TK 156. 4.51

ÉZSÖL GY. MARÓTI L. PERNECZKY L. SZABADOS L. TÓTH I. TROSZTEL I. VERTES P. VIGASSY J.

BALESETHEZ VEZETŐ ÜZEMZAVARI ÁLLAPOTOK VIZSGÁLATA A PAKSI ATOMERŐMŰ BALESETELHÁRÍTÁSI INTÉZKEDÉSI TERVÉNEK (BEIT) ELKÉSZÍTÉSÉHEZ

Hungarian Academy of Sciences

CENTRAL RESEARCH INSTITUTE FOR PHYSICS

BUDAPEST

KFKI-1982-11

BALESETHEZ VEZETŐ ÜZEMZAVARI ÁLLAPOTOK VIZSGÁLATA A PAKSI ATOMERŐMŰ BALESETELHÁRÍTÁSI INTÉZKEDÉSI TERVÉNEK (BEIT) ELKÉSZÍTÉSÉHEZ

Ézsöl Gy., Maróti L., Perneczky L., Szabados L., Tóth I., Trosztel I., Vértes P., Vigassy J.

> Központi Fizikai Kutató Intézet 1525 Budapest 114, Pf. 49

> > HU ISSN 0368 5330

KIVONAT

A tanulmány összegzi a BEIT kidolgozása céljából a KFKI AEKI Termohidraulikai és Reaktorfizikai Osztályain végzett azon vizsgálatokat, amelyek a Paksi Atomerőmü három hipotetikus baleseti helyzetében a primerkörből kikerülő aktivitások meghatározására irányultak. Attekintést ad az alkalmazott számitási modellekről, kiindulási feltételekről, analizálja az egyes baleseti helyzeteket, és közli a számitások legfontosabb eredményeit.

Bevezetés

A Paksi Atomerőmü üzembe helyezése magával hozza, hogy országos intézkedési terv kidolgozására van szükség balesetet, kifejlődött esetben zónaolvadást eredményező üzemzavar esetére. A Balesetelháritási Intézkedési Terv /BEIT/ kidolgozásának elősegítésére megvizsgáltuk néhány, zónaolvadásra vezető hipotetikus üzemzavar időbeli lefolyását a KFKI AEKI Termohidraulikai és Reaktorfizikai Osztályán rendelkezésre álló számitógépi programok segítségével. A kódok a folyamatok követését a hermetikus tér határáig tették lehetővé.

A vizsgált, igen kis valószinüséggel bekövetkező üzemzavarok a következők voltek:

- a/ villamosenergia betáplálás megszünésével együtt fellépő szabályozó kazetta kivetődés azzal a súlyosbitással, hogy a reaktor biztonságvédelmi rendszere sem müködik;
- b/ villamosenergia betáplálás megszünésével egyidejüleg bekövetkező közepes méretű primer köri csővezeték törése;
- c/ végül kisméretű primer köri csővezeték törése hasonlóképpen a villamosenergia betáplálás egyidejű kimaradásával.

A számitások azzal járulnak hozzá az intézkedési tervek kidolgozásához, hogy lehetővé teszik – a hütőközeg elvesztését, az üzemanyag burkolatok felhasadását, majd a zóna olvadását kisérő – aktivitás-kikerülés sebességének becslését, valamint tájékoztató értékeket szolgáltatnak az üzemzavari folyamatok során az intézkedések megtételére rendelkezésre álló idő vonatkozásában.

A vizsgálatok eredményei egyben felhivják a figyelmet azon folyamat paraméterekre, amelyek rendellenes változása előre jelzése lehet a balesethez vezető állapotok bekövetkezését illetően.

1. Alkalmazott számitási modellek

Mindhárom üzemzavari tranziens kezdeti igen dinamikus szakaszának számitásara a nemzetközileg legjobban elterjedt reaktorbiztonsági programot, a RELAP4 kódot alkalmaztuk. Az l.l ábra szerint alakitottuk ki a primerkör modelljét, amelyben az aktiv zóna egy "VOLUME"-mal és egy "HEAT SLAB"- bal szerepel, ezek a hütőközeg és az üzemanyagrud átlagos paramétereit szolgáltatják. A primerkört összesen 10 térfogat reprezentálja, mig a további 6 térfogat a hidroakkumulátorokat és a hermetikus teret modellezi.

Mivel a RELAP4 -ben a buborékoltató kondenzátor közvetlen modellezésére nincs mód, a 16. sorszámu fiktiv térfogattal és a C6 jelü szeleppel lehet a lokalizáló rendszerben, illetve a helyiségek falán fellépő kondenzáció nyomáscsökkentő hatását szimulálni.

A folyamatokat az első 15-20 sec. során egy kiegészitő forró csatorna modellel is vizsgáltuk, amelynél a zóna 10 axiális részre van felosztva. /Lásd 1.2 ábra./ Az alsó és felső keverőtér /ll. és 12. térfogat/ határfeltételként szerepel. A tranziens vizsgálat során a primerköri analiziskor nyert u.n. "plotrestart" mágnesszalagról olvastuk be a 9. illetve 2. térfogat aktuális paramétereit. Az üzemanyagrudak hőmérsékleteloszlásának, mint kombinált hővezetési és hőátadási feladat eredményénak meghatározására a térfogathoz csatolt 10 "heat slab" szolgál.

A szabályozó kazettacsoport kivetődése üzemzavarnál felhasználtuk a RELAP4 kódba beépitett neutron-kinetikai modellt is, amely egy "CORE SLAB" alkalmazásával pontmodellként szerepel, ennek ellenére az eredmények jó egyezést adtak a LINCUP egydimenziós modelljének eredményével. Ennél az üzemzavari vizsgálatnál a hidroakkumulátorok nem szerepeltek a számitási sémában. A RELAP4 futtatásainál a szekunder kör csak határfeltételként, a gőzfejlesztőben elvont hőteljesitménnyel szerepelt.

A szabályozó kazettacsoport kivetődése üzemzavari állapotban a folyamatot a kezdeti néhány másodpercben – pontosabb számitások elvégzése érdekében – a LINCUP programmal elemeztük, amely axiálisan egydimenziós kapcsolt neutronkinetikai-termohidraulikai kód. A hütőcsatorna modell egy átlagos csatorna üzemének leirását adja. A hütőcsatornában telitéshez közeli állapotu viz-gőz keverék áramlik időben változó módon a reaktor bemeneti keresztmetszetén megadott peremfeltételeknek és a reaktor üzemének megfelelően. A fütőelem hőmérsékletek számitásához a reális geometriát és az üzemi feltételeket vettük figyelembe. A neutronkinetikai modell axiális egydimenziós kétcsoport diffuziós egyenleteken alapszik. A zónakiszáradást követően a fütőelem hőmérséklet számitására a BIOT kódot használtuk. A BIOT egy háromdimenziós időfüggő hővezetési kód, amely határfeltételként a hütőközeg állapotát veszi figyelembe. A feladatot három axiális osztásban oldottuk meg, a teljesitmény axiális eloszlásának megfelelően, azaz három karakterisztikus keresztmetszetben.

