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ABSTRACT

The renormalization group method is extended in case of logarithmic
problems to include the imaginary parts of Green"s functions and vertices,
which have been neglected in the earlier versions of the theory. The rela-
tionship between multiplicative renormalization and scaling of the char-
acteristic energy is demonstrated and is used to investigate the X-ray
absorption and Hondo problems. The properly defined invariant couplings
depend on a single variable, the scaling energy, and are real, as expected
physically. The scaling laws are rederived on this more rigorous basis. It
is shown that the imaginary parts of the Green®s functions and vertices give
no contribution to the scaling laws. In particular in the Hondo problem the
scaling laws obtained earlier remain intact, indicating that in this improved
theory as well the potential scattering is not renormalized and is not coupled
to the exchange scattering.

PES3IOME

JaeTca Takoe o0606wWweHMe mMeToAa rpynmnbl PEHOPMUPOBOK, KOTOpbe B C/y4dae sora-
pUPMUUYECKUX 3afay MNOo3BOMSAET Y4UUTbiBATb MHUMYK 4YacTb (QYHKUMM [pvHa U BEPWMHHLIX
GyHKUMA, KOTOpas He Obia paHblle yuTeHa. [loka3biBaeTCA B3auMOCBA3b Mexay MeTOAOoM
MY/IbTUMNNIMKATUBHOW MEPEeHOPMUPOBKN U CKIMIMHIOM XapaKTepuCTUKOW 3Hepruv. B3awumo-
CBA3b YKa3aHHbIX ABYX MeTOAOB MWCMNO/b3yeTCHA B WCCeA0BaHUAX MO MOr/IOWEHUNI peHTre-
HOBCKUX nydein un appekTy KoHgo. [MpaBunbHO onpegeneHHas 3(peKkTMBHaA KOHCTaHTa
CBA3M 3aBWCUT TONIbKO OT OAHOW MEpPEMEHHOl, OT 3HEepruMm CK3NUHra M sBNsSeTCA BewecT-
BEHHOI KakK OXugaeTCHd Ha OCHOBE (PU3NYECKMX coobpaxeHuii. [JaeTca CTpPOruin BbiBOA
3aKOHOB Moaobusi. [oka3zaHO, 4YTO MHUMAsA 4YacTb (PYHKUMA puHA M BEPWMHHLIX (YHKLWIA
He faeT BK/aga B 3aKOHb nofgobusa. B cnyyae wmccnegoBaHusa no adgpekTy KoHAo cooT-
BETCTBYWWME 3aKOHb NOA06US He WN3MEHAKTCHA B pel3y/bTaTe yyeTa MHUMbIX 4YacTeil, uUTOo
yKa3blBaeT Ha TO,4TO B 3TOW YNy4WEeHHOW Teopuu NOTeHuuasibHOe paccesHue He peHop-
MUPYETCA M OHO He CBA3aHO C OOMEHHbIM B3auMOAeNCTBUEM.

KIVONAT

Logaritmikus problémadk esetén kiterjesztettik a renormalasi csoport-
moédszert a Green-fluggvények és vertexek imaginarius részének figyelembevéte-
lére, mert ezt a korabbi elméletek elhagytak. Megmutatjuk, hogy a multiplika-
tiv renormalas és a karakterisztikus energia skalazasa egyenértéki, s ezt fel-
hasznaljuk a rontgenabszorpcid és a Kondo-probléma vizsgalatara. A helyesen
definialt invarians csatolas csak egy valtozotél, a skalaenergiatol figg, és
valds, ahogyan ez fizikailag varhatd. Levezetjik a skalatdrvényeket ezen az
uj médon. Megmutatjuk, hogy a Green-figgvények és vertexek imaginarius részei
nem adnak jarulékot a skalatdrvényekhez. A Kondo-probléma esetén a korabban
kapott skalatorvényeket kapjuk valtozatlanul. Ebben a javitott elméletben
sem renormalddik a potencialszoras és nem csatoldédik az s-d szoéréassal.



