

2017

-4

KFKI-1983-101

K U T A T Å S I J E L E N T É S OKKFT A/11-4.2.7 "Szerkezeti anyagok sugårkårosodási vizsgálataihoz kapcsolódó neutrondozimetria"

MTA

Központi Fizikai Kutatóintézet Atomenergia Kutató Intézet

> Készitette: Végh János Vidovszky István Reaktorfizikai Osztály

Budapest, 1983

HU ISSN 0368 5330 ISBN 963 372 148 2

1. BEVEZETĖS

Az alábbi kutatási jelentés az OKKFT A/ll-4. alprogram keretében a KFKI AEKI Reaktorfizikai Osztályán végzett kisérleti neutrondozimetriai munkát foglalja össze. A sugárkárosodási vizsgálatok törésmechanikai mérései Gillemot Ferenc /AEKI Kémiai Főosztály/ laboratóriumában folytak, erről a munkáról készült összefoglalás található pl. [l]-ben. A szerkezeti anyagok sugárkárosodási vizsgálatainak neutrondozimetriai kérdéseivel kapcsolatos kutatások során összeállitottunk és kisérletileg ellenőriztünk egy olyan aktivációs detektorokból álló készletet, amely alkalmas hosszu időtartamu besugárzások alatt kapott gyorsneutronfluens és a neutronspektrum egyidejű mérésére.

Kidolgoztuk a detektorok kiértékeléséhez szükséges kisérleti metodikát és számitógépes eljárásokat, megvizsgáltuk a kiértékelés során felmerülő nehézségeket.

A reaktortartály anyagában a neutronbesugárzás hatására bekövetkező anyagszerkezeti változások jellemzésére a nemzetközileg használatos módszerek és könyvtárak alapján előállitottuk a 15H2MFA tartályacél dpa-hatáskeresztmetszet függvényét. Számitásokat végeztünk a VVER-440 blokk zónáját körülvevő rétegekben kialakuló neutronfluxus, illetve a tartályfal belső széle és a mechanikai próbatestek helye közötti átszámitási tényező megadására.

A VVR-SzM kutatóreaktorban végzett modellbesugárzások /amelyekben a próbatestek rövid idő alatt kapnak ugyanakkora neutrondózist, mint az erőmü 20-30 évi üzemelése során/ és az erőmüvi zónára végzett számitások összekapcsolásával megbizható becslés adható a szerkezeti anyagok várható élettartamára.

2. NEUTRONDOZIMETRIAI VIZSGALATOK

2.1 Altalános neutrondozimetriai kérdések

Tételezzük, fel, hogy egy N_{t} targetizotópot tartalmazó aktivációs fóliát sugározunk be egy reaktorban, a keletkező izotóp bomlási állandója legyen λ . A besugárzás általában több, különböző időtartamu és teljesitményű periódusból állhat /egy erőművi reaktor pl. hosszabb ideig leáll az átrakáskor, más-más teljesitményszinteken üzemelhet/. A besugárzási pozicióban mérhető differenciális neutronfluxust /egységnyi energiaintervallumra eső fluxust/ a "t" időpillanatban vegyük fel az alábbi szeparált alakban /ld. pl. [2]/:

$$\phi(\mathbf{E}, \mathbf{t}) = \Phi_{\mathbf{o}} \frac{\mathbf{P}(\mathbf{t})}{\mathbf{P}_{\mathbf{o}}} \psi(\mathbf{E})$$
(2.1)

ahol P a reaktor névleges teljesitménye,

P(t) a pillanatnyi teljesitmény,

^Φ a névleges teljesitményszinthez tartozó integrális fluxus,

 ψ (E) pedig a neutronok egyre normált + ∞ spektruma { $\int \psi$ (E)dE = 1}.

A célizotóp számának változását leiró egyenlet:

$$\frac{dN}{dt} = N_t R \frac{P(t)}{P_0} - \lambda N \qquad (2.2)$$

ahol

$$R = \Phi_{O} \int_{O}^{+\infty} \psi(E) \sigma(E) dE,$$

 $\sigma(E)$ a targetizotóp aktivációs hatáskeresztmetszete az E neutronenergia függvényében.

Tételezzük fel, hogy az i-ik besugárzási periódus teljesitménye (P_i) konstans, és a periódus hossza T_i . Ekkor az i-ik periódus-ban keletkezett célizotópok száma

$$N(T_{i}) = N_{t} \frac{P_{i}R}{\lambda P_{0}} (1 - e^{-\lambda T_{i}})$$
(2.3)

Ha az i-ik periódus végétől a célizotóp γ -spektrumának megméréséig eltelt hülési idő t_{ci}, akkor a mérhető aktivitás értéke:

$$A_{m} = \lambda N(T_{i}) e^{-\lambda t_{ci}}$$
(2.4)

Tegyük fel, hogy összesen K periódusból állt a besugárzás, ekkor /a targetizotóp kiégésének elhanyagolásával/

$$A_{m} = \sum_{i=1}^{K} N_{t} \frac{P_{i}R}{P_{o}} (1 - e^{-\lambda T_{i}}) e^{-\lambda t_{ci}}$$
(2.5)

adódik. Számunkra lényegében az egy targetizotópra eső telitési aktivitás értéke, az R mennyiség érdekes:

$$R = \frac{A_m}{N_t} f \qquad (2.6)$$

ahol f az un. "reaktor-história" faktor

$$f = \frac{1}{\sum_{\substack{\Sigma \\ i=1}}^{K} \frac{P_i}{P_o} (1 - e^{-\lambda T_i}) e^{-\lambda t_{ci}}}$$
(2.7)

Ha a fólia γ-spektrumában egy kiválasztott, jól elkülönithető vonal mért intenzitása I, akkor az aktivitást az alábbi kifejezés adja:

$$A_{m} = \frac{I}{\gamma \in t_{m}}$$
(2.8)

ahol t_m a mérési idő,

 \in a mérőrendszer abszolut hatásfoka az adott γ -energián,

I a kiválasztott vonal csucs alatti területe,

γ a mért vonal γ-hozama.

A fóliában lévő targetizotópok számát az

$$N_{t} = \frac{X_{t}^{mN}A^{W}t}{M}$$
(2.9)

összefüggés adja, ahol m a fólia össztömege [g],

N_n az Avogadro-szám,

w_t az adott elem aránya a fóliában
/suly %-ban/,

M az elem atomtömege [g],

X_t a targetizotóp természetes előfordulási gyakorisága az elemben.

A targetizotópok számának pontos megadása preciziós mérleg birtokában és a potos fóliaösszetétel ismeretében nem jelent nehézséget, ellentétben a mérőrendszer abszolut hatásfokának meghatározásával. A rendszer abszolut hatásfokán a mért aktivitás és a fólia abszolut /valódi/ aktivitásának arányát értjük, a hatásfok általánosan az alábbi tényezőktől függ:

$$= f_{det} \cdot f_h \cdot f_q \cdot f_v \cdot f_{\ddot{o}} \cdot f_a$$
 (2.10)

a detektor impulzusszámlálási hatásfoka,

ahol f_{det} a f_h a f_g a f_v a f_ö=S a

fa

a holtidőkorrekció,

a geometriai tényező /térszögfaktor/,

a visszaszórási tényező,

az önabszorpciós faktor /a γ-fotonok elnyelődése magában a fóliában/,

az abszorpciós faktor /a γ-fotonok elnyelődése a detektor ablaka és a fólia közötti térrészben/.

Az általában használt γ -energiákon /kb. 100 keV és 2 MeV közötti értékek/ f_a ≈ 1, az f_h holtidőkorrekció a minta-detektor távolság megfelelő beállitásával szintén elhanyagolható hatásuvá tehető. Helyes minta-detektor elrendezéssel f_v szintén kb. 1,0 lesz /a visszaszórás hatása főleg β⁻-detektálásnál jelentős/. Az abszolut hatásfok kifejezése végül az alábbi formára hozható:

 $\in = \in (\mathbf{E}_{\gamma}, \mathbf{r}) \cdot \mathbf{S}(\mathbf{E}_{\gamma})$ (2.11)

Itt $\in (E_{\gamma}, r)$ a mért mintától független faktor /csak a minta-detektor távolságtól és a mért E_{γ} energiától függ/, $S(E_{\gamma})$ pedig a mért

fólia tulajdonságaitól függő önárnyékolási tényező. Az $\in (E_{\gamma}, r)$ megállapitására nagy pontossággal kalibrált γ -források használhatók fel: különböző minta-detektor távolságokon ismert abszolut aktivitásu γ -források jól mérhető, pontos magfizikai adatokkal rendelkező csucsait detektáljuk; megfelelően választott forrásokkal a felhasznált energiatartomány kielégitően kalibrálható minden minta-detektor távolságra. Az egyes poziciókban az energiafüggést szokásos /ld. pl. [3])

$$\in (E_{\gamma}, r) = A(r)E_{\gamma}^{-B(r)} \qquad (2.12)$$

alakban felvenni /A(r) és B(r) a poziciót jellemző állandók, pl. a legkisebb négyzetek módszerével végzett illesztés utján kaphatók meg/.

