam e file will get the  translation  shown 
in our earlier example 8.5.

It is easy to see w hat the lexical rules will do when they will exist: They will 
abstrac t over variables w ith deictically available default values (such as KBD or 
SCREEN), thereby converting them  into obligatory argum ents. W hich variable 
m ust correspond to the first, second and th ird  argum ent place is determ ined by 
lexical principles.42 Alternatively, we could assum e th a t the  addition of optional 
argum ents is a syntactic operation accom panied w ith a sem antic operation working 
in parallel. To do th a t, we have to assume th a t the  set DAD of deictically available 
defaults has two subsets, corresponding to the two possible non-vocative argum ents 
of a com m and nam e (cf. footnote 42 above):

DAD =  DAD! U DAD2

(the subsets need not be disjoint). For exam ple, variables w ith  deictically avail
able default values corresponding to ‘here’, ‘now’, ‘m e’ and ‘in p u t’ (e.g., HOM E, 
CW D, HOST, KBD) are typically in D ADi; variables th a t default to ‘o u tp u t’ 
(e.g., SCREEN, PR IN T E R ) are in DAD2. Moreover, we also have to stipu la te  
th a t exactly one variable in each of the two subsets occurs in the  program  specifi
cation of the command. If these conditions are satisfied, then  we can in te rp re t the 
addition of the first optional argument as replacing th a t m em ber of DAD) which

42 We assum e th a t com m and names should have at m ost th ree  argum ent places 
as a rule, as is the usual situation in n a tu ra l languages. However, the  first 
argum ent (the ‘su b jec t’, so to say) is always the operating  system  itself, since 
com m ands are in the imperative mood. So an implicit ‘su b jec t’ in the  ‘voca
tive’ case is to be assumed in front of each com m and. We also believe th a t 
argum ent places should be associated w ith certain  types of roles in a  system 
atic way, as is the case with the so-called thematic roles in  n a tu ra l languages.
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figures in  th e  program specification, and the second optional argum ent overriding 
the relevant member of DAD2. Note th a t the system atic association of argum ent 
places w ith  role types (either lexically or through the syntax) is a requirem ent in 
terms o f o u r in terpretation  of the Principle of Compositionality.

O p tion  letters do som ething very sim ilar to the lexical rules informally m en
tioned above, except th a t they  affect non-deictically available defaults. For exam 
ple, the  o p tion  letter -o  used w ith the command nam e cc is used to in troduce the 
ou tput file nam e, thus overriding the default value a . o u t .  However, the  way such 
an op tion  le tte r operates is different from  what we outlined in connection w ith 
lexical rules. Instead of ju s t  abstracting  over a variable name, it abstrac ts  over 
the value assigned to a variable in the LENV (local environment) com ponent of 
the p rogram  specification:

9.4. E x a m p le
r (  —o) d=  \ ( . \ x / 27e-£[lenv(£)/lenv(£): O U TPU TFILE/x].

That is, th e  option le tter -o  will add an argum ent place to  the com m and line th a t 
it is a tta ch ed  to, and m odify the LENV of the corresponding program specification 
in such a  way tha t it assigns the newly introduced lamb da-variable to the  variable 
O U T PU T FIL E  (we use the  same no tation  as for the modification of valuations in 
the sem antics, cf. footnote 39). Therefore, the semantics of -o  is entirely uniform: 
supplying an  option in troduced with -o  will be simply idle if the original program  
specification does not assign a value to  O U TPU TFILE, as expected, whereas it 
will override the non-deictically available default otherwise.43 Accordingly, the 
denotation  th a t we assign to  a com m and line of the form  cc -0 objfíle sourcefíle 
will be as follows:44

9.5. E x a m p le
r ( c c  -0  objfíle sourcefíle) d= ({(O U TPU TFILE, objfíle)};

sourcefíle 7̂  X;
O U TPU T FIL E .content =  cc( sourcefíle. content);
{O U TPU TFILE . content}).

M ost im portantly, as can be seen in the above examples, the difference be
tween th e  behaviour of optional argum ents vs. options is reflected by the  shape

43 As a  m a tte r of fact, we could also say th a t the shell issues an erro r mes
sage instead  of passing the com m and to the operating system. In n a tu ra l 
languages, using an optional param eter when it is not appropriate gives rise 
to  an  anomaly. The procedure th a t we are taking here is ju s t a  m a tte r of 
convenience. Note, however, th a t the eventual anom aly would be sem antic 
ra th e r  th an  syntactic.