A nemzetközi tapasztalatok és gyakorlat alapján az egyes üzemzavari tranziensek lezajlása utáni, hosszu idejű változások leirására nem a lassu futási idejű, nagyméretű számitógépi kódokat használjuk. A lassu változások esetén ugyanis az egyes állapotjelzők idő szerinti deriváltjai majdnem zérust adnak, ezért lehetséges a kvázistacioner tárgyalási mód.

Ezzel az eljárással számitottuk a primer kör leüritését, majd a kifolyással összefüggésben a hermetikus tér viselkedését, végül szekunder oldalról a gőzfejlesztő kiszáradását.

A hütőközeg kiáramlását a primer körből ugy számitottuk, hogy a teljes kört egy tartálynak tekintve - a tartály lefuvatási problémát megoldó egyenleteket használtuk. Csatolási feltételként a kezdeti kiömlés értékére a rövid idejü leirás által /RELAP/ megadott kiömlési értéket tekintettük abban az időpontban, amikor a RELAP számitás befejeződik és áttérünk kvázistacioner számitási módra. A hőfejlődés mértékét a maradványhő időbeli változásából számitottuk.

A tartály-lefuvatás során egyetlen fizikai megkötés, hogy a rendszert telitett állapotunak tekintettük, igy a kis átmérőjü törés esetén telitett gőzt, a nagyátmérőjü törés esetén a kiömlő csonk eléréséig telitett vizet, majd itt is telitett gőzt fuvatunk le. Ez a tárgyalási mód használható az aktiv zóna eléréséig. Ettől kezdve a leürülés mértékével együtt csökken a hőforrásként szereplő térfogat /aktiv zóna/ is, mivel a gőznek átadott hőtől eltekintünk.

A kiáramlott mennyiség ismeretében számithatók a hermetikus tér állapotjelzői. A számitás során komplett hermetikus teret tekintettünk, vagyis figyelembe vettük a kondenzációs torony viztartalmát is. Egyetlen jelentős elhanyagolást tettünk: nem vettük figyelembe a szabad felületeken történő lekondenzálódást. Ezt megtehettük, mivel igy a valódi értékeknél valamivel nagyobb nyomásértékeket kaptunk, ami pesszimális becslésnek felel meg. Az állapotjelzők meghatározására a tömeg- és energia megmaradási egyenleteket használtuk, feltételezve azt, hogy a rendszer telitett állapotban egyensulyba kerül.

Végül röviden ismertetjük a gőzfejlesztő szekunder oldali leürülésének számitását, Ebben az esetben a kiáramlott mennyiséget abból határozhatjuk meg, hogy ismerjük a biztonsági szelep paramétereit és a rendszert mindig telitett állapotunak tekintjük, valamint a lefujás és gőzfejlődés mértéke dinamikus egyensulyban van.

A számitások eredményeit az egyes esetekre külön-külön a megfelelő fejezetekben részletesen elemezzük.

A radioaktivitások meghatározásához a TIBSO programot használtuk, melynek segitségével 123 hasadási termék megfelelő értékei állithatók elő. Kiinduló állapotként egy 10 hónapos névleges teljesitménnyel vett kampány szolgált. Ezt az állapotot a reaktorban lévő össz-aktivitás és a primerköri aktivitás jellemzi. Ez utóbbi a Müszaki Terv szerint megengedett mértékben gáztömörtelen és defektálódott fütőelemekből kiszabadult aktivitás következménye. A programban a csőtörés modellje a következő: a töréskor a primerviz λ időállandóval a hermetikus térbe folyik, majd egy bizonyos idő mulva ujabb fütőelemek válnak gáztömörtelenné, illetve defektálódnak. Teljes aktivitás-tartalmuk a primerkörbe kerül és a kifolyás mértékének megfelelően jut a többletaktivitás a hermetikus térbe. Az eredményeket a program mind a 123 hasadási termékre táblázatosan adja meg. /l.l és l.2 táblázat/

2. Kiindulási feltételek

A feltételek a bevezetőben ismertetettek, a kiindulási adatok a Müszaki Terv megfelelő adatai. A hiányzó adatokat az ERŐTERV és PAV szakértőivel történt megbeszélések alapján vettük fel. Az egyes feladatokra vonatkozó speciális feltételezéseket az adott fejezetben tárgyaljuk.

A RELAP4 l.l ábrán bemutatott számitási modelljéhez tartozó legfontosabb input adatokat két táblázat tartalmazza. A 2.l táblázatban a térfogatok /VOLUME/ geometriai jellemzőit és az állandósult /névleges/ hőtechnikai paramétereit adtuk meg, mig a 2.2 táblázatban a térfogatok közötti kapcsolódások /JUNCTION/, "ablakok" hasonló adatai találhatók. A forró csatorna vizsgálat jellemző kiinduló adatait a 2.3 táblázat foglalja össze. /Meg kell emliteni, hogy az adatok nem egyetlen forró rud és csatorna, hanem ezek**b**ől egy kötegnyi számitására szolgálnak./

A szabályozó kazettacsoport kivetődés számitásánál a következő neutronkinetikai adatokat használtuk a RELAP programban: $\beta/\ell = 170 \text{ sec}^{-1}$

többletaktivitás = 0.7 \$ reaktivitás sürüségfüggése = 0.268 \$/1% változás Doppler-hatás = -2,8 \$/1000 F⁰ A forrócsatorna számitás már természetesen nem a pontkinetikai modell segítségével történt, a relativ teljesitmény értékeket adtuk meg a 3.4 ábrának megfelelően, táblázatosan.

A LINCUP kóddal végzett számítások legfontosabb input adatait a 2.4 táblázat foglalja össze.

A zónakiszáradáskor kialakuló hőmérsékletek meghatározására a BICT kódot alkalmaztuk, mégpedig átlagos, a forrókazetta átlagos és a legjobban igénybevett terhelésű üzemanyagrudakra. Feltételeztük, hogy a folyadékszint alatti rudszakaszok telitési hőmérséklet közelében vannak, az axiálisan fokozatosan szárazra kerülő részek közül három jellemző axiális osztásra végeztünk el számitásokat, ezek a rudvég közelében lévő, 0.41 értékü J.0 és a maximális 1.4 axiális egyenlőtlenségi tényezővel jellemzett helyek.