Az S(E_{γ}) önabszopciós tényező megadja, hogy a mintában keletkezett E_{γ} energiáju γ -fotonok mekkora hányada jut ki a fóliából abszorpció nélkül. Altalában elegendő az alábbi közelitésben felirni

$$S(E_{\gamma}) = \frac{1 - e^{-\mu d}}{\mu d}$$
 (2.13)

ahol d: a fóliában lévő abszorbeáló anyag felületi sürüsége [g/cm²],

 μ : az E_y energián a tömegabszorciós együttható $\left[\frac{cm^2}{\sigma}\right]$

Végül szólni kell a y-spektrometriás módszerrel végzett abszolut aktivitásmérés hibájáról is: feltételezve, hogy a magfizikai adatok, az idő- és tömegértékek pontosan ismertek /l %-nál kisebb hibával/, az aktivitás relativ hibáját az alábbi kifejezéssel közelithetjük:

$$\frac{\Delta A_{\rm m}}{A_{\rm m}} = \sqrt{\left(\frac{\Delta I}{I}\right)^2 + \left(\frac{\Delta \epsilon}{\epsilon}\right)^2}$$
(2.14)

Itt $\frac{\Delta I}{I}$: a γ -intenzitás relativ hibája /kb. 1-2 %/ $\frac{\Delta \varepsilon}{\varepsilon}$: az abszolut hatásfok relativ hibája /kb. 2-3 %/ A szokásos módszerekkel tehát kb. 3-4 %-os pontosságu abszolut

- 5 -

aktivitásmérés produkálható, ami a reaktordozimetria sugárkárosodási célu felhasználásában kielégitőnek tekinthető. Az egy targetmagra eső telitési aktivitások értékeinek ismeretében a besugárzási pozició névleges teljesitményhez tartozó $\Phi_{0}\psi(E)$ differenciális fluxusa az un. unfolding módszer segitségével állitható elő, a módszer részletes leirását és alkalmazását ld. pl. [4], [5], [3]. Tetszőleges reaktorteljesitményhez a $\phi(E,t)$ neutronfluxust a (2.1) összefüggés alapján adhatjuk meg, a teljesit ményváltozások ismeretében. Egy $\sigma(E)$ hatáskeresztmetszetű reakcióra kiszámithatjuk az egy magra eső telitési aktivitást:

$$R = \int_{0}^{t} \int_{0}^{+\infty} \phi(E,t)\sigma(E) dEdt = \sum_{i=1}^{K} \int_{0}^{T} \int_{0}^{+\infty} \phi(E) \frac{P_{i}}{P_{o}} \sigma(E) dEdt \quad (2.15)$$

$$R = \sum_{i=1}^{K} \Phi_{O} \frac{P_{i}T_{i}}{P_{O}} \int_{O}^{+\infty} \psi(E)\sigma(E) dE = \langle \sigma \rangle_{\psi} \sum_{i=1}^{K} F_{i}$$
(2.16)

Itt $\langle \sigma \rangle_{\psi}$ a neutronspektrumra átlagolt hatáskeresztmetszet /közben feltételeztük, hogy a spektrum a besugárzás teljes ideje alatt /t₀-ig/ változatlan marad/, F₁ pedig az i-ik periódus alatt kapott neutronfluens [neutron/cm²]. Ha a $\sigma(E)$ függvény pl. a tartályacél dpa-hatáskeresztmetszetének függvénye, akkor (2.16) éppen az egy atomra jutó átlagos kilökődések N_d számát adja meg /ld. a 3. fejezetet/ a besugárzás ideje alatt:

$$N_{d} = \langle \sigma_{dpa} \rangle_{\psi} \cdot F \qquad (2.17)$$

ahol

 $F = \sum_{i=1}^{K} F_{i},$

a teljes neutron fluens.

A spektrális információk $\{\psi(E)\}$ és a teljes fluens $\{F\}$ ismeretében tehát olyan sugárkárosodási jellemzők adhatók meg a szerkezeti anyagokra, amelyek alapján előrejelzést adhatunk az anyagok várható reaktorbeli élettartamáról.

2.2 Modellbesugárzások a KFKI VVR-SzM reaktorában

- 7 -

A szerkezeti anyagok törésmechanikai vizsgálataihoz szükséges próbatestek besugárzása a KFKI VVR-SzM kutatóreaktorának zónájában, a 163. besugárzási csatornában /ld. a 2. ábra zónatérképét/, egy fütőelemköteg helyén történt. A próbatestek 15H2MFA tartályacélból, O8H18N1OT rozsdamentes acélból és hegesztési varratanyagból készültek; a besugárzásokhoz kifejlesztett speciális, füthető tok az 1. ábrán látható. A besugárzások hőmérséklete 280 °C + 5 % volt, ez kb. megegyezik a tartály normál üzemi körülmények közötti hőmérsékletével. A próbatesteket ért neutronfluens monitorozására 3-5 axiális pozicióban aktivációs detektorokat helyeztünk el a tokban /ld. 1. ábra/; a középső - maximális fluxusu - helyre került a több fóliát tartalmazó készlet, a szélső poziciókba csak néhány aktivációs huzalt tettünk az axiális eloszlás mérésére. A besugárzások során az volt a célunk, hogy a próbatestek olyan mértékü mechanikai károsodást szenvedjenek el, mint az erőmü müködése közben 10-20-30 stb. év alatt.

A VVER-440 blokkok tartályacéljának károsodására a KGST-ben az alábbi formula használatos /ld. pl. [6]/:

$$\Delta NDT = A \cdot N_d^{1/3}$$
 (2.18)

ahol ANDT a rideg-képlékeny törés átmeneti hőmérsékletének megnövekedése a besugárzás hatására,

az egy atomra eső elmozdulások átlagos száma a be-Na sugárzás alatt /dpa/,

az adott acélfajtától függő konstans. Α

(2.18) formulából kitünik, hogy azonos károsodást olyan be-Α sugárzással hozhatunk létre, amelyben a kutatóreaktorbeli dpa megegyezik az erőmübelivel.

Numerikusan felirva /időben állandó fluxusokat feltételezve/:

$$\langle \sigma_d \rangle_1 \cdot \Phi_1 \cdot t_1 = \langle \sigma_d \rangle_2 \cdot \Phi_2 \cdot t_2$$
 (2.19)

ahol az "1" index a VVR-SzM-re, a "2" pedig a VVER-440 tartályfal belső szélére utal.

A szükséges besugárzási idő tehát

t

$$\mathbf{l} = \frac{\langle \sigma_{d} \rangle_{2}}{\langle \sigma_{d} \rangle_{1}} \cdot \frac{\Phi_{2}}{\Phi_{1}} \cdot \mathbf{t}_{2}$$
(2.20)

A 6. táblázat alapján megadhatjuk t₁ értékét a 163.csatornára: t₁ \approx 7,93 \cdot 10⁻³ t₂, azaz 30 évnyi folyamatos erőmübeli besugárzás közelitőleg 2000 óra VVR-SzM-beli besugárzással egyenértékü.

A neutronfluxus monitorozására az alábbi reakciókat használtuk: 59 Co(n, γ) 60 Co, 58 Fe(n, γ) 59 Fe, 54 Fe(n,p) 54 Mn, 93 Nb(n,n') 93 Nb^m, 58 Ni(n,p 58 Co, 60 Ni(n,p) 60 Co, 63 Cu(n, α) 60 Co, 46 Ti(n,p) 46 Sc, 55 Mn(n,2n) 54 Mn.

A fóliák γ-spektrumait egy CANBERRA 7229 tipusu Ge/Li/ félvezető detektorral mértük, a detektor elektronikája egy PDP 11/10 tipusu miniszámitógépen müködő on-line adatgyűjtő rendszerrel /CAMON, ld. [7]/ állt kapcsolatban. A γ-csucsok csucs alatti területeit Gauss-görbe + lineáris háttér csucsalak feltételezésével elvégzett fitteléssel, az RFIT program [8] segitségével adtuk meg; a területek hibái átlagosan 1-2 %-ra tehetők.

Két reakció kiértékelésénél különösen gondos analizist kell vágezni, a 60 Ni(n,p) és a 93 Nb(n,n') reakciók esetében.

⁶⁰Ni(n,p) ⁶⁰Co

Ezt a reakciót csak igen tiszta nikkelre tudjuk kiértékelni /csak kb. 500 ppm-nél kisebb kobaltszennyezés esetén/, ugyanis az 59 Co(n, γ) reakcióban nagy hatáskeresztmetszettel keletkező 60 Co-aktivitás erősen zavarhatja a 60 Ni(n,p) reakcióból származó 60 Co-aktivitás meghatározását. Ha a fólia kobalttartalma pontosan ismert, akkor korrekcióba tudjuk venni az 59 Co(n, γ) reakció hatását, ellenkező esetben felülbecsüljük a 60 Ni(n,p) reakciógyakoriságot, ezáltal pedig a kb. 6 MeV feletti gyorsfluxust.

$93_{Nb(n,n')} 93_{Nb}^{m}$

A fenti reakció esetében a zavaró tényező a nióbium tantálszennyezése: csak kb. 1000-500 ppm-nél kisebb tantáltartalmu nióbium-

fóliák /vagy huzalok/ használhatók fel a ⁹³Nb(n,n') reakciógyakoriság mérésére.

A Ta-interferencia a 181 Ta (n,γ) reakcióban keletkező 115,1 nap felezési idejü 182 Ta izotóp következménye /ld. pl. [9] és [3]/, kiküszöbölésére az alábbi módszerek használatosak:

1./ A ¹⁸²Ta felezési ideje sokkal kisebb, mint a ⁹³Nb^m metastabil állapoté /kb. 15,7 év/, ezért két olyan mérések, amelyek között jelentős idő telt el, a Ta-interferencia leválasztható.

