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ABSTRACT

Anderson®s pedestrian way of deriving scaling laws for the Kondo
problem, known as "a poor man®s derivation', is analysed. It is shown that
these scaling equations contain only the first term of a series expansion in
powers of the coupling constants. We have constructed a new formulation of
the scaling idea to consider higher order terms. The scaling laws obtained
in the approximation next to that of the "poor man®s derivation”™ indicate
that for low energies the effective coupling tends to a finite value of the
order of unity instead of going to infinity, though no final conclusion can
be drawn from these scaling laws as this result may be altered if further
terms, too, are considered.

PE3IOME

WccnepyeTtca meToh BbiBOAa (OPMY/T 3aKOHOB rogobusa B appekTe KoHAo, paH
Hbli AHgepcoHOM. [loka3biBaeTCsA, 4YTO MNOMyYeHHble AHAEPCOHOM 3aKOoHb nogobusi copep-
XaT TO/IbKO MepBblii YIeH pas3/ioKeHWs MO CTEeneHsAM KOHCTaHTbl cBA3W. [laeTcs HoBas
hopmynmpoBka mgeun nogobus, Mo3BONAWWAA YYeT YJIEHOB BbiCWero nopsagka. 3akoHbl Mo
[obus, nonyyeHHole B NPUBAMXEHUN cneaywlem Mo OTHOWEHUK MNpubnmxkeHnn AHgepcoHa
yKasbiBawT Ha TO, 4YTO 3(PPeKTUBHAsA KOHCTaHTa CBA3M CTPEMUTCHA K 3HAYEeHU0 nopsagka
eVHNLUbl U He K OEeCKOHeYHOCTW, OAHAKO HeNb3sA fefiaTb OKOHYaTesIbHbii BbiBOA O 3Ha-
YyeHn 3PPEeKTMBHON KOHCTaHTbl CBA3U Ha OCHOBE MOJIYYEHHbIX HamMM COOTHOWEHWR, no-
TOMY 4TO 4fneHbl 6osee BLICOKOro nopsigka MOryT U3MEHATb Haw pe3ynbTarT.

KIVONAT

Andersonnak a Kondo-probléma skalatorvényeire adott egyszer(i leveze-
tését vizsgaljuk. Megmutatjuk, hogy az altala kapott skalatorvények csak egy,
a csatoléasi allanddé hatvanyai szerint haladdé sor els6 tagjat tartalmazzak.

A skaléazas uj megfogalmazasat adjuk, mely lehetb6vé teszi a magasabb rendl
tagok fTigyelembevételét is. A legegyszeribb koézelitésen tuli kovetkezb koze-
lit6 lépésben az adddik, hogy kis energidknal az effektiv csatolasi allandé
egységnyi nagysagrendli lesz és nem tart végtelenhez. Végs6 kovetkeztetést
azonban nem lehet levonni, mert a magasabb rendld tagok megvaltoztathatjak ezt
az eredményt.



1. INTRODUCTION

In the development of the theory of the Kondo effect the recent
works of Anderson and his co-workers /Anderson and Yuval 1969, Yuval and
Anderson 1970, Anderson et al 1970, Anderson and Yuval 1971/ opened up a
new field. Anderson and Yuval have shown that the Kondo problem is equivalent
to the thermodynamics of a classical one-dimensional Coulomb gas or to that
of a one-dimensional Ising problem with inverse-square interaction. By making
use of this equivalence, Anderson et al /1970/ were able to derive scaling
laws relating the equivalent anisotropic Kondo problems. Scaling was achieved
by making a time-scale transformation in the expression of the thermodynamic
potential. In the following this scaling will be referred to as thermodynamic
scaling. Similar relations were later obtained by Anderson /1970/ in a much
simpler way. He considered the scattering matrix T for energies near the
Fermi energy and eliminated the contribution of the scattering processes in
which in the intermediate state the energy of at least one electron is near the
cut-off by introducing an effective coupling. This scaling procedure /it will
be referred to as dynamical scaling in the following/, which was claimed to
be exact in some sense, led to the conclusion that this effective or re-
normalized coupling increases to infinity when the cut-off comes down to the
Fermi energy. A priori there is no reason that thermodynamical and dynamical
scaling yield the same scaling laws.