A kiindulás előbbiek szerinti adatait a 2.5 táblázat tartalmazza. A folyadékoldali határfeltételként a telitett gőzhütésnek megfelelő 6 w/m² k hőátadási tényezőt használtuk, amikor azonban a hütőközeg szint a zónamagasság 10% alá csökkent, a további gőzfejlődést elhanyagolva adiabatikus felhevülést számoltunk.

A TIBSO programrendszer olyan adatbázissal rendelkezik, amely biztositja

- nukleáris és egyéb adatkönyvtárak összeállitását;
- nukleáris technológiai folyamatokat leiró differenciál egyenletek együtthatóinak meghatározását;
- az egyenletek megoldását különböző kiinduló feltételek mellett;
- izotópeloszlással való manipulációt pillanatszerű változások esetén;
- aktivitás dózis és egyebek meghatározását a számitott izotópeloszlásból.

Esetünkben a TIESO kód alkalmazásához a 2.6 táblázatban található kiinduló feltételeket használtuk fel.

3. Szabályozó kazettacsoport kivetődés

A szabályozó kazettacsoport hajtás reaktorfedélen való kivezetésének törése esetén fellép annak lehetősége, hogy az adott kazetta a primerköri nyomás hatására ki ve tődik és helyére a végéhez kapcsolódó fütőelemköteg huzódik be. Az igy bevitt C.7 Ø többlet-reaktivitás által okozott rövididejű hatások vizsgálata képezte a feladat első részét,mig a második részben a primerkör hosszuidejű viselkedésére kerestűk a választ a következő feltételek mellett:

- a biztonságvédelmi és szabályozórendszer nem működik;
- villamosenergia betáplálás nincs,

A rövididejü folyamatok részletes vizsgálatát a LINCUP programmal végeztük, a következő feltételekkel:

a./ a kazetta állandó sebességgel 0.2 sec alatt fut át az aktiv zónán;

b./ a hütőcsatorna rácspontkiosztása a 3.1 ábrának megfelelően 35 egyenlő hosszuságu szakaszt határol. A neutronikai számitások ezeken az alappontokon tulmenően reflektorban lévő rácspontokat is felhasználnak;

c./ a belökődés kezdő időpontját követő l.l sec-ben következik be a teljes áramkimaradás és kb. 30 sec időállandónak megfelelően csökkenni kezd a hütőcsatorna belépő vizforgalma. A számitásokban a belépő vizhőmérséklet megváltozásával nem számoltunk.

A számitások eredményei a következőket mutatják:

a./ A belökődés 0.2 sec időtartamán belül az aktiv zónában a teljesitmény nem egyenletesen változik és igy a fluxus-alak torzul, ahogyan az a 3.5 ábrán látható.

b./ A teljesitmény maximuma a belökődés időpontjának végéhez közel alakul ki, majd gyorsan lecseng és a kibocsátott energia sem jelentős: 3.2, 3.3 ábra.

c./ A fütőelemhőmérsékletek /3.6, 3.7 ábra/ 2.5 sec körül érik el maximális értéküket. A 3.3 ábrából, ahol a RELAP eredményeit is feltüntettük, az is látható, hogy a LINCUP-ban alkalmazott közelités /a belépőhőmérséklet állandó/, lényegesebb eltérést csak kb. 10 sec után okoz.

A teljesitmény gyors csökkenését a következő fizikai folyamatok magyarázzák: a fluxuscsucs maximális amplitudóját főként a prompt- és késő neutronpopulációk azon aránya jelöli ki, amely az l Ø alatti reaktivitásu állapotokhoz egyértelmüen hozzárendelhető. A Doppler visszacsatolás felépülése gyorsabban csökkenti a teljesitményt, mint ahogyan a későneutron populáció fejlődésnek indulhatna. Nagyobb idők esetén a Doppler visszacsatolás szerepét a hütőközeg visszacsatolásai veszik át.

A primerkör hosszabbidejű viselkedését a RELAP kóddal számoltuk, a neutronkinetikai opció felhasználásával. A főkeringető szivattyuk kifutása, valamint a turbina gyorszárás 2 sec mulva következik be.

A 3.3 ábra szemlélteti a két különböző programmal kapott eredmények jó egyezését a zóna átlagos paramétereivel számolva a tranziens kezdeti szakaszában.

A RELAP4 kóddal elvégzett forrócsatorna számitás eredményei azt mutatják, hogy a folyamat elején még a legjobban igénybevett fütőelemeknél sem alakul ki burkolatsérüléshez vezető hőfizikai állapot. A 3.41 ábra szerint az üzemanyagrud maximális hőmérséklete /az 5 jelú slab középponti hőmérséklete/ a kezdeti 2030 C^O -ról 2 sec alatt 2232 -re nő, azonban ezután a teljesitménynek megfelelően gyorsan csökkenni kezd és a 23. másdopercben már 1200 C⁰ alá esik. Ugyanezen ábrán felrajzolt burkolathőmérsékletek azt tanusítják,hogy a 10. sec tájékán átmenetileg fellép a hőátadási krizis, de a teljesen ki nem alakuló gőzdugót a nyomáskülönbség a csatornából kilöki, igy a maximális burkolathőmérséklet nem haladja meg a 700 C⁰-ot. Ez a folyamat a 20. sec után amikor az üzemanyag átlaghőmérséklete már leesett, kisebbnagyobb mértékben megismétlődik, amit a gőztartalom 3.42 ábra szerint változása is jól szemléltet.

A 3.4 ábrán bemutatott hosszuidejű teljesitménygörbe és nyomástartó viselkedés jól szemlélteti a folyamat egyes fázisait. A primerköri hütőközeg hőmérséklete /3.8 ábra/ a gőzfejlesztésben fokozatosan romló hőátadás következtében egyre emelkedik, és ez a telitési hőmérséklet elérése után együtt jár a nyomás növekedésével. A szekunderoldali nyomás a folyamat első 10 mp-ében eléri a lefujási nyomás értékét, ettől kezdve a gőzfejlesztő biztonsági szelepe hol visszazár, hol ujra nyit. /3.10 ábra/. Eár a moderátorhőmérséklet növekedésével a reaktorteljesitmény erősen csökken, 60 másodperc táján elérjük a nyomástartó bizton-sági szelepeinek megszólalási nyomását /3.9 ábra/. A nyomástartó szintje a zónában létrejövő gázképződés következtében ugyancsak emelkedik és az 57. sec-ban eléri a maximumot. A nyomástartó biztonsági szelepein keresztül a buborékoltató kondenzátorba lefujt viz-gőz elegy nagy menynyisége következtében ez utóbbi a 87. sec-ben eléri lefujási nyomását, és ezentul a kiömlés hözvetlenül a hermetikus térbe történik. A primerkörből lefujt hütőközeg, és a hőmérséklet növekedése következtében a teljesitmény tovább csökken, emiatt nemcsak a biztonsági szelep zár vissza, de a nyomás még tovább is csökken. Ezután a folyamat a fejlődő és a gőzfejlesztőben elvont hőmennyiségnek megfelelő nyomásszinten hosszu időre szinte állandósul, a zónából a hőelvonás természetes cirkuláció utján történik. Drasztikus változás a gőzfejlesztők kiszáradása után, 9000 sec táján következik be: a primernyomás a megszünő hőelvonás következtében ismét a lefujási értékre emelkedik fel és a primerköri vizszint csökkenni kezd. A hermetikus tér nyomása és hőmérséklete ezzel párhuzamosan nőni kezd, a 3.17 és 3.18 ábra szerint. A zóna kiszáradása csaknem 5 óra multán kezdődik meg.