Tételezzük fel, hogy a besugárzás vége után t_o idővel mérjük a 93 Nb^m 16,6 keV-es K_a vonalát. Ekkor az aktivitás két tagra bontható /ld. [9]/:

$$A(t_{o}) = A_{Nb}e^{-\lambda_{1}t_{o}} + A_{Ta}e^{-\lambda_{2}t_{o}}$$
(2.20)

Ugyanezt a mérést egy későbbi t időpillanatban elvégezve:

$$A(t) = A_{Nb}e^{-\lambda_{1}t} + A_{Ta}e^{-\lambda_{2}t}$$
(2.21)

A képletekben A_{Nb} a ⁹³Nb(n,n') reakcióból keletkező ⁹³Nb^m-aktivitás, A_{Ta} a ¹⁸²Ta hatására létrejövő zavaró ⁹³Nb^m-aktivitás, λ_1 és λ_2 pedig a ⁹³Nb^m, illetve a ¹⁸²Ta bomlási állandói. A két kifejezés összevetéséből kifejezhető a keresett A_{Nb} aktivitás:

$$A_{\rm Nb} = \frac{A(t) - A(t_{\rm o})e}{\frac{-\lambda_{2}(t - t_{\rm o})}{-\lambda_{1}(t - t_{\rm o}) - e} - \frac{-\lambda_{2}(t - t_{\rm o})}{-\lambda_{2}(t - t_{\rm o})}}$$
(2.22)

A fenti eljárás csak kb. 500 ppm-nél kisebb tantál-szennyezés esetén használható, mivel nagyobb szennyezéseknél a mért aktivitás 90-95 %-a is származhat a ¹⁸²Ta-tól.

2./ Kémiai higitás eljárásokkal csökkenthető a ¹⁸²Ta izotópok koncentrációja a nióbiumhordozóban, ezáltal csökken a Ta-interferencia is.

Néhány tized ml hidrogénfluoridba helyezzük a nióbiumfóliát, majd néhány csepp salétromsavat adunk hozzá, hogy a fólia teljesen feloldódjon. Ezután mikropipettával pontosan ellenőrizhető oldatmennyiséget szürőpapirra viszünk, beszáritjuk és a preparátumot

- 9 -

vékony polietilénvédőréteggel látjuk el /ld. [10]/. A felvitt nióbiumtömeget vagy a ¹⁸²Ta-aktivitás segitségével, vagy a pipettázás adataiból határozhatjuk meg. Kisérleteinkben az 1, és 2, módszert egyaránt alkalmaztuk, a K_a és K_β röntgenvonalakat egy vékony Be-ablakkal ellátott CANBERRA 7333 E tipusu Si(Li) félvezető detektorral mértük. Az adott mérési elrendezés abszolut hatásfokának megadásához a ⁵⁷Co izotóp 14,41 keV-es vonalát használtuk fel.

- 10 -

Az OKKFT alprogram keretében számos próbatestsorozatot sugároztunk be a VVR-SzM zónájában, a besugárzások közül a 7164 jelü tok középső fóliapoziciójában lévő fóliakészletből nyert eredményeket mutatjuk be.

A besugárzás 1982. 04. 05. 12⁰⁰ és 1982. 04. 23. 18⁰⁰ között történt, a teljes besugárzási idő 306 óra volt, a reaktor közben végig 4,4 MW teljesitménnyel üzemelt.

Az egy magra eső telitési aktivitások mért értékeiből /ld. 1. táblázat/ a neutronspektrumot az RFSP-JÜL unfolding program petteni verziójával /ld. [11]/ állitottuk elő. Az unfoldinghoz szükséges próbaspektrum a VVR-SzM·zónájára készült GRACE-számitás /ld. [12]/ eredménye volt. A 3. ábrán látható a VVR-SzM 163. csatornájának középső poziciójában mért neutronspektrum: feltüntettük a próbaspektrumot és a használt reakciók 90 %-os választartományait is. Az unfolding utján nyert neutronspektrummal számitott reakciógyakoriságok az 1. táblázatban találhatók, ugyanitt közöljük a megoldáspektrum legfontosabb jellemzőit is.

3. A 15H2MFA TARTALYACEL DPA-HATASKERESZTMETSZETE

A tartályacél sugárkárosodási tulajdonságainak jellemzésére ma általánosan elfogadott jellemző az adott neutrontér hatására az anyagban létrejövő dpa-gyakoriság /ld. [13]/, amelyet az alábbi egyenlettel határozhatunk meg:

$$R_{dpa}^{(t)} = \int_{0}^{+\infty} \phi(E,t) \sigma_{d}(E) dE$$
 (3.1)

Itt $\phi(E,t) = \phi(t)\psi(E)$ a neutronok egységnyi energiaintervallumra eső fluxussürüsége,

 $\sigma_d(E)$ pedig a dpa-hatáskeresztmetszet függvény.

Időben állandó neutronfluxust feltételezve, t_i besugárzási idő alatt az anyagban a kilökődések teljes száma /egy targetatomra vonatkoztatva/:

$$N_{d} = \int_{0}^{t} R_{dpa}^{(t)} dt = F \int_{0}^{+\infty} \psi(E) \sigma_{d}(E) dE \qquad (3.2)$$

 $N_d = F \cdot \langle \sigma_d \rangle \tag{3.3}$

ahol F = $\int \Phi(t) dt$, a neutronfluens;

 $\psi(E) = a \text{ neutronok spektruma} \begin{cases} +\infty \\ \{\int \psi(E) dE = 1 \} \\ 0 \end{cases}$

 $\langle \sigma_d \rangle$ = a spektrumra átlagolt dpa-hatáskeresztmetszet

Az adott neutrontér spektrális eloszlását és fluensét mérve tehát jellemezhetjük a kialakult sugárkárosodást, amennyiben a $\sigma_d(E)$ függvényt ismerjük.

Az ASTM és EURATOM szabványokban /ld. pl. [13] és [14]/ acélokra közölt dpa-hatáskeresztmetszetek a 15H2MFA acélra nem alkalmazhatók, mivel más összetételü anyagokra készültek. Egy ötvözet $\sigma_d(E)$ függvénye az alábbi kifejezéssel állitható elő:

 $\sigma_{d}(E) = \sum_{i=1}^{n} C_{i} \cdot \sigma_{di}(E)$ (3.4)

Itt σ_{di}(E) - az i-ik tipusu ötvözőelem dpa-hatáskeresztmetszete
c_i - az i-ik tipusu ötvözőelem aránya /atom %-ban/
n - az ötvözőelemek száma

/A (3.4) kifejezés nyilvánvalóan csak közelités, mivel feltételezi az egyes kárododási mechanizmusok függetlenségét/. A 15H2MFA acél gyengén ötvözött szénacél, összetétéle az alábbi /ld. [1]/:

Elem	Suly %	Atom %	Atom % a számitásban
Fe	95,39	94,90	95,33
Cr	3,10+0,1	3,31	3,31
v	0,28+0,02	0,31	0,31
Мо	0,68+0,07	0,40	0,40
С	0,14	0,65	0,65
Mn	0,39+0,01	0,40	-
S	0,02	0,03	_

Az ötvözet átlagos mólsulya M = 55,565, átlagos sürüsége pedig 7,82 g/cm^3 .

Az Fe, Cr, V, Mo és C elemek $\sigma_{d}(E)$ függvényei megtalálhatók a DAMSIG81 [15] könyvtárban, 10⁻¹⁰ MeV és 20 MeV között 640 csoportban tabellázva. A 0,4 atom %-al szereplő mangánt a számitásokban vassal helyettesitettük /dpa-hatáskeresztmetszete még nem áll rendelkezésre/, ezáltal nem követtünk el számottevő hibát.

A reaktorfizikai alkalmazásokban elegendő 10⁻¹⁰ MeV - 18 MeV tartományban, a 620 SAND-II csoportbeosztásban elvégzett számitás eredményét mutatja a 4. ábra, a numerikus értékeket az 5. táblázat tartalmazza. A táblázatbeli energiák az adott csoport alsó határát jelentik, a hatáskeresztmetszet pedig a csoportra átlagolt

 $\sigma_{i} = \frac{1}{E_{i+1}^{E_{i+1}}} \int_{E_{i}}^{F_{i+1}} \sigma_{d}(E) dE \quad (i=1,2,\ldots,620) \quad (3.5)$

értéket jelöli. Az egyes dpa-hatáskeresztmetszeteket összehasonlitjuk egy

$$\chi(E) = 0,484 \sinh(\sqrt{2E})e^{-E} [E] = MeV$$
 (3.6)

Watt-tipusu ²³⁵U-hasadási spektrumra vett átlaggal, a numerikus értékek az alábbiak:

ASTM E693-79	szabvány:	861,3	barn	[15]
EURATOM	szabvány:	840,7	barn	[15]
15H2MFA	:	828,5	barn	

A 15H2MFA acél un. válaszfüggvényét ábrázolja az 5. ábra a VVR-SzM 163. csatornájában. A j-ik energiacsoport járuléka az R_{dpa} dpa-gyakorisághoz ugyanis

$$R_{j} = \int \sigma(E)\phi(E) dE = \sigma_{j} \cdot \phi_{j}.$$

$$E_{j}$$
(3.7)

alakba irható { σ_j definicióját ld. a (3.5) egyenletben, Φ_j pedig a csoport integrális fluxusa}.

Az R_j /j=l,2,...n/ csoportonként megadott mennyiségek alkotják a válaszfüggvényt. Számitásaink szerint $E_L \approx 140$ keV és $E_u \approx 6,8$ MeV, azaz a károsodás szempontjából az acél "küszöbdetektorként" müködik / E_o = 10 keV felett van a válasz 99 %-a/. A termikus neutronok járuléka igen kicsi /gyakorlatilag elhanyagolható/, az általuk keltett kilöködések száma nagyságrendekkel kisebb a gyorsneutronokénál.