Independently from Anderson®s paper and from each other, Abrikosov
and Migdal 71970/ as well as Fowler and Zawadowski /1971/ applied the re-
normalization group technique, well known from quantum field theory, to the
Kondo problem. They also introduced effective /"invariant'/ couplings and
derived scaling laws for them, though, disregarding the simplest approxima-
tion, it has been done for the isotropic Kondo Hamiltonian only. The effective
coupling introduced in this way is either energy dependent for fixed cut-off
or cut-off dependent for fixed energy taken at the Fermi energy. In the



latter case one expects a one to one correspondence between Anderson®s
simple approach and these more sophisticated ones. However, the renormaliza-
tion group method yields an invariant coupling having no singularity, in
contrast to Anderson®s result. This conclusion is drawn by determining the
smallest zero of the infinitesimal generator which has been calculated up

to the third order term. Thus by determining further terms it might happen
that the exact expression has no zero, which means that the coupling tends
to infinity. Further discussion can be found in the papers by Fowler /1972/,
Anderson /1973/ and Zawadowski /1973/.

Recently, Wilson /1973/ has calculated the effective coupling by
scaling the ground state energy of the Kondo system. His computer calcula-
tion indicates that the effective coupling goes to infinity. The problem
whether the coupling remains finite or not cannot be resolved in the frame-
work of the dynamical renormalization group and thus it is beyond the scope
of the present paper.

In the present paper Anderson®s simple derivation of scaling laws
is reexamined. It is shown in Sec. 2 that the relations obtained by him are,
in fact, the first terms of an expansion in powers of the coupling constant.
The problem is reformulated in Sec. 3, where, instead of the usual matrix
elements of the T matrix, new matrix elements are introduced iIn such a way
that the proper normalization of the initial and final state wave functions
is also considered. The scaling laws are derived in Sec. 4 by using the idea
that the change of these matrix elements due to the change of the cut-off
energy has to be compensated by a simultaneous variation of the coupling.

It is shown In Sec. 5 that, at least up to a given order, these new scaling
laws do not result in divergent effective coupling, In agreement with the
renormalization group method calculations. The different scaling methods are
compared in Sec. 6, where some questions left open in the present deriva-
tion of scaling laws are also discussed.

2. ANDERSON"S PEDESTRIAN WAY OF DERIVING SCALING LAWS

The idea used by Anderson to derive the scaling laws for the Kondo
problem in a simple manner, was to eliminate the effect of the boundary
region of the conduction band /formally changing the cut-off energy/ by
introducing a new set of the coupling parameters, called effective couplings.
The main steps of this calculation are repeated here to point out the
assumptions.



The scattering matrix T obeys the following relation

T(w) =V +V Go () T@o) , 12.1/

where

V 12.2]
a,il

is the anisotropic Kondo interaction, S is the impurity spin operator, s ,,
is a s = 1/2 spin matrix, c£a /c™a/ is the conduction-electron creation
/annihilation/ operator, and Jz are the bare coupling constants. Further-
more the Green function and the free Hamiltonian are

/2.3/
Ho K[a £K CEa Cka 72-4/
respectively, with denoting the conduction-electron energy. The inter-

action V is restricted to an energy range symmetric to the Fermi energy and
is limited by cut-offs at -EcT the zero of the energy scale being taken at
the Fermi energy. Within this energy range the density of conduction-electron

states p is supposed to be constant.

By introducing a projection operator P which projects onto states
containing at least one electron in the energy range /Ec~AE, Ec/ or at least
one hole in the range /-Ec, -Ec + [JE/, the scattering matrix can identically

be decomposed as

T=v +v@-p)ggt +VPGo t /2.5/

Considering the effect of the projection operator as a small quantity, the
iteration of this equation gives in the first step

T=+VP GU V}
/72 .67/

+ {V+VPGV) (i-plgg t +Vv pggv pagyt

Going to higher and higher orders in the iteration, we can write



T = {V + VPGV + VPG VPGV + ...}

+ {V + VPGV + VPG YPG V + ...}(1-P)G T

0

+ VPGALVPG V--OPG T /2.7/

0 0

In the n-th step of iteration the last term of eq. /2.7/,

ar = VPGOVPq)V...PGOT , /2.8/

is proportional to Jn+” and can be neglected in any perturbational calcula-
tion. The argument that it is negligible because it is proportional to

/0E/  x, will be seen not to be true.