A leürités folyamatát, vagyis a hütőközeg folyadéktérfogatának és az elgőzölgéssel elvitt hőnek csökkenését a 3.13 ábra mutatja. Az időskála kezdőpontja egybeesik az aktiv zóna felső szintjéig történő leürülés időpontjával. A szabályozó-kazettacsoport kivetődésére a felső időskála érvényes. Ugyanezen időskála vonatkozik jó közelitéssel az NA 273-as csővezeték törésére is, mig az NA 108-as csőtöréshez az alsó skála tartozik. Az ábráról leolvasható, hogy a folyadékszint mikor éri el az egyes axiális keresztmetszeteket, igy bejelöltük azokat a keresztmetszeteket, amelyekre a BICT számitásokat végeztük. A három különböző terhelésű fütőelemrud /amelyekkel azonos, vagy nagyobb terhelésű rudak részaránya a zónában 0,49 1,25 ill. 48.3 %/ felhevülésének időbeli változását az emlitett keresztmetszetekben mutatják a 3.14, 3.15 és 3.16 ábrák folytonos görbéi. Ezekről olvastuk le a burkolatfelhasadásra választott 900 C⁰, illetve az ur**á**noxid 2800 C⁰-os olvadáspontja elérésének időpontjait. /Lásd 3.1 táblázat/.

A primerkör és a hermetikus helyiség aktivitásváltozását a burkolatfelhasadásig a 3.19 ábrán mutatjuk be, a különböző mértékü burkolatsérülés során felszabaduló aktivitásokat a 3.1 táblázat tartalmazza,

4. Az NA 273 x 20 mm-es reaktortartály előtti hidegági csővezeték törése

A feladathoz előirt feltételek:

- villamosenergia betáplálás nincs,
- diesel nincs,
- aktiv zónahütés nincs,
- szekunder oldali betáplálás nincs,
- turbina gyorszárás működik.

Számitási eljárásban használt kiegészitő feltételek: az l. Fejezetben leirt általános feltételeken kivül a számitásokat ugy végeztük, hogy csak két hidroakkumulátor müködik a lehetséges négy közül.

Számitási eredmények rövid ismertetése: a 4.1 ábrán a primerköri nyomás időbeli változása látható a tranziens alatt a folyamat első 150 másodpercében. A nyomás a nagy átmérőjü törés következtében rendkivül gyorsan csökken, majd stabilizálódik azon az egyensulyértékén ahol a törésen kiáramló és a fütés miatt fejlődő gőzmennyiség egyensulyt tart. Ugyanerre az ábrára rajzoltuk fel a hidroakkumulátorok nyomásváltozását is. Nyomon követhető a hidroakkumulátorok müködésének kezdetétől /kb. 20. sec/ a nyomás, amely lassabban csökken a rendszernyomásnál. Emiatt a befecskendezett vizmennyiség nő. Ezt a folyamatot mutatja a 4.1 ábrára felrajzolt H2 szintgörbe is. Itt a 20.-tól kb. a 90. sec-ig táplál be vizet a hidroakkumulátor. Végül ezen az ábrán tüntettük fel a gőzfejlesztő szekunderoldali viztérfogat csökkenését a biztonsági szelep nyitásától annak zárásáig /kb. 25. sec/, valamint a nyomástartó vizszintváltozását is. A biztonsági szelep zárásának oka, hogy a primerköri nyomás a szekunderköri alá csökken és emiatt megszünik a gőzfejlődés.

A primerköri nyomásváltozás hatására a törésen kiáramló hűtőközegmennyiséget az idő függvényében mutatja a 4.2 ábra. Az ábra legkarakterisztikusabb része 150-170 sec között van, ahol a reaktortartály kiömlő csonkot a vizszint eléri és ettől kezdve a kiömlő közeg gőz halmazállapotu. Innentől kezdve a kritikus kiáramlás és gőzfejlődés egyensulyban tartja a rendszert a viztérfogat egyenletes csökkenése mellett, a nyomás stabilizálódásának megfelelően.

A zóna felső szintjének elérésekor, 882 sec-nál ismét a 3.13 ábra szerint kezdődik a zóna kiszáradási folyamata, a 3.14, 3.15 és 3.16 ábrák szolgáltatják a fütőelemcsoportok sérülési időpontjait.

A környezetre a csőtörés a hermetikus térbe kiáramló hütőközeg és az azzal együtt kijutó aktivitáson keresztül fejti ki hatását, ezért legfontosabb, hogy a folyamat során meghatározzuk a hermetikus térállapot-jelzőit.

A 4.3 - 4.5 ábrákon a hermetikus tér nyomás- és hőmérsékletváltozása látható a tranziens folyamán, A számitásokhoz komplett hermetikus teret vettünk figyelembe, tehát a kondenzációs torony viztartalmának hatását is. A termohidraulikai egyensulyba kerülő rendszer – amint az a számitásokból jól látható – sehol sem haladja meg paramétereiben a megengedett értékeket.

A 4.6 és 4.7 ábra hermetikus térbe kijutó áktivitás mértékének alakulását mutatja a burkolatfelhasadásig. A különböző mértékü burkolatsérülés során felszabaduló aktivitásokat a 4.1 táblázat tartalmazza. A forrócsatorna analizist ebben az esetben is elvégeztük, amely szerint forráskrizis nem lép fel, azaz a burkolathőmérséklet a legjobban igénybevett rudnál a folyamat kezdeti szakaszán a kezdőérték közelében marad.

5. Az NA 108 x 9 mm-es primerköri csővezeték törése

A nyomástartóhoz a nyomásszabályozás céljára az egyik primerköri hurok hidegágából kiindulva NA 108 x 9 mm-es cső csatlakozik. E cső törését vizsgáltuk azzal a feltételezéssel, hogy közvetlenül a térfogatkompenzátornál törik el és lényegében csak egy oldalon, a kompenzátor felől történik kifolyás, mivel a befecskezdezés mértékét szabályozó szeleprendszer a másik oldalról történő kifolyást elhanyagolható mértéküre korlátozza. A négy hidroakkumulátor közül hármat /hideg oldalon csak egyet/ tekintettünk aktivnak a számitásainkban.

