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ON THE THEORY OF ANOMALOUS TUNNELING DUE TO PARAMAGNETIC
IMPURITIES

J. Sólyom and A. Zawadowski 2
Central Research Institute for Physics, Budapest, Hungary.

Summary

Recently some anomalies have been observed in the characteristics of 
tunnel diodes at zero bias. Anderson and'Suhl have called attention to the 
resonance scatteinng of electrons on paramagnetic impurities in the oxide 
layer. The tunnel current is calculated by summing up the contributions of 
single resonant scatterings. We have accepted the expression of the resonant 
scattering amplitude calculated by Abrikosov. The effective density of sta
tes is determined appearing in the formula of tunnel current.

The final results are:

The effect of paramagnetic impurities is the decrease of density of 
states in all of the cases. The actual appearance of the effect has a great 
variety‘strongly depending on the parameter values:

1, for ferromagnetic coupling:
resistivity minimum at zero bias /relative amplitude: 0-0,2/

2, for antiferromagnetic coupling:
2/ giant resistivity maximum at zero bias /relative amplitude 0-loo/
2/^ local resistivity minimum /relative amplitude 0-0,2/ superimposed 

on a background curve with resistivity maximum /type 2/ /.

The investigation of tunneling characteristics may be a powerful method 
to check the resonant scattering amplitude for paramagnetic impurities.

x---------------------
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Lecture to bo held at Institute of Theoretical Physics, Moscow.





Recently dynamical resistance maxima and minima at zero bias
have been observed in some metal - metal oxide-metal'1'’2 and semiconductor^’̂5 6tunnel junctions. Anderson^ and Suhl suggested that these anomalies are 
due to paramagnetic impurities in the oxide layer. The scattering of elec-7trons on the impurities in the insulator shows the Kondo anomaly' which is8 9the result of resonance scattering ’ . This scattering has a great influ
ence on the electron wave function in the barrier and therefore on the 
tunneling current, too. The tunneling current was calculated by Appelbaum'1'0 
and Zawadowski1'1' treating the scattering in the third-order of the pertur
bation theory. These approximations can explain only small effects and the 
cutoff energy chosen to fit the experimental data is much smaller /lo meV/
than the usual cutoff energy i.e. the Fermi energy /l-lo eV/. In some actual

2 Цcases the relative amplitude of the resistance maximum is about 5-5o ’ .
This shows that the scattering on the impurities has to be taken into account 
in a more appropriate way, avoiding perturbation theory.

In the theory given here the effective density of states appear
ing in the expression of current is always smaller than the unrenormalized 
one and it would have quite different character depending on the coupling 
and energy. Therefore it might result in great resistance maximum or small 
conductance maximum as well.

7We use the Hamiltonian proposed by Kondo'

H = — 1 S y "№I i у (ig| «I

where S is the spin operator of the paramagnetic impurity and
is the spin density of conduction electrons at the position of the impurity.

IpOne of the authors has elaborated a particular theory of tun
neling between superconductors to take into account the motion of electrons 
in the barrier, too. This theory may be applied here. The proposed approach 
starts with the so-called "left and right side problems". The Green’s 
functions of the left, right and original problems /G^, Gr , G/ are deter
mined by the potentials V^, Vp and V given by Fig.l. and by the complete 
mass operator due to the scattering on paramagnetic impurities. The Green’s 
functions are calculated in a self-consistent way. The tunneling current 
may be calculated using the one-particle Green’s functions of the partic
ular problems. The corresponding diagrams are as follows
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E. = Ec ) ÍSJ
where EQ is the cutoff energy and ̂ is the amplitude of the wave function 
at the position of the impurity. In a selfconsistent calculation J must 
he replaced by /see later/.

At finite temperatures a homogeneous function of E and T might 
stand instead of log ^2 and sign E is replaced by l-^n/E/1^.

If the space variables of the Green’s functions are taken in the 
barrier at the same point, the spectral density function of the Green’s 
function is

where

O eff (E) = §> Z (£■)

Z(E) 1 m  qCE) _ ________ \ ________
7r? (2rtlEM) ~ 1 +  l«v (jle'(E| ImSlE)

«>)

(?)

Z/Е/ depends only on the wave vector laying in the plane of the harrier К 
and the energy variable K. In the calculation of the tunneling current it 
may he taken at K=0.

The well known formula for the tunneling current is as followsAO
I lv) = C U 44.V) [*t(E**Vj "<*U)] cLf. (S)

—. Ü O

where C is a constant, V is the applied voltage and ? eff/®/ ;i-s deiine<i 
in /6/. According to this the effect of impurities may he taken into ac
count as a formal renormalization of the density of states.