Taking the limit n>°° and multiplying eq. /2.7/ by /1-P/ from the left and
from the right, this equation takes the form

T"=V" " +V*"Gqg T" , /2.9/
where
™ = (I-P) T(1-P) , /2.10/
and
Ve = Q]-p){v + VPGOV + VPGOVPGOV + .. 3(-P). /2.11/

A comparison of eq. /2.9/ with eq. /2.1/ gives at once that for such scatter-
ing processes, iIn which in both the initial and final states the electron
energies are fTarther from the cut-off than [JE, the original problem with
interaction V and cut-off Ec is equivalent to a new problem with cut-off

at Ec“AE and interaction V" given by eq. /2.11/.

Looking at the matrix elements of the scattering matrix between
one-particle excited states, In some approximation this new interaction may
have a spin structure similar to that of the original interaction. In this
way effective coupling constants, J° and J° can be defined. In the anisotropic
case this can be done for S = 1/2 only. For dgeneral spin the spin products do
not simplify to the form of eq. /2.2/. Moreover these effective couplings
depend generally on w and on the energies of the incoming and outgoing electron
as well. For the sake of simplicity these electron energies and e, will be
taken at the Fermi energy.

Using this procedure the original problem is scaled into a new
equivalent problem, where the effect of those states which are eliminated by
the new cut-off is taken into account by the effective coupling. If the change



of the cut-off, [E, 1is small enough, a differential equation can be derived
for the effective coupling, relating the equivalent problems.

For getting this differential equation, AV = V" -V has to be cal-
culated up to terms linear in [JE. Anderson claimed that the third term in
V*®, VPGoVPGqV, which contains twice the projection operator P in the inter-
mediate states, is quadratic in [JE and thus it is negligible. It will be
shown, however, that this term does give contribution linear in [E.

The contributions to AV can be represented very simply by time-
-ordered diagrams. This is illustrated on the first term of AV which has
been investigated by Anderson.

Due to the projection operator P an electron is either created by c, in the
energy range /E, - [IE, E_/ or destroyed by ¢, , in /-E , -E_ + [IE/.

As we are interested iIn scattering processes where an electron with
momentum Kk /e = 0/ is scattered into another state with momentum k* /e, =

and the rest of the Fermi sea is unchanged, AV1l can be.transformed to

C Kl

¥ Y Y % mEliex ck Sy ©
K a‘ij k=ny @E_+ek Ck™B CkxY Kkxy ka
j2
(x KsV +SS+" +T (s2)2 «.6
Jg . 1
Vo2 1 (st +s-<b)-—2 B A" /2.13/
“Ecsgri<-EotAE
+ kla k™ Yiky “-Eg- K CkiY °ka °k"B Ckny
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2
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The two scattering processes corresponding to these two terms are displayed
schematically in Fig. 1. In these time-ordered diagrams the electrons are
represented by lines running from left to right, while the holes by lines
running from right to left. The electrons or holes which are in the narrow
energy range /Ec~MlE, Ec/ or /-EC» EC + JIE/, are distinguished by heavy

lines.
The integration over gives simply a factor pAE. Neglecting the
energies of the scattered electrons and e~, compared with Ec, eq. /2.13/
yields
- v 1A+ /+ - - + 1
AV = AV 2 V. oaB aR® + sZ sal ck "R cka /2.14/
a,nl
with
4o - f 23x)kI° ¢*VITkI) "1 72.15/
Ad, -1z Prl_/E;l'E.IJJr J, /2.16/
pAE 2
A, w-E, +A + /2.17/

AVqg gives a shift of the ground state energy and is incorporated into egs.

/2.16/ and /2.17/ by means of A.
The ground state energy shift will not be further investigated here. Writing

these relations in differential form we get

dJ

T T
i /2.18/

P
- _'E—:_EE—¢‘5 + z

ol l.

/2.19/

IT higher-order processes give no contribution, as Anderson suggested,
these scaling laws would be exact. Now we will show that this is not the
case.