A folyamat első szakaszában a primerköri nyomás az 5.1 ábra szerint esik le a telitési értékig, ezután a gőzfejlesztő hőelvonása és a térfogatkompenzátor vizszintjének változása befolyásolja a primerkör paramétereit. A turbina gyorszáró müködése miatt a gőzfejlesztő szekunder-oldalán a nyomás gyorsan nő és a biztonsági szelepek nyitnak. A főkeringető szivattyuk kifutásával közel arányosan csökken a primerkörből elvont hőmennyiség mindaddig, amig a primeroldali nyomás a szekunder oldali nyomás alá nem esik. Ez a hidroakkumulátorok belépése után következik be. Közben a térfogatkompenzátorban a folyadékszint emelkedik és a gőzpárna a kiáramlás eredményeként elfogy, igy a nyomástartó szerepe megszünik. Az akkumulátorok üzembelépésekor ezek veszik át a nyomásszabályozó szerepét, a primerköri nyomás átmeneti tranziense – amelyet a hideg vizbefecskendezés okoz – után az akkumulátorok nyomásához igazodik. Ezzel magyrázható, hogy a vészhűtés folyadékárama alacsony értékre esik vissza /5.2 ábra/ és lényegében a hidrosztatikus nyomáskülönbségnek, illetve a "megnyomott" térfogatkompenzátorból kiáramló vizáramnak felel meg, valamint, hogy a folyamat e szakasza 520 sec-ig elhuzódik. Az akkumulátorok golyós szelepének lezárása után a rendszernyomás leesik és ekkor viz helyett ismét gőz áramlik ki a törésen, azaz ismét gőzpárna jelenik meg a térfogatkompenzátorban.

A folyamat ezután következő szakasza kvázistacionernek tekinthető: a maradványhőnek megfelelő gőzmennyiség távozik a rendszerből, a rendszernyomás lassu növekedése után 17 bar-on stabilizálódik, miközben a folyadékszint a primerrendszerben fokozatosan csökken 11385 sec-nál éri el a zóna tetejét.

A leürités a 3.13 ábra alsó időskálája szerint megy végbe, mig 3 3.14, 3.15 és 3.16 ábrákon a szaggatott görbék mutatják a különböző hőterhelésü rudcsoportok egyes axiális keresztmetszetében a felhevülés folyamatát.

A zóna fokozatos kiszáradása következtében az 5.l táblázat szerint történik a burkolatfelhasadás, illetve üzemanyag megolvadás,

A folyamat során a hermetikus térbe kiömlő hütőközeg a tér nyomását és hőmérsékletét az 5.3 – 5.5 ábra szerint emeli meg. A nyomás maximális értéke jóval alatta marad a Müszaki Terv szerint megengedett értéknek. A primerkörbe és a hermetikus helyiségekbe jutott aktivitás mértékét a burkolatfelhasadásig az 5.6 ábra mutatja.

ISDIDPE	CENS: TY	ACTIVITY	ISCTOPE	DELSTTY	ACTIVITY:	ISOTOPE	DENSITY A:	CTIVITY	
350330	4.55:86E 2	1 3.58686E	06 360831	1.31327E	2 3.584356 96	350840	6.5316CE 20 6.4	2558E 06	
350351	2.93738E 2	21 1.05799E	07 360850	1.91139F	24 1.053306 05	350870	5.45366E 19 1.8:	4245E 07	
350370	4.51.02E 2	21 1.80561E	07 310880	1.36647F	22 2.54087E 37	370880	1.439718 21 2.5	4039E 07	
370390	1.63144E 2	21 2.43186E	07 380390	E.04530E	24 3.37033E 37	320900	3.87098E 25 8.0	32375 35	
390900	9.79169E 2	1 7.9184CE	05 380910	7.80249E	2 4.175338 37	390911	4.897668 21 3.05	5773E 37	
39099:	1.10115E 2	5 4.06216E	07 380920	1.92146E	2 2.848118 37	390920	2.66131E 22 3.34	4810E 07	
39093:	2.54756E 2	2 4.37152E	07 400950	1.312625	2= 4.353388 37	410951	1.52301E 22 8.8	0877E 05	
4 095:	6.56(91E 2	4 4.16231E	07 400770	1.4CE75E	23 4.340488 17	41 3971	1.32374E 20 4.15	5011E 07	
4:0770	1.02550E 2	2 4.32372E	07 420990	5.58165F	23 4.407346 37	430991	4.31462E 22 3.7	4822E 07	
430990	3.38:01E 2	5 0.0	449000	7.65678F	24 0.0	441010	3.63082E 25 0.0		
441020	7.55871E 2	4 0.0	449030	1.03414F	22 5. 573738 34	451031	1.02018E 19 5.5	7717E 04	
451030	7.85112E 2	24 (.0	421010	1.91032E	2 4.104258 07	431010	1.84070E 21 4.1;	0425E 07	
421 2:	1.2(1.31E 2	1 3.25489E	07 451050	3.58353F	2 5.131598 36	451060	2.67949E 22 1.4	5235E 00 1	1
441 6:	2.70115E 2	4 3.68895E	04 454070	1.05008E	2 1,52273E jb.	471130	1.03233E 20 1.01	1279E 05 +	_
48113:	7.30:41E 2	1 (.c	501270	T. 53813E	2 1 32545E 36	511270	3.278728 22 1.3	2545E 06 F	-
521271	1.56: 37F 2	3 3.438775	05 521270	3.15101F	21 1.752366 36.	501280	5.09606E 20 2.7%	LC35E 06 1	1
5:1281	5.71:76E 1	9 2.54803E	06 511280	3.52414F	20 1.994455 35	511290	5.25258E 21 6.40	4505E 06	
521290	1.41140E 2	1 6.44(32F	06 531290	5.62482F	24 0.9.	531300	8.91269E 20 3.54	1325E 05	
531310	1.15553E 2	4 3.10745F	07 531301	7.172965	18 8.442588.35	521291	3.51685E 23. 2.3	0972E 06	
5 1300	1.51226F 2	1 1.41181F	07 521310	2.48550F	2 3:107458 17	511310	1.430918 21 1.91	3356E 07	
521311	1.30116F 2	2 2.90150F	06 521321	5.103825	2 3 393358 17	531320	1 50005F 22 3 3	2335E 17	
51133	1.97 CBF 2	3 4.93802F	07 541330	1,193825	24 6 994328 17	551330	3.10992E 25 0.0		
551340	1.24881F 2	5 3.54392F	06 551350	8 29443F	2	551360	6.83499E 23.1.1	3978E 07	
521340	6.70337F 2	1 4.98224F	07 534340	C. 58106F	2- 5.570958 37	531350	5.70824E 22 4.4	27746 07	
541350	1.991 86E 2	2 1.12095F	07 541351	(.63265E	2 1,328328 37	551370	4.25213E 25 8.4	5973E 05	
541380	1.89897F 2	1 4.20340F	07 551380	4.34430F	2: 4.203406 07	551390	1.24791E 21 4.3	170BE 07	
561393	1.28:68F 2	2 6.733085	07 569466	2.691.95	24 6.556068 17	571400	3.52702F 23 4.5	5636E 07	
55141	2.58:62F 2	1 4.482925	07 574445	5 27156F	2 6 482 928: 17	581410	6 70418F 24 4 4	7547F 17	
54420	1 42.225 2	1 6.033475	07 574420	1 24356F	2 6 333175 37	571430	1 98194F 21 4 44	17175 07	
58148:	2. 86: 28F 2	3 4 417195	07 594431	2.68F16F	24 4 295398 37	591440	1 2785CF 21 2.3	1820E 17	
6.1437	3.33.13E 2	5 6.0	589440	5.80534F	25 2 206228: 32	591450	3.51813F 22 3.01	5172F 07	
6-1450	2.53.595 2	5 (.0	584461	1.068605	21 2 332775 17	599460	1.86384F 21 2.3	52705 07	
5-1470	1.021.425 2	4 2.011535	07 614474	3.831515	2' E 71927E 15	611481	1.68705F 23 8.7	1834F 15	
6-1401	2. 65. 735 2	3 2.606465	07 614500	1 451475	20 2 BA663E 15	621500	1 72333E 23 0 0		
62151-	2 23:315 2	3 4 575295	03 624520	F 354325	27 ()	521530	4 285805 22 4 71	1012E 15	
611520	7 21:325 2	3 (6	634540	- 54.598r	2 5 73334F 14	63 9 55 0	4 645425 23 5 21	LPIZE aL	
63156	2 18- 155 2	3 7 1/0775	06 664550	1 730405	2	661560	1 703065 22 0 3		
651591	1.351.525 2	0 0.0	631521	2.000415	17 6 675356 30	631520	1. 103795 30 5.7	10345 00	
521400	7.41:476 2	3 (.0	611480	5.113375	22 2 218225 36	601490	3.08374= 21 9.31	31.56F 35	
6.154-	1.38:755 2	0 7.59888E	06 611510	1.963991	22 7 598885 16	621550	1.665695 19 2.31	5847F 15	
			00 0 0 0 0 0 0 0	1. 1. 0. 3 7 1 4	E		10.0.0.0		