1. Introduction

Multiplicative renormalization and the renorma-
lization group have been first iIntroduced iIn quantum
electrodynamicsl*2 where the divergent charge and
mass corrections have been renormalized to get the
observable finite charge and mass. Since then this
method has been widely used iIn quantum field theory.
The same renormalization group approach has been
applied 1n solid state physics by Abrikosov and
Migdal™ as well as by Fowler and Zawadowski”™ to inves-
tigate infrared divergences in the Hondo problem and
by Zawadowski in the x-ray absorption problem * ,

By analogy with quantum electrodynamics an 'invariant
charge™ was iIntroduced, the energy /or temperature/
dependence of which characterizes the behaviour of
the system. For the Hondo problem this iInvariant
charge is a smooth function of 1ts variable without
any singularity at the Hondo energy EK /or Hondo
temperature V * tending to a finite value at EnO
/or TiO/. As a consequence the low energy or low
temperature /T<£T”/ behaviour of the physical quan-
tities i1s given by power laws.

Another recent attempt to derive scaling laws for
the Hondo problem was made by Anderson et al.O in a

oL o .
sophisticated manner and later by Anderson 1n a



pedestrian way. In the former case the Hondo problem
was fTormulated as a succession of spin flips. The
system’s readjustment after each spin flip can be
described analogously to the x-ray absorption processg-
By making a scale transformation of the characteristic
time elapsing between successive spin flips Anderson

et al. have found scaling laws relating the equivalent
anisotropic Hondo models. These scaling laws have been
rederived by Anderson by scaling the characteristic
energy /cut-off energy/ of the Hondo problem.

The two abovementioned. approaches yielded diffe-
rent scaling laws and led to different conclusions
concerning the equivalent Hondo problems. Zawadow3ki
and the presentauthorlO0 have shown that an extension
of Anderson’s simple scaling 1dea to higher orders
gives the same scaling laws as the renormalization
group method. Inspite of this there i1s still a

disagreement i1n the iInterpretation. The difficulty of

the Hondo problem is that the i1nvariant coupling tends
to infinity or to a value of the order of unity, while
the scaling laws are known for small values of the
invariant coupling only. We are not going to discuss
these two possibilities, a review of our present
understanding of the Hondo problem con be found in the
papers by Andersonll, Powler12 and Zawadowskils- Here
we concentrate our attention to other aspects of re-

normalization and scaling.

The proper definition of the "invariant charge"



or invariant coupling ia not settled in either of
the above mentioned approaches# Though the invariant
charge i1s determined via complex Green®s functions
and vertices, 1t Is expected to be real to have phy-
sically reasonable meaning# Hitherto either the
imaginary parts have been neglected, or the invariant
coupling has been determined In a particular range
of the variables where no Imaginary part exists. The
aim of the present paper is to give an unambiguous
definition of the invariant coupling for logarithmic
problems and to derive the scaling laws by taking
into account the iImaginary parts of the Green®s func-
tions and vertices.

In Sec. Il the relationship between multiplicative
renormalization of the Green"s function and vertices and
scaling of the characteristic energy is discussed for
logarithmic problems. This relationship allows us to
define an invariant coupling which in special cases
coincides with the usual definition. The iInvariant
couplings are determined in Sec. Ill and 1V for the
X-ray absorption problem and the Kondo problem, respec-
tively. They are iIn fact real as it iIs demonstrated
on these two examples and depend on the scaling energy
only. The scaling laws obtained In this way coincide
with those obtained by Fowler and Zawadowski, indica-
ting that the imaginary parts have no bearing on the

scaling laws. By investigating the T matrix of the



Hondo problem it is shown that even If the iInvariant
coupling were known, all the skeleton graphs should
have to be considered to get reliable expressions

for the physical quantities* The discussion of the
results i1s given in Sec* V. The anisotropic Hondo
model is investigated In an Appendix* Here again the
imaginary parts of the Green"s functions and vertices
leave iIntact the scaling laws derived earlier by

S6lyom and ZawadowskKi .