4. SABINE-3 SZAMITASOK A VVER-440 BLOKKRA

A paksi VVER-440 I. blokk zónáját körülvevő rétegekben kialakuló neutronfluxus-viszonyok meghatározására a SABINE-3 /ld. [16]/ programmal végeztünk számitásokat. A SABINE-3 eredetileg biológiai védelmi számitások végzésére készült egydimenziós kód, amely a gyorsneutronok behatolását az egyes rétegekbe a "removal-diffuziós" modell alapján adja meg. A modell lényegében egy olyan diffuziós egyenletet old meg az egyes rétegekben, amelynek forrástagját az adott helyen "removal" tipusu ütközésekben lelassult neutronok jelentik. /Egy ütközés "removal" tipusu, ha a neutron energiáját, impulzusát erősen megváltoztatja - pl. rugalmas ütközés egy könnyü magon, rugalmatlan ütközés, abszorpció./ A program O és 15 MeV között 26 energiacsoportban /ld. 2., 3. és 4. táblázatok/ adja meg a neutronfluxust, a zónát egy ²³⁵U-hasadási forrásként fogja fel. A zónában a hasadási forrássürüség-eloszlást

$$n(r, z, \phi) = n_{o} f(r) g(z)$$
 (4.1)

alakban vehetjük fel,

ahol n_o a hasadási forrássürüség a zóna közepén, f(r) és g(z) a radiális és axiális eloszlások.

Az n tényező értéke az

Ρ

$$2\pi R + \frac{H}{2}$$

$$\int \int n(r, z, \phi) dz dr d\phi = N \qquad (4.2)$$

$$\circ \circ -\frac{H}{2}$$

feltételből nyerhető, ahol N a hasadások teljes száma időegységenként a zónában, az adott P teljesitményen.

$$N = \frac{\eta P}{E_0} = \langle n \rangle \cdot V \qquad (4.3)$$

ahol $E_0 = 200 \text{ MeV} = 3,2.10^{-11} \text{ J}$, a hasadásonként átlagosan felszabaduló energia,

a zóna termikus teljesitménye /Watt/,

 $\eta = 0,94$ /a teljesitmény 94 %-a származik a hasadásból/, <n> az átlagos hasadási forrássürüség a zónában, V a zóna térfogata.

Vegyük fel a radiális eloszlást

$$f(r) = J_{O}(B_{R} \cdot r) \qquad (4.4)$$

az axiális eloszlás pedig

$$g(z) = \cos(B_z \cdot z) \qquad (4.5)$$

alakban, ahol $B_R = \frac{2,4048}{R+\lambda_R}$ a radiális görbületi parométer /R: a zóna sugara, λ_R : a radiális extrapolációs távolság/

	az axialis gorbuleti parameter
$B_{z} = \frac{\pi}{H+2\lambda_{z}}$	/H: a zóna teljes magassága, λ _z : az axiális extrapolációs tá- volság/

Bevezetve az

$$F_{g} = \frac{4}{(B_{z}^{H})(B_{R}^{R})} \sin(\frac{B_{z}^{H}}{2}) J_{1}(B_{R}^{R})$$
(4.6)

un. geometriai tényezőt /J1: elsőrendü Bessel-függvény/ az

$$n_{o} = \frac{N}{V} \cdot \frac{1}{F_{g}} = \langle n \rangle \frac{1}{F_{g}}$$
 (4.7)

alakhoz jutunk /ld. (4.3) egyenlet/.

Számitásainkban többféle forrássürüség-eloszlást használtunk /homogén eloszlás, BIPR-5 számitásból nyert eloszlás, ld. [3]/, az alábbiakban a fenti $J_0(B_R^R)$ és cos (B_Z^2) függvényekkel történő közelitést tárgyaljuk, hengergeometriában számolva.

A számitás input adatai

R = 144 cm, a zóna ekvivalens sugara

$$\lambda_R$$
 = 9,12 cm; B_R = 1,5705.10⁻² 1/cm
H = 242 cm, a zóna magassága

$$2\lambda_{z} = 18,63 \text{ cm}; \quad B_{z} = 1,2054.10^{-2} \text{ 1/cm}$$

$$B^{2} = B_{z}^{2} + B_{R}^{2} = 3,9194.10^{-4} \text{ 1/cm}^{2}$$

$$F_{g} = 0,3035$$

$$= 2,562.10^{12} \frac{\text{hasadás}}{\text{cm}^{3}\text{sec}} \quad (P = 1375 \text{ MW mellett})$$

$$n_{o} = 8,442.10^{12} \frac{\text{hasadás}}{\text{cm}^{3}\text{sec}}$$

A zóna körül elhelyezkedő árnyékoló rétegek

Réteg	Anyag	Vastagsåg	[cm]	Hőmérséklet	[°c]	Sürüség [g/cm ³]
1.	viz	5,0	HENDAN	295		0,73
2.	reaktorkosár*	3,0	3,5	295		7,9
3.	viz	1,5	1,5	290		0,74
4.	reaktorakna*	9,5	6,0	280		7,9
5.	viz	12,1	15,6	265		0,79
6.	plattirozás*	0,9	0, 9	264		7,9
7.	reaktortartály**	14,0	14,0	260		7,8
8.	levegõ	31,0		60		0,00129
9.	nehézbeton	100,0	1 :: .	100		2,5

* 08H18N1OT rozsdamentes acél

** 15H2MFA acél

A zónabeli viz bórsavkoncentrációja 3,5 g/liter volt, induló zónát feltételeztünk, a próbatestláncok az akna külső felületek, az aknától 1 cm-re helyezkednek el.

A 6. ábrán a neutronfluxus eloszlását láthatjuk az egyes rétegekben, külön feltüntetve a tartálykárosodás szempontjából lényeges O,1 MeV feletti gyors fluxust. A 2., 3. és 4. táblázatok a 26 SABINE-3 csoportban közlik a neutronfluxust a próbatestek helyén, a tartály belső felületén / ϕ T/, illetve a falvastagság egynegyedénél /1/4 T/.

A 15H2MFA tartályacél dpa-hatáskeresztmetszetének ismeretében /ld. 3. fejezet/ megadhatjuk a dpa-gyakoriság alakulását a tartályfalban /ld. 7. ábra/. A számitásokból megállapitható a próbatestek helye és a tartályfal belső széle közötti átszámitási tényező értéke:

- 16 -

$$LF_{\Phi} = \frac{\Phi_{s}(E>0, 1 \text{ MeV})}{\Phi_{pv}(E>0, 1 \text{ MeV})} = 11,8$$
(4.8)

ahol $\phi_{\rm s}$ és $\phi_{\rm PV}$ a próbatestek helyén, illetve a tartályfal belső felületén lévő fluxusok.

Hasonlóan definiálható a dpa-gyakoriságok közötti átszámitási tényező is:

$$L_{dpa} = \frac{R_{dpa}^{S}}{R_{dpa}^{PV}} = 9,8$$
(4.9)

Az irodalomban mindkét átszámitási tényező használatos, az L_{dpa} jobban tükrözi a spektrum megváltozásából adódó effektusokat.

A VVR-SzM-beli fluxusmérések és a SABINE-3 számitások összevetését tartalmazza a 6. összefoglaló táblázat.

- 5. IRODALOM
 - [1] Gillemot Ferenc, Kapitány András, Végh János: "Neutronsugárzás hatása a 15H2MFA jelü acél tulajdonságaira" Kutatási jelentés a 8-2-1146/78-80 VASKUT-KFKI szerződés teljesitéséről
 - [2] J. Hógel, R. Vespalec: The determination of fast neutron fluence in radiation stability tests of steel samples, Report ZJE-237 /1979/
 - [3] Végh János: A neutronspektrumok meghatározásának gyakorlati alkalmazásai atomreaktorokban, Egyetemi doktori értekezés, Budapest, 1982.
 - [4] J.T. Routti, J.V. Sandberg: Unfolding techniques for activation detector analysis, Report TKK-F-A358 /1978/
 - [5] A. Fischer: RFSP-JÜL, A programme for unfolding neutron spectra from activation data, Report JÜL-1475 /1977/
 - [6] M. Brumovský, B. Ošmera, V. Valenta: Effect of uncertainties in neutron spectra and fluences determination on the WWER pressure vessel lifetime prediction, IAEA Advisory Group Meeting on Nuclear Data ... 1981, IAEA Tecdoc-263 /1982/
 - [7] F. Adorján: CAMON: A nuclear laboratory data acquisition and service program, Version Ol,
 Description and User's Manual
 - [8] Z, Szatmáry: Data evaluation problems in reactor physics, theory of program RFIT, Report KFKI-77-43
 - [9] V.P. Wille: Messung der Aktivität des Niob 93 m zur Bestimmung der Fluenz schneller Neutronen Leistungsreaktoren, Atomkernenergie, Vol. 29 /1977/, No 2.
- [10] H. Tourwé, N. Maene: Fast neutron fluence measurements with the ⁹³Nb(n,n') ⁹³Nb^m reaction and the application to long term irradiations, Report EUR 6813, Vol. II.
- [11] A. Fischer: The Petten version of the RFSP-JÜL program, R.M.G. Note 76/10, Petten /1976/
- [12] Z. Szatmáry, J. Valkó: GRACE: A multigroup fast neutron spectrum code, Report KFKI-70-14
- [13] Standard practice for characterizing neutron exposures in ferritic steels in terms of displacements per atom /dpa/, ASTM E693-79 szabvány, Annual Book of ASTM Standards, Part 45.