1.1TABLAZAT NORMAL LZEN 10 HONAPOS KAMPANY VESE 120100 LELTAR AZ EP FLTOELEMERREN A TELVES AKTIVITAS: 2.12725E 000 CURIE

ISOTOPE	DENSITY	ACTIVITY	ISOTOPE	DENSITY	ACTIVITY	ISOTOPE	DENSITY ACTIVITY
350830	3.47421E 18	7.53057E 03	360831	3.80670E 18	1.03912E	350840	8.24666E 17 8.11293E 03
360851	2.54528E 19	3.01306E 04	360850	2.15137E 22	1.18616E	3 350870	5.47644E 16 1.85015E 04
360870	7.37674E 18	2,95070E 04	360880	3.08882E 19	5.74353E	370880	3.25438E 18 5.74353E 04
370890	1.63223E 18	3.41887E 04	380890	8.01476E 21	3.35754E	380900	3.85633E 22 8.00449E 02
390900	9.76162E 18	7.88844E 02	380910	7.77294E 19	4.15957E	04 390911	4.87912E 18 3.04615E 04
390910	1.10096E 22	4.04676E 04	380920	1.91418E 19	3,83353E	04 390920	2.65123E 19 3.83353E 04
390930	8.61481E 19	4.35397E 04	400950	1.30764E 22	4.34703E	410951	1.51723E 19 8.77535E 02
410950	6.64158E 21	4,14650E 04	400970	1.40342E 20	4.32404E	4 410971	1.31873E 17 4.13439E 04
410970.	1.02162E 19	4,30735E 04	420990	5,56349E 20	4.39065E	4 430991	4.29827E 19 3.72904E 04
430990	4.10819E 22	0.0	441000	3.38083E 20	0.0	441010	3.91151E 22 0.0
441020	4.54622E 21	0.0	441030	2.53214E 17	1.38925E	00 451031	2.50570E 14 1.37475E 00
451030	2.06227E 22	0.0	421010	1.91255E 18	4.08872E	64 431010	1.83373 E 18 4.08872E 04
421020	1.19975E 18	3.24257E 04	451050	4.52860E 19	6.54811E	3 451060	1.30352E 18 7.11649E 01
441000	2.69793E 21	3.67502E 01	451070	1.05506E 17	1.51701E (3 471130	1.02842E 17 1.00896E 02
481130	7.58315E 19	0.0	501270	7.50958E 17	1.81853E	3 511270	3.26630E 19 1.81853E 03
521271	1.65908E 20	3.42577E 02	521270	3.13908E 18	1,75619E	501280	5.07675E 17 2.73047E 03
511281	5.69212E 16	2,538388 03	511280	3.51079E 17	1.90721E	511290	5.23268E 18 6.42063E 03
521290	1.41303E 18	6.41590E 03	531200	6.30826E 22	0.0	531300	3.99566E 17 1.61986E 02
531310	1.16209E 22	3.12509 F 05	531301	3.09463E 15	1.05385E	521291	3.50350E 20 2.30095E 03
511300	1.60615E 18	1.40646E 04	521310	2.47922E 18	3.09568E	04 511310	1.42549E 18 1.92634E 04
521311	1.59808E 19	2.88950E 03	521320	5 . 08449E 20	3.38050E	04 531320	3.08921E 19 6.98828E 04
531330	1 21712E 21	3 04609E 05	541330	1 31686E 22	5 40978E	5 551330	4 95723E 23 0 0
551340	7:24222E 21	2.05522E 03	551350	1.76429E 19	0.0	551360	2.01742E 22 4.36473E 05
521340	6.67798E 18	4.96336E 04	531340	1.37128E 19	8, 11649E	04 531350	2.03807E 20 1.58088E 05
541350	7.68944E 20	4.30428E 05	541351	7.23224E 18	1.44840E	551370	4.64290E 23 9.24815E 03
541380	2.06559E 19	4.57221E 05	551380	4 . 7 2642E 19	4.57313E	5 551390	1.33955E 18 4.63411E 04
561390	1.37350F 19	5.04855 04	561400	2.08429 = 21	4.54878 F	04 571400	3.51367 F 20 4.54877 E 04
561410	2.57383E 18	4.46594E 04	571410	3.25917E 19	4.46594E	04 581410	6.67877E 21 4.45853E 04
561420	1.41583E 18	4.01790E 04	571420	1,23885E 19	4.01790E	571430	1.97354E 18 4.40046E 04
581430	2.85143E 20	4,40046E 04	591430	2.75181E 21	4.39546E	591440	1.20658E 18 2.17836E 04
601430	3.89253E 22	0.0	581440	2,88440E 22	2.19838E	591450	3.50481E 19 3.05013E 04
601450	2.90754E 22	0 • 0	581460	1.06456E 18	2.37367E	591460	1.85678E 18 2.37367E 04
601470	1.02552E 21	2.00392E 04	611470	1.51328E 22	3.44374E	03 611481	2.19499E 20 1.13309E 03
611490	1.02563E 20	1.00623E 04	611500	2.15051E 15	4.14408E	621500	3.11580E 18 0.0
621510	2.55682E 21	1.80359E 01	621520	7.82299E 20	0.0	621530	1.15471E 19 1.27954E 03
631530	9.76761E 20	0.0	631540	1.11177E 20	4.11657E	631550	1.40368E 20 4.59041E 01
631560	7.51905E 18	1.07096E 02	641550	1.58386E 19	0.0	641540	1.30955E 18 0.0
631510	8.21091E 18	0.0	631521	1.82857E 15	1.02301E	631520	3.35909E 17 1.00692E-02
621490	5.20916E 21	0.0	611480	4.54942E 19	1.83206E	03 601490	3.07200E 18 9.27919E 03
601510	1.3751E 17	3,58525 = 03	611510	1.95655E 19	3.58525E	621550	1.05938E 10 2.33432E 02