Il. Relationship between multiplicative renormalization

and scaling In logarithmic problems

Multiplicative renormalization is a simple trans-
formation procedure iIn which the Green"s functions,
vertices and coupling constants are multiplied by
real, frequency independent factors, z™* The requirement
that the Dyson equation be satisfied by the original
and transformed quantities as well, gives a relation
between these factors. The arbitrariness in the
choice of the multiplicative factors can be incor-
porated Into the Green®s functions and vertices
themselves by introducing an extra variable Xx , the
variation of which i1s equivalent to different choices
of the z""s* Usually the physical solution corres-
ponds to a particular choice of the dummy variable A,

or to a particular set of the renormalizing factors*



This classical formulation of multiplicative
renormalization was used by Fowler and Zawadowski”
to get scaling laws for the Kondo problem. The
imaginary part of the Green’s function and vertices
has been neglected, however, iIn this treatment. The
same applies to the work of Abrikosov and Migdals-
On the other hand the introduction of the variable
X 1s not unambiguous. These two problems show the
necessity to give a proper definition of the invariant
coupling. This will be done here for logarithmic
problems.

From Anderson’s approach9 to the scaling laws
for the Kondo problem we can infer that the cut-off
energy can serve as a hatural scaling parameter. On
this ground, 1t iIs suggested here that, at least for
logarithmic problems, multiplicative renormalization
can be achieved without iIntroducing the dummy
variable X.

Let us take for i1llustration a system of iInteracting
electrons with bare coupling constant g. The total
Green’s function and the total vertex Is written 1iIn

the form

G ~GO0d ; 2V

- 2.2/



For simplicity the momentum variables are fixed at
the Fermi momentum and only the frequency variables
are retained. If the iInteraction is cut off at an
energy w 0, the Green’s function and vertices depend,
as a rule, on the relative energies co/wcC.
Multiplicative renormalization is formulated

usually as the transformation

/2.3/

r =F /2.4/

/2.5/

where z” is iIndependent of the frequency variable 1o .
In logarithmic problems we can try to avoid the
introduction of an extra variable and to achieve this
multiplicative renormalization by varying the cut-off
goc. Performing a simultaneous change of the cut-off
<00 to ool and the bare coupling constant g to g*, g*

iIs determined from the requirement that

to VA /

- 1)
(O

Wo ' / /

. Ub /2.7/
-4 | UEfo
| o0 * &0 97,

/2 .8/

VvV = .4)

Whether this transformation to the primed vari-

ables can be done with real z* 1s not a priori true



for any problem* Our guess iIs that these relations
can be satisfied for logarithmic problems* Such a
treatment was already presented by Menyhard and the
present authorl”*1” for one-dimensional metallic
systems, where the cut-off energy is iIn fact a good
scaling parameter* We have shown that, at least up
to third order in the coupling constants, the rela-
tions analogous to egs. /2*6/-/2*8/ can be satisfied
with real which are i1ndependent of the frequency
variables. It will be demonstrated here that the
same holds for the x-ray absorption problem as well
as for the Kondo problem*

IT relations /72*6/-/2*8/ are obeyed, the cut-off

dependent g*, the self-consistent solution of the

equation
@ U; <& W 1 O/ w_ 1
- "\ B0 100. w0 17 oY |~ -
% - '3 e O U, w1 i— > 1297
ry o<l 81«133/1311M1/ d "y

is called invariant coupling. Neglecting the iImaginary
parts of the Green*s function and vertices, the deno-
minator of /2.9/ can be normalized to unity at co = to*
and the usual definition of the i1nvariant coupling is

recovered.

1 -4 4) AN, o« *) . /2 .10/

The denominator in eq. /2*9/ will be very important

in what follows to show that g* i1s real and i1ndependent

of the frequencies, as expected. Although N A2



is the combination which is iInvariant under multi-
plicative renormalization, it is in general complex
and the physically meaningful quantity is g*. With
its knowledge several physical quantities can be
calculated by solving a Lie differential equation.