- [14] A. Alberman, et al.: Introduction of neutron metrology for reactor radiation damage, Report, EUR 6182 EN /1978/
- [15] W.L. Zijp, H.J. Nolthenius, H.CH. Rieffe: Damage Cross--section Library DAMSIG 81, Report, ECN-104, Petten /1981/
- [16] C. Ponti, R. Van Heusden: SABINE-3: An improved version of the shielding code SABINE, Report, EUR 5159 /1974/

6. ÅBRÅK, TÅBLÅZATOK

I

Standard and

a zóna felső része

a zóna alsó része

1. ábra A VVR-SzM-ben használt besugárzó tok sematikus képe

1,2,3,4,5: fóliapoziciók

2.ábra A VVR-SzM zónatérképe

- 22 -

3.ábra Az unfolding számitás eredménye a VVR-SzM 163.csatornájára 1 - próbaspektrum 2 - megoldásspektrum 23 -

- 24

4 . ábra A 15H2MFA tartályacél dpa-hatáskeresztmetszet függvénye / számitás a DAMSIG81 alapján /

7. ábra A sugárkárosodási indexek változása a tartályfalban / SABINE-3 számitás /

- 27 -

1. Táblázat

A VVR-SzM 163. csatornára végzett unfolding számitás bemenő és számitott adatai

Reakció	$R_{m}[\frac{dps}{nucl}]$	$R_{c}[\frac{dps}{nucl}]$
⁹³ Nb(n,n')	4,8862.10 ⁻¹²	4,5599.10 ⁻¹²
⁵⁵ Mn(n,2n)	5,4327.10 ⁻¹⁵	5,4327.10 ⁻¹⁵
⁵⁹ Co(n,γ)	6,2752.10 ⁻¹⁰	6,2736.10 ⁻¹⁰
46 _{Ti(n,p)}	3,5909.10 ⁻¹³	3,4475.10 ⁻¹³
⁵⁴ Fe(n,p)	2,5867.10 ⁻¹²	2.3477.10 ⁻¹²
⁵⁸ Ni(n,p)	2,6644.10 ⁻¹²	3,0423.10 ⁻¹²
⁶⁰ Ni(n,p)	9,1440.10 ⁻¹⁴	9,0945.10 ⁻¹⁴
⁶³ Cu(n,α)	1,9763.10 ⁻¹⁴	1,9934.10 ⁻¹⁴
⁵⁸ Fe(n,γ)*	2,6387.10 ⁻¹¹	_
R _{dpa} **	-	2,4307.10 ⁻⁸

- * a többi reakciónak ellentmondó érték, az unfolding számitásból kihagyva
- ** dpa-gyakoriság a 15H2MFA acélra

- 29 -

A megoldásspektrum jellemzői:

Φ	/totális/	5,72.10 ¹³	neutron 2
Φ	/termikus/	1,32.10 ¹³	cm~sec "
Φ	/ABBN/	4,40.10 ¹³	
Φ	/E>10,5 MeV/	2,26.10 ¹⁰	"
Ф	/E>1,0 MeV/	1,71.10 ¹³	n
Φ	/E>O,1 MeV/	2,87.10 ¹³	•

SPEKTRUM A ZONA SZELETOL 19.60 CM-RE

ENERGIACSOPORT EMEVJ

FLUXUS ENEUTRON/CM**2/SECJ

	0.100E-09	-	0.200E-06	0.457E+13	
	0.200E-06	•••,	0.414E-06	0.272E+12	
	0.414E-06		0.682E-06	0.152E+12	
	0.682E-06		0.112E-05	0.162E+12	
	0.112E-05		0.185E-05	0.168E+12	
	0.185E-05		0.306E-05	0.173E+12	
	0.306E-05		0.504E-05	0.177E+12	
	0.504E-05	-	0.107E-04	0.273E+12	
	0.107E-04	-	0.290E-04	0.374E+12	
	0.290E-04		0.789E-04	0.381E+12	
	0.789E-04		0.214E-03	0.389E+12	
	0.214E-03		0.583E-03	0.397E+12	
	0.583E-03		0.158E-02	0.407E+12	
	0.158E-02	-	0.431E-02	0.419E+12	
	0.431E-02	-	0.117E-01	0.414E+12	
	0.117E-01	-	0.318E-01	0.457E+12	
	0.318E-01		0.865E-01	0.518E+12	
	0.865E-01	-	0.183E+00	0.545E+12	
1	0.183E+00		0.302E+00	0.502E+12	
	0.302E+00		0.498E+00	0.579E+12	
	0.498E+00	-	0.825E+00	0.767E+12	
	0.825E+00	-	0.135E+01	0.645E+12	
	0.135E+01		0.223E+01	0.454E+12	
	0.223E+01		0.368E+01	0.266E+12	
	0.368E+01	-	0.607E+01	0.118E+12	
	0.607E+01		0.149E+02	0.351E+11	
				(1) 1. (1) 1	

١

2. táblázat Neutronspektrum a próbatestek helyén

- 30 -

SPEKTRUM A TARTALY BELSO FALANAL OT

ENERGIACSOPORT EMEVJ

FLUXUS [NEUTRON/CM**2/SEC]

0.100E-09		0.200E-06	0.239E+12
0.200E-06		0.414E-06	0.127E+11
0.414E-06		0.682E-06	0.790E+10
0.682E-06	-	0.112E-05	0.873E+10
0.112E-05	-	0.185E-05	0.931E+10
0.185E-05	-	0.306E-05	0.976E+10
0.306E-05		0.504E-05	0.102E+11
0.504E-05	-	0.107E-04	0.157E+11
0.107E-04		0.290E-04	0.214E+11
0.290E-04	-	0.789E-04	0.214E+11
0.789E-04	-	0.214E-03	0.219E+11
0.214E-03	-	0.583E-03	0.205E+11
0.583E-03		0.158E-02	0.227E+11
0.158E-02	-	0.431E-02	0.247E+11
0.431E-02		0.117E-01	0.256E+11
0.117E-01	-	0.318E-01	0.305E+11
0.318E-01	-	0.865E-01	0.278E+11
0.865E-01		0.183E+00	0.314E+11
0.183E+00		0.302E+00	0.324E+11
0.302E+00	-	0.498E+00	0.362E+11
0.478E+00	-	0.825E+00	0.490E+11
0.825E+00	-	0.135E+01	0.402E+11
0.135E+01	-	0.223E+01	0.431E+11
0.223E+01		0.368E+01	0.356E+11
0.368E+01		0.607E+01	0.183E+11
0.607E+01		0.149E+02	0.754E+10

3. táblázat Neutronspektrum a tartályfal belső szélénél

SPEKTRUM A TARTALYBAN 1/4T

ENERGIALSUPURI	FLUXUS
[MEV]	ENEUTRON/CM**2/SEC1
0-100F-07 - 0-200E-06	0.215E+11
0.200F-06 - 0.414F-06	0.294F+10
0.414E-06 - 0.682E-06	0.265E+10
0.682E - 06 - 0.112E - 05	0.339E+10
0.112E-05 - 0.185E-05	0-411E+10
0.185E-05 - 0.306E-05	0.479E+10
0.306E-05 - 0.504E-05	0.542E+10
0.504E-05 - 0.107E-04	0.894E+10
0.107E-04 - 0.290E-04	0.129E+11
0.290E-04 - 0.789E-04	0.129E+11
0.799E-04 - 0.214E-03	0.136E+11
0.214E-03 - 0.583E-03	0.120E+11
0.583E-03 - 0.158E-02	0.165E+11
0.158E-02 - 0.431E-02	0.205E+11
0.431E-02 - 0.117E-01	0.237E+11
0.117E-01 - 0.318E-01	0.307E+11
0.318E-01 - 0.865E-01	0.213E+11
0.865E-01 - 0.183E+00	0.203E+11
0.183E+00 - 0.302E+00	0.340E+11
0.302E+00 - 0.498E+00	0.381E+11
0.498E+00 - 0.825E+00	0.472E+11
0.825E+00 - 0.135E+01	0.338E+11
0.135E+01 - 0.223E+01	0.291E+11
0.223E+01 - 0.368E+01	0.188E+11
0.368E+01 - 0.607E+01	0.919E+10
0.607E+01 - 0.149E+02	0.376E+10