1.2 TÁDI, NORMAL UZEM 10 HONAPOS KAMPANY VEGE IZOTOP LELTAR A PRIMERKORBEN, TELJES AKTIVITAS 5.23791E 06 CURIE

Sor-	Р	T	V	А	d _e .	h	h'	Н
szam	bar	c°	m ³	m ²	m	m	m	m
1.	123.76	281.22	10.14	3.38	0.008596	3.0	3.0	- 4.35
2.	122.93	295.60	42.81	6.80	1.88	6.19	6.19	- 1.35
3.	122.60	295.60	2.66	0.193	0.496	2.45	2.45	- 0.25
4.	121.80	282.40	10.08	0.70	0.0132	3.32	3.32	1.08
5.	122.93	267.00	3.94	0.193	0.496	2.93	2.93	- 1.85
6.	122.60	295.60	13.30	0.965	0.496	1.90	1.90	- 0.25
7.	121.80	282.40	50.40	3.50	0.0132	3.32	3.32	1.08
8.	122.93	267.00	19.70	0.965	0.496	2.93	2.93	- 1.85
9.	124.26	267.10	50.35	3.12	0.332	9.04	9.04	- 8.44
10.	122.59	326.28	44.00	4.52	2.40	9.75	5.50	2.20
11.	1.0	30.0	52340.	474.8	0.	23.74	0.015	- 8.45
12.	60.0	40.0	70.45	7.045	0.	10.00	6.00	2.88
13.	60.0	40.0	0.0852	0.0426	0.	3.00	3.00	- 0.116
14.	60.0	40.0	70.45	7.045	0.	10.00	6.00	2.88
15.	60.0	40.0	0.0852	0.0426	0.	1.596	1.596	1.283

2.1 Táblázat. RELAP-4 számitási modell input adatai - VOLUME

- 13

1

Sorszám	from	to	P/C	G kg/sec	A m ²	d m ^e	H m
1.	9	1	_	9339.0	3.12	0.008596	- 4-35
2.	l	2		9339.0	3.12	0.008596	- 1.35
3.	2	3		1556.5	0.193	0.496	1.40
4.	3	4	-	1556.5	0.193	0.496	1.08
5.	4	5	- Pl	1556.5	0.193	0.496	1.08
6.	5	9	+ Pl	1556.5	0.193	0.496:	0.0
7.	2	6	-	7782.5	0.965	0.496	1.40
8.	6	7	- /	7782.5	0.965	0.496	1.08
9.	7	8	- P2	7782.5	0.965	0.496	1.08
10.	8	9	+ P2	7782.5	0.965	0.496	0.0
11.	3	10	-	0.	0.0684	0.	2.20
12. {	9 10	11 11	Cl Cľ	0. 0.	0.0426 0.00636	0. 0.	0.0 11.64
13.	12	13	C4	0.	0.0426	0.	2.88
14.	13	9	C2	0.	0.0426	0.	0.0
15.	14	15	C5	0.	0.0426	0.	2.88
16.	15	2	C3	0.	0.0426	0.	1.40

2.2 Táblázat. RELAP-4 számitási modell input adatai - JUNCTION

- 14 -

		V	OLUME			НЕ	ATSLA	В
Sor- szám	p bar	T C ^O	www.m ³ v	h m	H m	V s m ³	A _s m ²	N _r MW/MW
1.	124.17	267.2	0.00257	0.320	- 4.35	0.00262	1.1526	0.0001
2.	124.07	270.4	0.00334	0.416	- 4.030	0.00340	1.4974	0.1257
3.	123.98	277.9	0.00167	0.208	- 3.614	0.00170	0.7487	0.1042
4.	123.91	284.1	0.00167	0.208	- 3.406	0.00170	0.7487	0.1200
5.	123.85	290.5	0.00167	0.208	- 3.198	0.00170	0.7487	0.1251
6.	123.79	296.7	0.00167	0.208	- 2.990	0.00170	0.7487	0.1191
7.	123.70	304.6	0.00334	0.416	- 2.782	0.00340	1.4974	0.2000
8.	123.57	312.2	0.00334	0.416	- 2.366	0.00340	1.4974	0.1291
9.	123.45	316.7	0.00334	0.416	- 1.950	0.00340	1:4974	0.0766
10.	123.22	318.6	0.00149	0.184	- 1.534	0.00152	0.6696	0.0001
11.	124.26	267.1	0.1278	9.04	- 8.44		-	-
12.	122.93	295.6	0.1203	6.19	- 1.35	-	-	-

JUNCTION: A = 0.008046 m² d_e = 0.008935 m G = 23.955 kg/sec CORE SLAB: $r_1 = 0.003848$ m $r_2 = 0.003908$ m $r_3 = 0.004559$ m N = 8.329 MW 2.3 Táblázat. Forró csatorna input adatok. - 15