Let A beaphysical quantity which depends on the
relative energy w /jO and obeys multiplicative renorma-

lization, i.e.

1 /2.11/

This equation can be cast iInto a differential form

- T~r o M X o1 M

where x 80j/ioo . According to this Lie equation the
behaviour of A at x iIs governed by the behaviour of
the invariant coupling g* at the same X. Prom a series
expansion of the right-hand side of this equation iIn
terms of the invariant coupling, the iIntegration of
eq- /2.12/ yields a summed up expression for A. This
procedure keeping the first few terms of the series
expansion gives a reasonable approximation iIn that
case only 1f the invariant coupling is small in the
interesting energy range, which, unfortunately, 1is
not true for many problems and therefore only quali-
tative conclusions can be drawn from the results of

this method.



It should be emphasized that the usual multi-

plicative renormalization procedure with iIntroduction

of the extra variable \ 1s more general than the
treatment presented here. In the case of Anderson’s
model of dilute magnetic alloys, for example, where
simple scale transformation can be done approximately
only”, the standard multiplicative renormalization

technique has to be used17-
111, X-ray absorption problem

As a simple example we will treat very briefly
the x-ray absorption problem. The reader is referred
to the papersO* by Nozieres et al. for the physical
problem and for the notations. Furthermore, as above,
the renormalization of the deep-electron Green’s

function, d(w] ad. the reduced vertex [ are defined, by

/3.1/
and

/3.2/
The cut-off energy i1s denoted by in this section.

The vertex will be calculated, In a special case, namely
when the energy of the conduction electrons is fixed
at the Fermi energy and the remaining single variable

iIs the deep-electron energy. It follows from the



10

structure of the Dyson equation that the renorma-

lization equations may have the form

"\
G (to,ioqa 1l- -ZGtw, JO] c™]( Py
muf. mV) =™~ & %To-J_l' /3.4/
Vi = f4 fei *), /3.5/
4 = nZt 4 u /3.6/

First we have to show that these equations can be
satisfied and then its consequences can be explored#
The graphs of the response function or those of
the vertex must not contain deep-electron closed
loops, 1#e# no conduction-electron self-energy has
to be included in these diagrams. In other words the
conduction-electron Green’s function G should remain
unrenormalized in calculating these quantities and
therefore z-~1. For the deep-electron Green’s func-

tion and the vertex we get

duw) = A = yo ~ 4- .t /3.7/

P H - 4- <j4> t , 111

where G M 1is the step function. The self-consistent
solution of eqs. /3.3/-/3.6/ using eqs. /3.7/ and
/3.8/ is

-4 . in Io
NN YO i e /3.9/
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Ny - 4 - A yO/\ eoce / /3.10/

/3.W

The renormalizing factors and the new couplings are

AI
in fact real, though dM and I' are complex. Applying
the Lie equation for the invariant coupling itself,

we get easily

v * / /3.12/
i.e. the coupling is not renormalized iIn the Xx-ray
absorption problem. That is the probable reason why
no

this problem can be solved exactly

The response function

- ~[~fO + b -~ qM]+..,/3.13/

does not satisfy the criterion of multiplicative re-
normalization, neither HCW),which 1s usually
used iIn renormalization theory. This i1s probably due
to the logarithmic nature of Zawadowski1l”
pointed out that the logarithmic derivative of ~ 1is
the proper quantity to be used for such a treatment.

In fact

* <=2 1CArFf . -1TOW 3+ .../3.14/

has good transformation properties. The Lie equation

up to first order and its solution are

/3.15/
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C CE@CI™) WC Ky A /3.16/

with x =u3/”0o. By integrating and determining the
constant of iIntegration from fitting to the perturba-

tional expression, we get

/3.17/

This 1s precisely the result of the self-consistent
treatment of the x-ray absorption problem in the weak
coupling limit. The remarkable feature of the calcu-
lation is i1ts simplicity. The power law singularity
comes out In a natural way.