4. táblázat Neutronspektrum a tartályfalban / 1/4 T-nél /

- 32 -

15H2MFA-STEEL-DISPL 621

			アービード 上海 ふくしょうしょう かいてい あいばれ シア・ドレール やくしょう	
0.10000E-09	0.12964E+03	0.10500E-09	0.12659E+03	
0-11000F-09	0.12375E+03	0.11500E-09	0.12108E+03	
0.12000E-09	0.11799F+03	0.12750E-09	0.11457E+03	
0 175005-09	0 111475+03	0 142505-09	0 10854F+03	
0.15000E-00	0 105475107	0 140005-09	0 102185+03	
0.130000-07	0.103432403	0.10000L 07	0.1V210E+V3	
0.1/000E-09	0.99218E+02	0.18000E-09	V. 76477E+U2	
0.19000E-09	0.93990E+02	0.20000E-09	0.91889E+02	
0.21000E-09	0.89511E+02	0.22000E-09	0.87499E+02	
0.23000E-09	0.85616E+02	0.24000E-09	0.83431E+02	
0.25500E-09	0.81011E+02	0.27000E-09	0.79143E+02	
0.28000E-09	0.77079E+02	0.30000E-09	0.74549E+02	
0.32000E-09	0.72253E+02	0.34000E-09	0.70158E+02	
0.36000E-09	0.68234E+02	0.38000E-09	0.66461E+02	
0.40000F-09	0.64625E+02	0.42500E-09	0.62751E+02	
0.45000E-09	0.61031E+02	0.47500E-09	0.59445E+02	
0 50000E-09	0 579745+02	0.52500F-09	0.56612E+02	
0.50000L 07	0 55770E+02	0 57500E-09	0 541485+02	
0.JJUUUE-07	V.JJJJJJJ7E+V2	0.07000E-00	0 51470E102	
0.80000E-09	0.3272JE+02	0.03000E-07	0.010/715:02	
0.66000E-09	0.5051/E+02	0.89000E-07	V. 47431ETV2	
0.72000E-09	0.48249E+02	0.76000E-09	0.46995E+02	
0.80000E-09	0.45835E+02	0.84000E-09	0.44/551+02	
0.88000E-09	0.43749E+02	0.92000E-09	0.42809E+02	
0.96000E-09	0.41925E+02	0.10000E-08	0.40996E+02	
0.10500E-08	0.40030E+02	0.11000E-08	0.39131E+02	
0.11500E-08	0.38289E+02	0.12000E-08	0.37311E+02	
0.12750E-08	0.36229E+02	0.13500E-08	0.35236E+02	
0.14250E-08	0.34321E+02	0.15000E-08	0.33340E+02	
0.14000E-08	0.32313E+02	0.17000E-08	0.31375E+02	
0.18000E-08	0.30516E+02	0.1900CE-08	0.29723E+02	
0.20000E-08	0.28989E+02	0.21000E-08	0.28306E+02	
0 220005-00	0 274705+02	0 23000E-08	0.27074F+02	
0.22000E-00	0.2/0/0E102	0 255005-08	0 254185+02	
0.24000E-00	0.20000L+V2	0.20000E-00	A 34775E103	
0.27000E-08	0.230276+02	0.20000E-00	0.243/JET02	
0.30000E-08	0.235/3E+02	0.32000E-08	0.228496+02	
0.340002-08	0.2210001702	0.30000E-00	0.213/06+02	. ,
0.38000E-08	0.2101/E+02	0.40000E-08	0.204306+02	
0.42500E-08	0.19843E+02	0.45000E-08	0.19300E+02	
0.47500E-08	0.18798E+02	0.50000E-08	0.18333E+02	
0.52500E-08	0.17902E+02	0.55000E-08	0.17500E+02	
0.57500E-08	0.17123E+02	0.6000E-08	.0.16737E+02	
0.63000E-08	0.16342E+02	0.66000E-08	0.15975E+02	
0.69000E-08	0.15631E+02	0.72000E-08	0.15257E+02	
0.76000E-08	0.14861E+02	0.80000E-08	0.14494E+02	
0.84000E-08	0.14153E+02	0.88000E-08	0.13835E+02	
0.92000E-08	0.13537E+02	0.96000E-08	0.13258E+02	
0.10000E-07	0.12964E+02	0.10500E-07	0.12659E+02	
0.11000E-07	0.12375E+02	0.11500E-07	0.12108E+02	
0.12000E-07	0.11799E+02	0.12750E-07	0.11457E+02	
0-13500F-07	0.11142E+02	0.14250E-07	0.10854E+02	
0 15000E-07	0 10543E+02	0.16000E-07	0.10218E+02	
0 17000E-07	0 99218E+01	0 18000E-07	0.94499F+01	
0 100005-07	0 93990E+01	0.200005-07	0.91669E+01	
0 21000E-07	0.005115101	0 220005-07	0 974995+01	
0.21000E-07	0.054145101	0 240005-07	0 074715+01	
0.23000E-07	0.010102102101	0.27000E-07	0.701///	
0.2000E-07	0.010112+01	0.2/000E-0/	0 745405104	
0.28000E-07	0.77079E+01	0.30000E-0/	0.74347E+UI	
0.32000E-07	0./2253E+01	0.34000E-07	0./0158E+01	5
0.36000E-07	0.68234E+01	0.38000E-07	0.66461E+01	
0.40000E-07	0.64625E+01	0.42500E-07	0.62751E+01	

5. táblázat

0.45000E-07 0.50000E-07 0.55000E-07 0.60000E-07 0.72000E-07 0.72000E-07 0.80000E-07 0.88000E-07 0.96000E-07 0.10500E-06 0.11500E-06 0.12750E-06 0.16000E-06	0.61031E+01 0.57976E+01 0.55339E+01 0.52925E+01 0.50517E+01 0.48249E+01 0.45835E+01 0.43749E+01 0.41925E+01 0.38289E+01 0.36229E+01 0.34321E+01 0.32313E+01	0.47500E-07 0.52500E-07 0.57500E-07 0.63000E-07 0.69000E-07 0.76000E-07 0.84000E-07 0.92000E-07 0.10000E-06 0.12000E-06 0.13500E-06 0.15000E-06 0.17000E-06	0.59445E+01 0.56612E+01 0.54148E+01 0.51679E+01 0.49431E+01 0.46995E+01 0.44755E+01 0.42809E+01 0.40996E+01 0.39131E+01 0.37311E+01 0.35236E+01 0.33340E+01 0.31375E+01
0.20000E-06	0.28989E+01	0.21000E-06	0.28306E+01
0.22000E-06	0.27670E+01	0.23000E-06	0.27074E+01
0.24000E-06	0.26383E+01	0.25500E-06	0.25618E+01
0.27000E-06	0.25027E+01	0.28000E-06	0.24375E+01
0.30000E-06	0.23575E+01	0.32000E-06	0.22849E+01
0.34000E-06	0.22186E+01	0.36000E-06	0.21578E+01
0.38000E-06	0.21017E+01	0.40000E-06	0.20436E+01
0.42500E-06	0.19844E+01	0.45000E-06	0.19302E+01
0.47500E-06	0.18847E+01	0.50000E-06	0.18426E+01
0.52500E-06	0.18005E+01	0.55000E-06	0.17583E+01
0.57500E-06	0.17162E+01	0.60000E-06	0.16756E+01
0.63000E-06	0.16403E+01	0.66000E-06	0.16051E+01
0.89000E-08 0.76000E-06 0.84000E-06 0.92000E-06	0.15399E+01 0.14848E+01 0.14212E+01 0.13585E+01 0.13585E+01	0.72000E-08 0.80000E-06 0.88000E-06 0.96000E-06 0.96000E-06	0.15288E+01 0.14524E+01 0.13899E+01 0.13274E+01 0.12755E+01
0.11000E-05	0.12504E+01	0.11500E-05	0.12254E+01
0.12000E-05	0.11942E+01	0.12750E-05	0.11603E+01
0.13500E-05	0.11306E+01	0.14250E-05	0.11008E+01
0.15000E-05	0.10660E+01	0.16000E-05	0.10288E+01
0.17000E-05	0.10019E+01	0.18000E-05	0.97613E+00
0.19000E-05	0.95038E+00	0.20000E-05	0.92465E+00
0.21000E-05	0.90233E+00	0.22000E-05	0.88467E+00
0.23000E-05	0.86703E+00	0.24000E-05	0.84500E+00
0.25500E-05	0.81854E+00	0.27000E-05	0.79863E+00
0.28000E-05	0.77940E+00	0.30000E-05	0.75376E+00
0.32000E-05	0.72813E+00	0.34000E-05	0.70416E+00
0.36000E-05	0.68646E+00	0.38000E-05	0.66937E+00
0.40000E-05	0.65014E+00	0.42500E-05	0.62887E+00
0.45000E-05	0.61235E+00	0.47500E-05	0.59857E+00
0.50000E-05	0.58479E+00	0.52500E-05	0.57101E+00
0.55000E-05	0.55724E+00	0.57500E-05	0.54559E+00
0.80000E-05 0.66000E-05 0.72000E-05 0.80000E-05	0.53451E+00 0.51032E+00 0.48510E+00 0.46304E+00	0.83000E-05 0.69000E-05 0.76000E-05 0.84000E-05	0.52241E+00 0.49822E+00 0.47386E+00 0.45222E+00 0.45119E+00
0.96000E-05 0.10500E-04 0.11500E-04 0.12750E-04	0.42711E+00 0.42711E+00 0.42126E+00 0.41510E+00 0.32328E+00	0.12000E-04 0.11000E-04 0.12000E-04 0.13500E-04	0.42434E+00 0.41818E+00 0.40918E+00 0.37539E+00
0.14250E-04	0.35749E+00	0.15000E-04	0.33799E+00
0.16000E-04	0.32658E+00	0.17000E-04	0.31758E+00
0.18000E-04	0.30859E+00	0.19000E-04	0.29959E+00
0.20000E-04	0.29218E+00	0.21000E-04	0.28635E+00
0.22000E-04	0.28052E+00	0.23000E-04	0.27469E+00