2.4 Táblázat

A LINCUP kód bemenő adatai

Időlépcső

Axiális rácskiosztás

Radiális rácspontok szám a pelletben Kétcsoport reaktorfizikai állandók

0.5 g/kg bórkoncentrációnak megfelelő tényezők:

Doppler hőfoktényező Void tényező

Moderátor hőfoktényező Beáramló hütőviz állandó hőfoka Beáramló hütőviz állandó sebessége Tranziens vizsebesség időállandója • Szabályozóköteg kivetődési ideje Szabályozóköteg teljes értékessége A rés hőellenállása Az UO2 hővezetési tényezője és fajhője C.Ol sec 6.94444 cm 5 KFKI-76-3 riport szerint

0.34.10⁻⁴ /C⁰/⁻¹ -0.1818 -0.54.10⁻³ /C⁰/⁻¹ 267.5 ⁰C 390 cm/sec 30 sec 0.2 sec 0.7 dollár 5.0 cm² ⁰C/watt másodfoku parabolával megadva

2.5 Táblázat

Axiáli Radiál Azimut Hőátad	s osztások is osztá s o ális osztá ási tényez	száma: 1 k száma: 8 sok száma: ő: 6 <u>w</u> ²	, ebből üz bu l <u>att</u> ill.	emanyagban rkolatban 0.0 <u>watt</u>	4 2
Fütő- elem tipū- sa	Axiális telje- sitmény tényező	Radiális üze	teljesitm manyagban,	ényeloszlás W	87.
q	0.41	0.00485	0.03888	0,07778	0.0537
	1.40	0.01191	0.1337	0.2675	0.1319 0.1847
1.35 q	0.41	0.00659	0,05286	0,1057	0.07301
	1.00	0.01608	0.12893	0.2579	0,17807
	1.40	0.02251	0.1805	0,36118	0,2493
1.89 q	0.41	0,00923	0.07401	0.14808	0,10221
	1.00	0.02251	0.1805	0.36118	0.2493

2,6 Táblázat

Mennyiség	Egység	Érték ·
U–235 hasadási hatáskeresztmetszet gyors termikus	barn barn	15. 390.
Térre, időre átlagolt fluxus a zónában		
gyors termikus	n/barn/s n/barn/s	8.1 E-11 2.3 E-11
U-235 magsürüség	atom/cm ³	1.62 E20
Urán térfogat	cm ³	1.627 E7
Fluxus a fütőközegben gyors termikus	n/barn/s n/barn/s	3.12 E-12 8.8 E-13
Gáztömörtelen fütőelemek aránya, normálüzemben	Add of the	0.01
Defektált fütőelemek aránya normálüzemben		0.001
Nemesgázok kiáramlási rátája a gáztömörtelen fütőelemekből	1/s	1. E-5
Halogének kiáramlási rátája a gáztömörtelen fütőelemekből	1/s	1. E-5
Cézium kiáramlási rátája a gáztömöritetlen fütőelemekből	1/s	1. E-5

3.1 Táblázat

Érintett fütő- elemek % -os aránya	Burkolat felhasadás sec	Aktivitás a f a felhasadás Teljes	elhasadt fütőe pillanatában. I ¹³¹	lemekben C _i Sr ⁹⁰	UC ₂ olvadás sec
an - an	1997 I. S. C. S.				
0.49	17650	4.95×10 ⁶	1.47×10 ⁵	3.92×10 ³	19550
1.25	1830C	1.36×10 ⁷	3.75×10 ⁵	1.0 ×10 ⁴	20450
48.3	18500	5.16×10 ⁸	1.34×10 ⁷	3.76×10 ⁵	22020
100.0			b	ecsült	25450

- 19 -

Érintett fütő elemek % —os	1	Burkolat felhasadás	Aktivitás a a felhasadá	olvadás sec		
aránya			Teljes	I ₁₃₁	sr ⁹⁰	
0.49		1634	9.1 ×10 ⁶	1.52×10 ⁵	3.92×10 ³	3030
1.25		1782	2.25×10 ⁷	3.88×10 ⁵	1.0 ×10 ⁴	3934
48.30		1982	8.47×10 ⁸	1.05×10 ⁷	3.76×10 ⁵	4530

٠

4.1 Táblázat

- 20 -

5.1 Táblázat

Érintett fütő elemek % —os	Burkolat felhasadás	Aktivitás a felhasad	a felhasadt fü lás pillanatábai	tőelemekben U n, C _i	O ₂ olvadás sec
aránya		Teljes	I ₁₃₁	5r ⁹⁰	
0.49	12335	6.,14×10 ⁶	1,49×10 ⁵	3.92×10 ³	13730
1,25	12485	1.56x1C ⁷	3.81×10 ⁷	1.0 ×104	14537
48.3	12681	5.86×10 ⁸	1.34×10 ⁷	3.76×10 ⁵	16200
100.0				becsült	19620

- 21

1

VOLUME = 16 JUNCTION = 17 PUMP = 2 CHECK VALVE = 6 HEAT SLAB = 1 HEAT EXCHANGER = 2

1.1. åbra

A VVER-440 közepes csőtörésének számítási modellje RELAP4–MOD3

	v	12 (=V	2)
J 11		V10	S10
J 10			
		V 9	59
19			
		V 8	58
78 ————			
		V 7	S7
J7		V 6	56
7e ——		VE	CE
J 5		CV	55
J 4		V 4	54
12		V 3	53
13			
		V 2	52
J 2			
		VI	51
JI	V	11 (= \	/9)

Forró csatorna számítási modellje RELAP 4-MOD 3

1.2. ábra

Az aktiv hossz poziciókiosztása a LINCUP kódban. 3.1. ábra

3. 2. åbra

- 26 -

3. 3. åbra

- 27

27 -

۰.

- 28 -

3. 6. åbra

- 29 -

3.7. abra

3.8. åbra

1

.

- 31 -

3.9. åbra

- 32 -

10

-

3.10. åbra

0

2

- 34 -

3.11. ábra

3.12. ábra

>

.

3.13. ábra

- 37 -

3.14. ábra

. 17

38

- 39 -

3.17. åbra

3.19. åbra

- 42 -

a state where a state

4.3 ábra

4.4. abra

- 47 -

4.5. abra

4.6. åbra

4.7 ábra

.

500 [sec]

5.3. åbra

*

Constant Constant

the second

.

1

5.5. åbra

5.6. åbra

- 55 -

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Gyimesi Zoltán Szakmai lektor: Gadó János Példányszám: 50 Törzsszám: 82-64 Készült a KFKI sokszorositó üzemében Felelős vezető: Nagy Károly Budapest, 1982. január hó

....

65278