Analogously we get for the deep-electron Green’s

function
/3.18/

which again corresponds to the result of the self-
-consiatent treatment.

Zawadowski5 used another method to determine the
imaginary part of the Green’s function. He performed
the renormalization for coO where the Imaginary parts

vanish and made an analytic continuation to cj>O.

di(.w0) = p{f U \ /3.19/

and therefore
2 r

d(cj>0) = exp{ -N) -e (-] t /73.20/
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The Green’s function obtained by this procedure has
correct analytic properties# In the weak coupling

limit the same form is reproduced as above#

IV. Scaling in the Kondo problem

In Abrikosov’s20

pseudofermion representation
for the spin operators the Hamiltonian of the Kondo

model 1s

A
The potential scattering term has been included as
in a consistent renormalization procedure V has to
be taken iInto account throughout the calculation
even if 1t 1s put equal to zero at the end.

We can proceed similarly as for the x-ray ab-
sorption problem and perform a multiplicative re-

(>4
normalization of the reduced vertices TI1t

of the conduction-electron Green’s function G and
of the pseudofermion Green’s function .= gad. by
real factors z/.

We assume that multiplicative renormalization
can be achieved iIn this case aswsll, by a change of

the cut-off energy D, 1.e.

/4.3/
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/4.4/

/4.5/

/4.6/

/4.7/

/4.8/

It is not at all trivial that these relations can be
satisftied with real multiplicative factors, indepen-
dent of the frequency variables. We will show that,
at least up to a certain order, this scaling and
multiplicative renormalization are consistent.
Similarly as In the x-ray problem, there i1s no
self-energy correction on the conduction-electron
lines inside any diagram and therefore z”el. The 1iIn-
variant couplings are defined as before, as the

self-consistent solutions of the equations

Again the denominators in egs, /4.9/ and /4.10/ cancel
the imaginary parts and the frequency dependences of
the corresponding numerators. This i1s demonstrated
first for the parquet diagrams. The vertex contribution

is calculated up to third order in two limiting cases,



15

namely when a/ the conduction-electron energy £ or
b/ the pseudofermion energy oo iIs retained as single

variable. In case a/ we have

(?) =\ — 19 ||7|| m 7T) - QT V2 R £
1 . 2
4+ 1 (~ T 1A1) 4. 11/
A | o 1
4- CTT 2> “ 2LirJ £
Tt Aoy TTE
b
Tl » Y * /
-
) T S
r bl -y —1 it 4-M>opH £ _ 7z, Yagw £.
-|,J 1 1 C /412/
- (13 A
4- CIT 1\/ ;l\l SCS -N) bn T L
1 b x -2 .
4 |C| v S S(S-,4) GQV. £ — Ire £? +1j

- I(Z'\/-Ii-4'-..
y o'/

while In case b/

+1YlL>f -~ 0K f 4-__._, M. 13/

P.H - 1+ + frUu 1~ 3) /4 .1V

IS obtained. In the parquet approximation the pseudo-

fermion lines are not renormalized, dM »1 and there-

fore *2el*
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Taking any of these particular choices of the
variables, the same expressions are obtained for
the multiplicative factors z® and for the invariant

couplings:
/4.15/

[4.16/

/4.17/

This fact confirms a posteriori our original
assumption that multiplicative renormalization can
be achieved by scaling the cut-off energy and that
the i1nvariant couplings are iIndependent of the
frequency variables. Inserting eq. /4.16/ into the