Let us look at the processes in V" which are of third order in
J+ or Jz- They are represented by the diagrams shown in Fig. 2. In both



intermediate states there is one electron or one hole in the energy range
/EC—AEO E 7/ or /FEC, —EC+ﬂE/- As always the same electron is in this range
in both intermediate states, the contribution is proportional to AE and not
to /ﬂE/Z_ Similarly there are higher-order processes, too, which yield
contribution to AV proportional to AE, and consequently contribute to the
scaling laws. As a matter of fact the scaling laws, as given in egs. /2.16/
and /2.17/, contain on their right-hand sides only the first terms of a
series expansion in powers of the coupling constants.

The contribution of these processes depends on a non-trivial way on
the energies e” and and no scaling law can be derived for the total
scattering matrix, only for those of its matrix elements where and ,
are small. Moreover, in an attempt to get scaling laws in higher orders
by the abovementioned method, another difficulty arises. Namely the T matrix
describes also such scattering processes in which more than one electron is
scattered from the initial to the final state. These processes cannot be
scaled into the original problem, where only one-electron scattering processes
exist.

For these reasons we will reformulate Anderson"s treatment to make
it extensible to higher orders.

3. REFORMULATION OF THE PROBLEM

From the above discussion it follows that instead of the total
scattering matrix its matrix elements

TFi=<f|T]i> /3.1/

should be considered, where the initial and final states contain one excited
electron.

U> = ckcJO> - > = ck™"310> - /3-2/

and 10> is the non-interacting Fermi sea plus an impurity spin. The energies
will be taken at the Fermi energy. Instead of rearranging eq. /2.1/ for the
scattering matrix we will proceed in a different way to define an effective
coupling. Let us change the cut-off Ec by AE and simultaneously the coupling
constants Jj, and Jz by AJ+ and AJz, respectively. We require that the matrix
element Tfi be unchanged under this transformation, i.e. the following rela-
tion must hold

sFfi(Ec” J+ Jz) = TFi (VAE" J++AJ+" Jz+AJZ) /3.3/



For small changes of the parameters first-order expansion gives

9Tt 3Tfi ar

By calculating the derivatives to a given order and collecting the terms
containing Ss and 1/2( s + Ss J, two equations are obtained for the
variation of the two coupling constants.

This is not a formal transcription of the original formulation:
more processes are considered in this way than in the earlier version, as
it will be seen in the next section. These additional processes are due to
self-energy corrections for the impurity spin and are related to the re-
normalization of the initial and final states. This indicates that the change
of the norm of the wave function has to be included as well into this con-
sideration. Therefore instead of /3.1/ the following matrix element will be
investigated

<FV +V

u-H T "
TLo= /3.5/
Ken o+ gar e s, T

where T is the usual T matrix. The invariance of this quantity will be
required, thus the scaling laws will be obtained from

art ar- 3m

JE + f AJ: + Az =~ /3.6/

A discussion of this choice will be given later.

4. EVALUATION OF THE T MATRIX

Up to second order in the coupling constant T” is obtained in
a straightforward manner,

TH2)_ @.  (+ :
Thi - THic 2 Vs S TS ST Iy S22
/8.1/
J4 3

(Sts + S~ s+) + SZsZ P In )



In this order the wave function is not renormalized. Inserting /4.1/ into
/3.4/ the same scaling laws are obtained as by Anderson®s method /see eg.
/2.18/ and /2.19//.

The third-order correction to will not be given here in detail.
For the derivative of T"+ with respect to the coupling constants it is
sufficient to take the second-order expression of Ti, as from the lowest-
-order scaling it is known that AJ is proportional %% J2- As for the derivative
with respect to the cut-off Ec, it can be calculated directly using the
diagrammatic method of Sec. 2. In addition to the graphs of Fig. 2 there are
12 more third-order scattering processes depicted in Fig. 3 which are propor-
tional to JE.

The processes corresponding to the first eight graphs in Fig. 3 can
be accounted for iIn Anderson®s way of introducing the new effective interac-
tion. The last four processes, however, which correspond to the polarization
of the impurity spin state and thus describe the renormalization of the
initial and final states, can be taken into account in this new formulation
only. Half of the contribution of these diagrams is cancelled by the denominator
of /3.5/. These processes and this cancellation will turn out to be very
important.