44 Cf. 8 .6  and 9.4
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of the  program  specifications th a t they yield. Lexical rules replace variables w ith 
lam bda-variables, whereas options just rebind them  in the  local environm ent. As 
a  consequence, options leave open the possibility of fu rth er rebinding, so, e.g., the 
following equivalence will hold:

cc -o  objßlei -o  objßle2 =  cc -o  objßle2.

Lexical rules, on the other hand, make it impossible to rebind the affected variables 
in any way (e.g., by using options).

Flags (fi) are of type (t t). Just like options, they  modify the  LENV com
ponent, but they determ ine the value th a t they assign to variables in the local 
environm ent (ra ther than  taking an argum ent to th a t effect). For example, the 
flag - f  flag forces both  W RITEC H EC K  and EX ISTC H EC K  to be evaluated to 0 
in the  local environment:

9 .6 . E xam p le
r ( - f )  = f A£.£[lenv(£)/((lenv(£): W RITEC H EC K /O ): EXISTCHECK/O)].

This is an expression of the appropriate type, i.e., it yields a program  specification 
when applied to a program  specification, as in the following exam ple:45

9 .7 . E xam p le
r(rm  file - f )  =f ({(W RITECH ECK , 0), (EX ISTCH ECK , 0)}; 

(EXISTCHECK =  1 —> file /  JL) A
(W R ITEC H EC K  =  1 —> file.write_permission =  1); 

file =  _L;
{file}).

Obviously, the effect of the flag - f  is th a t the tests on the  existence of the file to 
be removed and the w rite permission for it will always succeed.

10. Conclusions
T he intuitive non-com positionality of the Unix com m and language is due to the 
fact th a t, in every com m and line, the in terpreta tion  of the param eters is the ‘in 
te rna l affair’ of the program  corresponding to the com m and nam e. Even if the 
m eaning of a com m and line is some function of the m eanings of its constituents, 
one has the clear in tu ition  th a t not all functions yield equally ‘com positional’ se
m antics. If we allow functions defined pointwise, then  the trad itio n a l principle 
of com positionality becomes vacuous. On the other hand, it is difficult to make

45 Cf. the exam ples 8 .3  and 9.6.
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sense o f the concept of ‘more n a tu ra l’ or ‘sim pler’ functions from  the m athem atical 
point o f view. Accordingly, there  are no n a tu ra l means to lim it the action th a t 
a com puter program  can perform . W hat we can do, though, and w hat we have 
done in  this paper, is in terpreting the constituents of com m and lines as well as 
th e ir ways of com bination in a uniform  m anner. In this way, the in terpreta tion  
of com m and lines is com positional in the sense th a t it may not be construction 
specific, irrespective of what the  actual program carried out by the m achine will 
do.

How is the behaviour of our compositional Unix shell different from a tra 
d itional, non-com positional one? Instead of pre-defining a  set of flags, option 
le tte rs , optional argum ents etc. for each command name, we could have ‘m anual 
pages’ for flags, op tion letters an d  the  like, which would describe w hat they do in 
any com m and line. If certain com binations of commands and  param eters do not 
m ake sense, they will qualify as semantic anomalies ra ther th an  syntactic errors, 
ju s t like in n a tu ra l languages. (A lthough, in actual fact, we have trea ted  certain 
anom alies as ju s t ineffective in th e  above.) For example, I  knew the answer with a 
knife is anom alous because the verb  know does not license an instrum ent ‘op tion’ 
ju s t th e  same as the  option in c a t  - f i l e  auxßle does not make sense because 
the program  c a t  does not use any auxiliary (com m and or expression) file. Listing 
w hat argum ents, options etc. do m ake sense in com bination w ith  c a t  is as absurd 
as it would be to  list all the ad juncts  tha t make sense w ith the verb know in a 
d ic tionary  of English.

B y the same token, our trea tm en t of Unix commands also has im plications 
as to  th e  ‘m anual pages’ of natural-language predicates, i.e., their syntactic and 
sem antic  description. Even though  the complexity of their meanings and the 
m u ltitu d e  of the types of construction tha t they occur in cannot be compared 
to th e  simplified command language that we have exam ined in this paper, the 
concept of com positionality th a t we have forwarded here has a consequence for 
th e ir study. Namely, a natural-language predicate used in two different ways m ust 
be a ttr ib u te d  a single meaning unless we are entirely certain th a t homonymy or 
two different constructions are responsible for the two different uses.
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