Lie equation /2.12/, simple integration gives

/4.18/

This result could have been obtained from
first-order scaling already, 1.e. taking the first
corrections to the iInvariant couplings and solving
the Lie equation in that approximation. This shows
that, as far as the iInvariant couplings are concerned,
first-order scaling i1s equivalent to the parquet
approximation. Unfortunately this is not the case

for the observable physical quantities.
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It 1s noteworthy that by considering the
imaginary parts as well, the invariant couplings
remain intact, while the scattering matrices change
drastically# The spinflip and spin non-flip parts
of the scattering matrix, 'x and t, respectively,

are known in the parquet approximation from the

works of Hamann21 and of Brenig and Gdtze22
T M = /4*19/
ti. © n1
LL0]
V> /4. 20/
= B~n_ [ ? -
+e t *S(S-H)

where the Kondo temperature iIs given by

[4.21/

The scattering amplitudes can be expressed iIn terms

of the iInvariant coupling and we get

\
t
+ Trscs +0 /4.22/
/74.23/
where x =~ _ The logarithmic derivatives of these

expressions are rather involved functions which,
when expanded, include arbitrarily high powers of
J’/x/. Due to these terms, Tirst or second-order
scaling 13 not sufficient for T or t. As the iIn-

variant coupling, J>/1:/ i1s divergent at the Kondo
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energy iIn this approximation! an infinite aeries
summation IS necessary to get non-singular behaviour
for the observable quantities at Tg.

Lower-order logarithmic terms come not only
from the imaginary parts but from the real contri-
butions of non-parquet diagrams as well. Going beyond
the parquet approximation, new corrections will
appear iIn the invariant coupling, too. In caloula-
ting the third-order non-parquet vertex corrections,
we have retained the energy of the pseudofermions,

@ , as single variable.

r.H -4-1 [fy-S(S-H| *v/y] [>~ -~]1v4.25/

In this approximation the pseudofermion line 1is also

renormalized,

dM =U X + /4.26/

The self-consistent solution of eqs. /74.4/-/4.8/,

making use of egs. /4.24/-A .26/, 1s

/4.29/



19

ees], /4.30/

v v /4.31/

The non-parquet diagrams give important contribution

to the Lie equation for the invariant coupling,

V'ui - 0. /4-33/

-

This i1s the same Lie equation as obtained by Abrikosov
and Migdal™ and by Fowler and Zawadowski”, Abrikosov
ad. Migdal§ have calculated, explicitely al3o the term
proportional to J” 1in eq, /4,32/.

Prom the present treatment which I3 more rigorous
than theirs the filLlowing conclusions can be drawn:
scaling of the cut-off energy is equivalent in the
Kondo problem to multiplicative renormalization with
real multiplicative factors; the invariant couplings
are real, the imaginary parts of the Green’s functions
and vertices have no bearing on them and consequently,
as before, the exchange coupling and the potential
scattering are not coupled to each other, the poten-
tial scattering i1s not renormalized.

So far the isotropic Kondo problem ha3 been

investigated, Anderson’s original scaling laws were

derived for the anisotropic Kondo model. Zawadowski
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and the present author*® extended Anderson’s '‘poor
man’s method" to higher orders* The scaling laws
obtained i1n that way agree with eq. /74.32/ in the
isotropic case. Several points of that calculation,
however, have not been clarified completely. One of
them i1s the choice of the renormalized matrix element
of the T matrix. The other problems were connected
with the imaginary parts, which have been neglected
everywhere, and with the choice of the energy va-
riables i1n the scattering matrix. We will show In the

Appendix that a consequent application of the renor-

malization group method yield.3 automatically real
invariant couplings for the anisotropic Kondo prob-

lem, too, and the same scaling laws are obtained as

in Ref. 10.

V. Discussion

In the present paper a simple formulation of the
multiplicative renormalization procedure has been
presented for logarithmic problems. It iIs suggested
that for the Kondo problem, the x-ray absorption
problem and for one-dimensional metallic systems
multiplicative renormalization of the Green’s func-
tions, vertices and coupling constants i1s equivalent

to the scaling of the cut-off energy* In these cases
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there 1s no need to introduce the dummy variable X
and an unambiguous definition of the iInvariant coupling
can be given.