5. táblázat / folyt. /

			and a state of the state of the	
0 240005-04	0 947415+00	0 25500E-04	0 259775+00	
0.24000E-04	0.207416700	V.2.0000E 04	0.207712.00	
0.27000E-04	0.25484E+00	0.28000E-04	0.24894E+00	
0-30000F-04	0.24107E+00	0.32000E-04	0.24623E+00	
A 7/000F 0/	0 704005100	0 7/000E 04	A 415705100	<u>S.</u>
0.34000E-04	0.32499E+00	0.30000E-04	0.41030E+00	
0-38000E-04	0.50560E+00	0.40000E-04	0.60700E+00	
0 405005 04	A 14470ELAA	0 450005-04	0 547415+00	
0.42500E-04	V.044/7E+VV	0.400000-04	0.04/412100	
0.47500E-04	0.43634E+00	0.50000E-04	0.32527E+00	
A EDEADE AA	A 917915100	0 550005-04	0 194215+00	11
0.323002-04	0.21/012+00	OBJOUCUL OF	V. LOOZICIVV	1.
0.57500E-04	0.18501E+00	0.60000E-04	0.18371E+00	E.
0 43000E-04	0.18228E+00	0.44000F-04	0.18085F+00	
V.00000C 04		a monastr of		de
0.67000E-04	0.17826E+00	0.72000E-04	0.1/1/5E+00	
0.74000E-04	0.164128+00	0.80000F-04	0.15650E+00	
O DIOGOE OI	A 440070.0A	0 00000F 04	A 1495AF100	
0.84000E-04	0.1488/E+00	0.880006-04	0.142306+00	1
0.92000E-04	0.14145E+00	0.96000E-04	0.14098E+00	14
0 100005-07	0 140AEE+00	0 10500E-07	0 139975+00	ŧа
0.100002-03	V.1404JE+00	0.100000 00	0.10/0/1100	
0.11000E-03	0.13930E+00	0.11500E-03	Q.14446E+00	
0 12000E-03	0.15867F+00	0.12750E-03	0.17574F+00	
0 1 7 F O O F O 7	0.100076.00	C ALACAC AT	A 0401AC 104	
0.13500E-03	0.19279E+00	0.14250E-03	0.20910E+00	
0.15000E-03	0.20184F+00	0.16000E-03	0.17284E+00	2.5
0 170005 07	A 417/7E.AA	A LOADAE AT	A 1114000000	14
0.1/000E-03	0.143636+00	0.18000E-03	0.11442E+00	in i
0.17000E-03	0.99816E-01	0.20000E-03	0.98193E-01	1
0 210005-07	A BASISE AT	0 220005-03	A PAPASE-AL	14
0.21000E-03	0.703036-01	0.220001-03	V. TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	11
0.23000E-03	0.93325E-01	0.24000E-03	0.91855E-01	14
0 25500E-03	0 913105-01	0.27000E-03	0-90907E-01	5
		A TRACAT AT	0 0011FF 01	141
0.28000E-03	0.90419E-01	0.30000E-03	0.90145E-01	11 1
0.32000F-03	0.94223E-01	0-34000E-03	0.99544E-01	ð
A TIAAAE AT	A 10/0/E.AA	0 70000F 07	A 11A10510A	, *
0.30000E-03	V.10486E+00	0.330002-03	0.110102+00	
0.40000E-03	0.11679E+00	0.42500E-03	0.12528E+00	
0 45000E-07	0 171945100	A 475005-07	0 175495+00	
0.4000E-03	0.131746.400	0.47JOOL 03	0.1000/0100	
0.50000E-03	0.15151E+00	0.52500E-03	0.30351E+00	
0 55000E-03	0.492425+00	0.57500F-03	0.48174F+00	
	0 00000C.00	0.07000E 00	A 444751A4	
0.80000E-03	0.389//E+00	0.83000E-03	0.1116/E+01	
0.66000E-03	0.13653E+01	0.69000E-03	0.16428E+01	
A 70000F 07	0 107155101	0 7/0005-07	0 374775+01	
0.72000E-03	0.177132+01	0.780002-03	0.234226101	
0.80000E-03	0.27125E+01	0.94000E-03	0.31740E+01	
A 99000E-07	0 794445+01	0 92000F-03	0 457075+01	
0.000000 00	0.000046.001	V. / LOUVE VO	V. HOY VEL . VI	
0.9600CE-03	0.52740E+01	0.10000E-02	0.60657E+01	
0.10500E-02	0.69363E+01	0.11000E-02	0.73588E+01	
A 115005-00	A 77011ELA1	A 12000E-02	0 477745+01	
0.110002-02	V.73011E-VI	ValzOVVE VZ	0.077342101	. a.
0.12750E-02	0.59957E+01	0.13500E-02	0.52568E+01	
0 14250E-02	0.51270F+01	0.15000F-02	0-52152E+01	
A 1/AAAF AA	A ETHIATIA	A 17AAAF AA	A FAILAFIAI	
0.18000E-02	0.53160E+01	0.1/000E-02	0.34168E+01	
0.18000E-02	0.55051E+01	0.19000E-02	0.55803E+01	18 -
0 200005-02	0 544455+01	0 21000E-02	0 57401E+01	-
0.200000-02	0.J080JE-01	0.21000E 02	0.3/4/10.01	5.
0.22000E-02	0.58243E+01	0.23000E-02	0.59108E+01	
0.24000F-02	0 404115+01	0 25500E-02	0.41974F+01	
	0.004112.01	0.200002 02		
0.27000E-02	0.63281E+01	0.28000E-02	0.64886E+01	
0.30000E-02	0.69085E+01	0.32000E-02	0.74455E+01	
A 74000E 00	A 0157/5.01	0 7/000F 00	0 0007/5101	
0.34000E-02	0.81534E+01	0.36000E-02	0.900782+01	
0.38000E-02	0.93545E+01	0.40000E-02	0.94802E+01	
0 42500E-02	0 041075+01	0 450005-07	0 975935+01	
	V./DI/ZLIVI	V. 40000L 02	V. // 000E. 01	
0.4/500E-02	0.10016E+02	0.50000E-02	0.11261E+02	
0.52500E-02	0.12725E+02	0.55000E-02	0.14150E+02	
A ETEAAT AA	A 15/A05:40	0 400005 00	0 170015100	
V. J/JUVE-02	0.13007E+02	0.000000-02	V.1/221E+02	
0.63000E-02	0.19852E+02	0.66000E-02	0.23192E+02	
0.620005-02	0.265325+02	0.720005-02	0.304285+02	
	A TIOUREIVA	a accore an	A 777AAP.AA	
0./6000E-02	0.34867E+02	0.80000E-02	0.3//08E+02	
0.84000E-02	0.34768E+02	0.88000E-02	0.30672E+02	
0 020005-02	0 267605102	0 940005.00	0 225045102	
V. 72000E-02	V.20/07E-02	V. 70000 V.	VILLUTTUL	
0.10000E-01	0.18080E+02	0.10500E-01	0.16312E+02	
0.11000F-01	0-15750F+02	0.11500F-01	0.15189F+02	
A 10000 AT	0 1//07E.07	A TUMENE AT	A 47//AP.AC	
0.12000E-01	0.1448/E+02	0.12/SOE-01	U.13060E+02	

tábázat / folyt. /

35 -

$\begin{array}{c} 0.13500E-01\\ 0.15000E-01\\ 0.17000E-01\\ 0.21000E-01\\ 0.23000E-01\\ 0.25500E-01\\ 0.25500E-01\\ 0.32000E-01\\ 0.36000E-01\\ 0.45000E-01\\ 0.45000E-01\\ 0.45000E-01\\ 0.55000E-01\\ 0.55000E-01\\ 0.55000E-01\\ 0.55000E-01\\ 0.66000E-01\\ 0.72000E-01\\ 0.80000E-01\\ 0.80000E-01\\ 0.80000E-01\\ 0.80000E-01\\ 0.10500E+00\\ 0.11500E+00\\ 0.12750E+00\\ 0.12750E+00\\ 0.14250E+00\\ 0.12750E+00\\ 0.14250E+00\\ 0.16000E+00\\ 0.20000E+00\\ 0.22000E+00\\ 0.22000E+00\\ 0.38000E+00\\ 0.38000E+00\\ 0.38000E+00\\ 0.38000E+00\\ 0.52500E+00\\ 0.57500E+00\\ 0.57500E+00$	0.13122E+02 0.11966E+02 0.3745E+01 0.69783E+01 0.65084E+02 0.16742E+03 0.24298E+03 0.24298E+03 0.16325E+03 0.30804E+02 0.74477E+02 0.67376E+02 0.67376E+02 0.67890E+02 0.67890E+02 0.77444E+02 0.10725E+03 0.13653E+03 0.13653E+03 0.13655E+03 0.12742E+03 0.12742E+03 0.21099E+03 0.12742E+03 0.22169E+03 0.22169E+03 0.22169E+03 0.22169E+03 0.22682E+03 0.22682E+03 0.22682E+03 0.27353E+03 0.26478E+03 0.26478E+03 0.27353E+03 0.273582E+03 0.273582E+03 0.35949E+03 0.35949E+03 0.35949E+03 0.35949E+03 0.35959E+03 0.41584E+03 0.35949E+04 0.12595E+04 0.12595E+04 0.12595E+04 0.12595E+04 0.12595E+04 0.12595E+04 0.12595E+04 0.12595E+04 0.12595E+04 0.12592E+04 0.12	0.14250E-01 0.16000E-01 0.20000E-01 0.22000E-01 0.22000E-01 0.24000E-01 0.27000E-01 0.30000E-01 0.34000E-01 0.42500E-01 0.42500E-01 0.57500E-01 0.57500E-01 0.57500E-01 0.57500E-01 0.76000E-01 0.76000E-01 0.10000E+00 0.12000E+00 0.15000E+00 0.15000E+00 0.15000E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.25500E+00 0.55000E+00 0.55000E+00 0.55000E+00 0.55000E+00 0.55000E+00 0.55000E+00 0.55000E+00 0.55000E+00 0.55000E+00 0.55000E+00 0.55000E+00 0.55000E+00 0.55000E+01 0.27000E+01 0.25000E+01 0.27	0.12696E+02 0.11391E+02 0.97195E+011 0.27756E+02 0.11159E+03 0.21409E+03 0.21474E+03 0.21474E+03 0.21474E+03 0.21474E+02 0.7708E+02 0.67638E+02 0.67638E+02 0.67638E+02 0.67638E+02 0.68183E+02 0.92316E+02 0.12218E+03 0.12521E+03 0.12521E+03 0.10398E+03 0.10398E+03 0.80239E+02 0.96359E+02 0.96359E+02 0.96359E+02 0.96359E+03 0.13426E+03 0.15723E+03 0.26249E+03 0.15723E+03 0.26249E+03 0.26578E+03 0.26578E+03 0.2659E+03 0.37469E+03 0.29294E+03 0.29294E+03 0.37469E+03 0.37469E+03 0.37469E+03 0.37469E+03 0.37469E+03 0.38218E+03 0.38218E+03 0.38012E+03 0.38012E+03 0.38012E+03 0.38012E+03 0.38012E+03 0.38012E+03 0.38012E+03 0.38012E+03 0.38012E+03 0.38012E+03 0.38012E+03 0.395889E+03 0.395889E+03 0.77986E+03 0.77986E+03 0.10629E+04 0.11456E+04 0.11491E+04 0.14472E+04 0.14474E+04 0.1	5
0.44000E+01	0.14601E+04	0.45000E+01	0.14490E+04	
0.46000E+01	0.14381E+04	0.47000E+01	0.14364E+04	
0.48000E+01	0.14570E+04	0.49000E+01	0.14785E+04	