Neglecting the ground state energy shift, the corresponding scaling
law will not be considered here, we get in the limit W<<EC

/4.2/

Inserting /4.2/ and the derivative of /4.1/ with respect to J, and J into
/3.6/ and collecting the terms proportional to A4s's™ + s7s'Y and §%s?%,
respectively, the following two equations are obtained

J7 Ji)

ot J < -
é;:' zse + £ 4 <+ ITjAE
2
P 0 . -
PP Ggaz e prE e, 4.3/

- P In fC Jz AJ+ P In E%:J+ Adz =
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2jl JZ JE
+ AJZ - p In

2J, AJ, =0 /4.4/

The solution of these equations up to third order is

7 @+ Jz + | 4E /74-5/
/4.6/
In differential form eqs. /4.5/ and /4.6/ read
dJ+
. E. /4.7/
/4.8/

In these equations we have got to the first corrections to the scaling laws
of /2.18/ and /2.19/.

5. DISCUSSION OF THE SCALING LAWS

The usefulness of the scaling laws is to establish connection
between anisotropic Kondo-type interactions with different coupling constants.
In Anderson®s approximation the equivalent Kondo problems form hyperbolas in
the /J+ ,J / plane. From this it was calculated that for Jz<0 and J+ <lJz1
the problem is scaled into a soluble problem with J+ = 0. In other cases,
especially for the isotropic Kondo problem with J+ = Jz > 0, the gradual
change of the cut-off to lower values led to an increase of the effective
coupling to infinity. In Anderson®s view, however, this does not mean that
the problem is unsolvable for Jz>0. There is a value of Jz /Jzp«2/u/, where
the problem becomes trivially soluble. This is the Toulouse limit /Toulouse
1969, Anderson et al. 1970/. The Kondo problem is thus scaled into this limit.

The new scaling laws of /4.7/ and /4.8/ change the situation
drastically. The equivalent problems in this approximation /the trajectories
of this system of differential equations/ can be seen in Fig. 4. The arrows
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on the trajectories show the trend of scaling when the cut-off decreases.
There exists an isolated singular point in the /J3+ ,J / plane at J+p =

= JzP = 2 and all the possible anisotropic Kondo problems scale into this
point, except for the region JZ<0 and JZ < |JZ|. This region, as in Anderson®s
approximation, scales to the solvable J+ = O case.

The scaling laws of /4.7/ and /4.8/ are of course not valid for
large J+p and Jzp, as the higher-order corrections on the right-hand sides
of these equations have been neglected. Therefore approaching the isolated
singular point this approximation breaks down. In general we can only claim
that the scaling equations may have the form

dJ. i

L = E; fE+ "I /507
dJ i

diT = IF gr+ "J2) ° 52/

where f and g are unknown functions and their power series starts as /4.7/
and /4.8/. Because isotropic case is always scaled into isotropic one,

f(d.J) = gd.,J)- The question remains whether the function f(J,J) has a
simple zero, as it has in our approximation, or not. If it has at least one
simple zero, this point will be an isolated singular point in the (J+ , Jz)
plane and it will give an upper limit for the effective coupling. If, however,
f(.,j)has no zero, the effective coupling is not bounded and Anderson-®s
reasoning is valid. This question cannot be answered in the framework of the
present method, because the exact expressions of the functions f and g are
not known.

Supposing that the infinitesimal generator has a zero, there are
still two possibilities depending whether the upper limit for the effective
coupling is smaller or larger than the value corresponding to the Toulouse
limit. If it is larger, the weak coupling Kondo problem is then scaled into
the Toulouse limit before arriving to the situation corresponding to the
isolated singular point and the problem is solvable.

6. COMPARISON WITH OTHER METHODS

In the preceding section we have derived scaling laws relating the
equivalent Kondo problems. Following Anderson®s method /Anderson 1970/ the
effective coupling has been introduced through the requirement that the
original problem and the new one, with slightly modified cut-off and coupling
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constants, give the same scattering matrix elements. This procedure yields
effective couplings which depend in addition to the original and new cut-offs,
on w and on the electron energies e, e, as well. In the actual calculation
these energies have been taken near the Fermi energy and could be neglected
compared to the cut-off energy. In the general case, however, this dependence
can be important.