The results of the present paper can be summa-
rized as follows. First, we have shown that scaling
of the cut-off energy and multiplicative renorma-
lization with real factors are iIn fact equivalent for
the Kondo problem and x-ray absorption problem. The
one-dimensional metallic systems have been investi-
gated separatelyl”’1”, where the absence of phase
transition has been demonstrated. It has been shown
that starting from complex Green’s functions and
vertices a real invariant coupling can be introduced
which s i1ndependent of the frequency variables and
depends on the scaling energy only. The described
procedure is applicable to logarithmic problems only.
It seems that the introduction of the dummy variable
\ cannot be avoided in other cases.

Second, we have rederived the scaling laws both
for the isotropic and anisotropic Kondo models by
taking 1Into account the imaginary parts of the
Green’s functions and vertices. It turns out that these
imaginary parts do not modify the scaling laws and
therefore the relations obtained by Abrikosov end
Migdal'™ as well as by Fowler and Zawadowski”™ for the
isotropic case and by Sé6lyom and Zawadowski”™ for the

anisotropic one emerge intact. By this we have put
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the scaling theory of the Kondo problem on a more
rigorous basis.

Provided the invariant coupling Is known, it can
be used iIn the Lie equation to determine observable
physical quantities like susceptibility, resistivity
etc# Ve have shown on the example of the scattering
matrix that, although, i1n principle, the knowledge of
the invariant coupling helps to determine the matrices
x and t, in reality all the skeleton graphs have to
be calculated to get reasonable results. In these
quantities the imaginary part of the parquet diagrams
and the contribution of the nonparquet diagrams are of
the same order of magnitude and they all have to be
taken into account. No reliable theory exists as yet how
to treat this problem. In lack of such a treatment onij
qualitative conclusions can be drawn from the renor-
malization group approach. Por a detailed discussion
of the scaling laws and their consequences the reader
13 referred to the papers of Abrikosov and Migdalg,
Powler and Zawadowski”, Anderson et al.® and Zawad.ow3Kki

and the present authorlO.
Acknowledgements
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Appendix

The anisotropic Hondo Hamiltonian i1s written iIn the

form
2 N s*p h \%
/An/
+ fu N C , C
N2M xWhe . 4
In the particular case S=1/2 the structure of the full
vertex 1Is
< V]
W 4 Pxe V ey
+ N Ps vaxavrE) 2z~ v

For general values of the spin the spin products in
the higher-order terms can not be cast iInto the
simple form of eq. /A.2/ and more 1invariant couplings
ought to be iIntroduced.

The following form i1s supposed for the scaling

equations
I _\ 1
/A.3/
1*. 1 -vD=%'Ur.».b .b .1,
/A_4/
PAAN"N1* N-_. v = rt (u,D,>_. ]1*v),
/A.5/
"=\l x>V ~ u>" 1L, "K wi /A.6/
ro 1*. 1 * - ~ IAe7l

Ut - b | /A.8/
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h /A.9/
VI-: pa :4 'Z’_\4 7N \'/// /A_10/

where, as before, the conduction-electron Green"s

function should not be renormalized and therefore

z-j™. The perturbational result for the pseudofermion
Green®s fTunction and vertices ie

<M =1+ T[]+ + n12=42- [ pv” 4 eee / /n.11/

qdi
e~ C L IX J£ @ T« T ].ﬂ,_'*° / /A-lZ/
r
ru =1- o[iw 5 -CircH] + ~~QOH]
F .13/
401t -Ui -~VIASs- - 6M]+...,
f-H = i—ui* e<q)___ /A,lV

The self-consistent solution of these equations easily

gives

1+ =1t {4 - IxX?2~ 1~ 1 (It 5"

+ 110N 4 *emel}, /A*15/

mix = ]x + + i bi' N 34—, /AN6/

V * V. /A_17/

These expressions yield the same scaling
fief. 10,

laws as in
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I
oy .1 1./A.187
if _
3x X[ e+ teee}, /ALY
svel 4 4 . JA. 20/

These scaling laws have been discussed by Zawadowski
and the present authorlO. Here we want to emphasize
that fact that the imaginary parts of the Green®s
functions and vertices cancel out iIn the iInvariant

couplings, they are real and Independent of co ,
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