. táblázat / folyt. /

0.50000E+01	0.15002F+04	0.51000F+01	0.15218E+04
0.000000001	0 4 E 6 / / E . O /	A E7000E 101	A 157045104
0.52000E+01	0.15466E+V4	0.530002401	0.13/846+04
0.54000E+01	0.16105E+04	0.55000E+01	0.16425E+04
0 540005401	0 147475+04	0 570005101	0 170515+04
0.33000000101	0.10/436+04	V. J/ VVVL · V1	V.17001L104
0.58000E+01	0.17158E+04	0.59000E+01	0.17191E+04
0 400005+01	0 17229E+04	0 41000F+01	0.17271E+04
0.000000.01	V=1/22/LIV4	0.01.0002.01	0.172/12.04
0.62000E+01	0.17302E+04	0.63000E+01	0.17300E+04
0 440005+01	0 17240F+04	0.45000F+01	0.17204E+04
0.040000.01		a /700000.01	0 170005.04
0.66000E+01	0.1/145E+04	0.37000E+01	0.1/088E+04
0.48000F+01	0.17033E+04	0.69000E+01	0.16930E+04
a 7000000.01	A 1 (D (D F) A (A 71000E.01	A 1705/5104
0.70000E+01	0.16749E+04	0.71000E+01	0.17056E+04
0.72000F+01	0.17188E+04	0.73000E+01	0.17318E+04
a 740005.01	C 476645106	0 750005101	0 175615104
0.74000E+01	0.1/4416+04	0.700002401	V.17JOILTV4
0.76000E+01	0.17681E+04	0.77000E+01	0.17801E+04
0 700005+01	0 170055+04	0 700005+01	0 179995+04
0.700000000	V.1//VJL104	0.770001.101	V.177002.04
0.80000E+01	0.18072E+04	0.81000E+01	0.18155E+04
0.82000F+01	0.18239E+04	0.83000E+01	0.18323E+04
0.000000101	A 10407E104	0 050005+01	A 10401E+04
U.84000E+UI	0.1840/6+04	0.83000E+01	U. 16471E+04
0.86000E+01	0.18733E+04	0.87000E+01	0.17207E+04
0.000005.01	0 10/075104	0 000000.01	0 201505404
0.88000E+01	0.170035704	0.870002-01	0.201372+04
0.90000E+01	0.20632E+04	0.91000E+01	0.20575E+04
0 920005+01	0.20101F+04	0.93000F+01	0.20147F+04
A ALAAAE AT	A 40 M / A M · A /	A DEADAE AT	A. 107175.A.
0.94000E+01	0.19/49E+04	0.95000E+01	U.19/1/E+04
0.96000F+01	0.19334E+04	0.97000E+01	0.19305E+04
A 00AAFIA4	0 100755.04	0 000005104	0 1000000404
V. 78000E+01	V.18735E+04	0.77000E+01	V.107076704
0.10000E+02	0.18552E+04	0.10100E+02	0.18530E+04
0 102005+02	0 191975+04	0 103005+07	0 181455404
VIIVEVVETVZ	V. LOLO/ETV4	V.LVOVVETV2	01101006104
0.10400E+02	0.19400E+04	0.10500E+02	0.19500E+04
0.10600F+02	0-19600F+04	0.10700F+02	0.19600F+04
A 4AMAAM AM	A 4070000 . 0 .	A IAMAAR . AM	A 100000.01
0.10800E+02	0.19/00E+04	0.10900E+02	0.19800E+04
0.11000F+02	0.19900E+04	0.11100E+02	0.19900E+04
A 11000F100	0 200005104	0 117005100	0 201005104
0.112006402	0.20000E+04	0.11300E+02	0.201006-04
0.11400E+02	0.20200E+04	0.11500E+02	0.20200E+04
0.11400E+02	0 203005404	0 11700F+02	0.20300F+04
0.110000102	V.2.0000L.04	V.II/VULIVE	
0.11800E+02	0.20400E+04	0.11900E+02	0.20400E+04
0.12000F+02	0.20500F+04	0-12100F+02	0.20500F+04
0.12200E+02	0.20600E+04	0.12300E+02	0.20600E+04
0.12400E+02	0.20600E+04	0.12500E+02	0.20700E+04
0.12600F+02	0.20700F+04	0-12700F+02	0.20800F+04
	A AAAAA	A 400000 . 05	A 040445.44
0.12800E+02	0.20800E+04	0.12900E+02	0.20700E+04
0.13000E+02	0.20900E+04	0.13100E+02	0.21000E+04
0 172005102	0 210005+04	0 133005+02	0 211005+04
ValozVVETVZ	VILLVVVLTV4	A JAMAAM AT	A MARAAM A
0.13400E+02	0.21100E+04	0.13500E+02	0.21200E+04
0.13600F+02	0.21200E+04	0.13700E+02	0.21300E+04
A 17000EL00	0 217005104	0 130005+00	0 214005104
0.13800E+02	Vo 21300E+04	V.10700ETU2	VILLAVUETV4
0.14000E+02	0.21400E+04	0.14100E+02	0.21500E+04
0 142005+02	0 215005+04	0 143005+02	0.21500F+04
Vala VVCTVL	A ALEANDER OF	A ALECAPICA	A ALEADYCLIVI
0.14400E+02	0.21500E+04	0,14500E+02	0.21300E+04
0.14600E+02	0.21600E+04	0.14700E+02	0.21600E+04
A 1400AFIA0	A 01/AAm 1A4	A 140AAELAD	0 214005104
0.14800E+02	V. 21000E+04	U.14YUUE+U2	V.21000E+04
0.15000E+02	0.21600E+04	0.15100E+02	0.21700E+04
0 152005+02	0 217005+04	0 153005+00	0.217005+04
A THEVALIVE.	A DITACT AT	A JERAARIAT	A BAMAAP. A
0.15400E+02	0.21700E+04	0.15500E+02	0.21/00E+04
0.15600E+02	0.21700E+04	0,15700E+02	0.21800E+04
A 15000FLAG	0 010005104	0 150005+00	0 210005104
V. 10000E+02	V. 21000E+04	VALJ7UVE TUZ	ValioVVE+V4
0.16000E+02	0.21800E+04	0.16100E+02	0.21800E+04
0.162005+02	0.21800F+04	0.16300F+02	0.21800F+04
A 4///AP. AM	A CHOADE A	A 4/EAAM AA	A 313000.04
0.10400E+02	0.21800E+04	0.1000E+02	0.21/00E+04
0.16600E+02	0.21700E+04	0.16700E+02	0.21700E+04
0.168005+00	0 217005+04	0 169005400	0.212005+04
A 1 TAAAF AF	A MAMAAM A	A AMAGAM AM	A ALLIVVL VY
0.17000E+02	0.21700E+04	0.17100E+02	0.21600E+04
0.17200E+02	0.21600E+04	0.17300E+02	0.21600E+04

5. táblázat /folyt./

5. táblázat A 15H2MFA tartályacél dpa-hatáskeresztmetszet függvénye / számitás a DAMSIG81 alapján /

6. Táblázat

A VVR-SzM-beli fluxusmérések, a SABINE-3 számitások és dpa-számitások összefoglalása

 $[\Phi] = \frac{\text{neutron}}{\text{cm}^2 \text{sec}}$

Mennyiség	VVR-SzM 163. csatorna	VVER-440 próbatestlánc helye	VVER-440 tartályfal ¢T	VVER-440 tartályfal 1/4 T
∮ /totális/	5,72.10 ¹³	1,36.10 ¹³	8,23.10 ¹¹	4,60.10 ¹¹
∲ /E>O,1 MeV	2,87.10 ¹³	3,40.10 ¹²	2,89.10 ¹¹	2,38.10 ¹¹
<pre><σ_d>[barn] E>0,1 MeV</pre>	847,4	556,0	667,1	558,1
[1/sec] ^R dpa	2,43.10 ⁻⁸	1,89.10 ⁻⁹	1,93.10 ⁻¹⁰	1,33.10 ⁻¹⁰

- 39