In the present paper the imaginary parts contributing to the scatter-
ing matrix have been neglected everywhere. They give no contribution to the
scaling laws in lowest order. In higher orders, however, they must play an
important role and might eventually lead to complex effective couplings,
although physically we expect the couplings to remain real.

Another problem of the present derivation is that the scaling laws
were obtained not from the usually defined T matrix but from /3.5/, where
the change of the norm of the initial and final wave functions has also been
taken into consideration. Neglecting this wave function renormalization or
using Anderson®s original approach, quite different scaling laws would have
been obtained in third order. All these problems clearly show the short-
comings of this sort of treatment of the scaling.

The problem of the energy dependence of the effective coupling, the
role of the imaginary parts of the T matrix and the problem whether the wave
function normalization should be considered or not, can be solved by a
consequent application of the renormalization group method only /Bogoliubov
and Shirkov 1959/. This technique was used for the Kondo problem by Fowler
and Zawadowski /1971/ and by Abrikosov and Migdal /1970/.

In case of the Kondo problem the effective or invariant coupling
is introduced in the renormalization group method as the product of the
vertex ' and the normalizing factor of the pseudo-fermion Green function
d = gf<do-

Js =rd . /6.1/

The invariance of this quantity under multiplicative renormalization of the
Green functions and vertices, which is equivalent to an energy scale trans-
formation, ensures that the properly defined effective coupling can be
obtained from /3.4/, provided this invariant combination is used there instead
of the usual T matrix. TEN , as defined in /3.5/, satisfied this iInvariance
requirement. Anderson®s approach of regrouping the terms in the scattering
matrix corresponds to taking I only, while the total T matrix without correct-
ing for the wave function normalization is equivalent to taking sz. The
denominator in TEN cancels the extra factor dand therefore TEN is invariant
under the scale transformation. This confirms the choice of T". in eq. /3.6/.
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In the renormalization group technique the invariant coupling does
not depend on the particular choice of the variables of the vertex. This
is not the case here. In the limit, though, when the energies are small
compared with the cut-off energy, the same scaling laws are obtained by
the present method as from the renormalization group technique.

The role of the imaginary parts is more delicate. Even in the re-
normalization group method it is not trivial that the invariant coupling is
always real. We will show in another paper that at least iIn a given approxima-
tion the imaginary parts cancel out and the invariant coupling is in fact
real. This does not solve, however, the problem: what the role of the
imaginary parts is in the observable quantities. Their effect is very
important if a comparison with experimental results is attempted.

The relation of the present results to the thermodynamic scaling
of Anderson et al. /1970/ is not settled. These authors started from the
thermodynamic potential which contains the effect of all electrons in an
averaged manner. Electrons, whose energy is comparable with the cut-off
energy, can give important contribution. Thermodynamic scaling can therefore
lead to different scaling laws than dynamical scaling, where only electrons
with low energy were taken into account. In fact, the scaling laws obtained
by Anderson et al. do not coincide with our result. These scaling laws
contain higher order corrections, similarly as in the present paper, though
the coefficients may be different as they are different in the third order,
in the next step after the *poor man®s"™ result. Because our result agrees
with that of the sophisticated renormalization group technique, we are
confident that we have got correctly the third-order corrections in dynamical
scaling.

The most important problem in the Kondo effect is to decide whether
in the dynamical scaling laws the invariant coupling remains finite or tends
to infinity as it has been suggested by Anderson and Wilson /1973/ in the
thermodynamical scaling. The relationship between the dynamical and thermo-
dynamical scalings is also not settled, actually they are different in the
third order. These problems have to be solved to have a physical understand-
ing of the Kondo problem.
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FIGURE CAPTIONS

Fig. 1 Second-order scattering processes in time-ordered diagrams.
The heavy lines represent electrons or holes the energy of which
is in the range /Ec~JIE, Ec/ or I-Ec> -Ec+lE/.

Fig. 2 Third-order processes contributing to AV.
Fig. 3 Third-order processes contributing to AT.

Fig. 4 Scaling curves of the anisotropic Hondo problem in third-order
scaling.
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FIG. 2.
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