A straightforward calculation gives the following form for Z/E/

Z (E) <„ v 7 h Eo \г I 2- m

where a1 = S(s+i) /N. and N are the number of impurities and
the total number of atoms on the surface of the barrier, respectively./
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The effective coupling constant of the scattering on the impurity
is strongly dependent on the position of the impurity. The

amplitude of the wave function sharply decreases in the harrier and there-
17fore only impurities on the surface give considerable contribution '. A 

rough estimation gives that a2~  lo - 2o, ^2 ~ 0,05^ and E 1 - lo eV.

The current is determined by the renormalization factor Z/E/ 
/see equations /6/t /8/ / and therefore we are going to discuss the beha
viour of Z/E/ at different values of the parameters.

1/ In the case of ferromagnetic coupling /J > 0/ S J>E >>T /кг.=1/.ü C xj
The function Z/E/ is schematically plotted against E in Fig.2/a/. In the 
interval 0<E<E Z/E/ is a decreasing function and at E=E it is

2 (Eel" +
In the interesting region of the energy Z»0,8. In this case we have a 
conductance maximum which is not larger than 25% /see Fig.5/a/ /.

2/ In the case of antiferromagnetic coupling /J<0/ E » E  ,T.С о
The function Z/E/ is plotted in Fig.2/b/. This curve has a minimum at E=EQ , 
where . This deep minimum in the density of states causes
a maximum in the resistivity. The position and character of this maximum 
is very sensitive on the value of Eq, T and the applied voltage /V/.

2.a/ If E q<<.T, the peak in Z/E/ at zero energy may be neglected
and the function Z/E/ might be replaced by the dotted line in Fig. 2/Ъ/.
In this case the resistivity maximum appears at zero bias. The relative

—2 —1amplitude of this maximum is proportional to Z /Е / or Z /Е / depending 
whether the paramagnetic impurities are on both surfaces of the barrier 
or only on one side of it. In the first case this amplitude may reach the 
value about 100./ Fig.3/b//.

2.b/ If Eq > T , at very small value of the bias the peak at zero 
energy has to be considered. This maximum in Z/Е/ causes a local maximum 
of the conductance at zero bias. At larger values of the voltage the mini
mum at Eq in Z/Е/ gives a maximum in the resistivity /Fig.3/c//. This 
means that the maximum in the conductance at zero bias is superimposed on 
a background /dotted lines in Fig.3 /1// which has a minimum there. This 
background is determined by the modified Z/Е/ function which is represented 
by the dotted line in Fig, 2/Ъ/. The maximum depends on the temperature 
while the background is only slightly dependent on it.

It is worth mentioning that conductance maximum at zero bias can. 
occur for ferro- and antiferromagnetic coupling as well /cases 1. and 2.Ъ/. 
But resistivity maximum can occur only in the case of antiferromagnetic
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coupling /2.a./ In the case of conductance maximum the ferro- and antiferro
magnetic cases cannot he distinguished on the basis of the characteristics 
at small bias, there is however, a great difference in the characteristics 
at large bias.

2The measurement by Rowell and Shen on Or-I- /Ag, Fb/ shows a 
resistance maximum with a relative amplitude about 5o. This great value 
can be -understood if we assume that there is an antiferromagnetic coupling 
between the conduction electrons and impurities with Ео ~0,1-0,2 meV. If 
Ec~l - lo eV, we get a reasonable value for the coupling constant, Ц £ ~ о , < .

The explanation of the occurrence of conductance maxima in a series
1 2of diodas ’ is much more dubious. Only the investigation of the behaviour 

of the background curve may give possibilities to distinguish between the 
two cases. It seems to us not very unreasonable to interpret the Ta-I-Ag 
and Ta-I-Al curves as the result of antiferromagnetic coupling with rela
tively large value of E /Е ~3-6 meV/. The value of Is*1 is roughly inО О
the same range as before.

Similar phenomena have been observed investigating semiconductor7. Иtunnel junctions-^’ . It is possible that similar effect may occur in the 
junction region. In these cases there are also two different groups of 
measurements with conductance and resistance maxima, respectively. The 
resistance maxima may have a very large relative amplitude /about 5-25/, 
on the other hand the conductance maxima are only about lo%, similarly as 
in the above discussed cases.

Mention must be made that in this considei*ation we have made use 
only the main features of Z/Е/, in this way that of the imaginary part of 
the self energy. With the aid of this type of measurements the imaginary 
part of the self energy /the life time/ may be experimentally investigated 
in that region of energy which is not available by the simple resistivity 
measurements on bulky dilute magnetic alloys. We think that measurements 
on junctions composed of metal-metal oxide - about one atomic layer of 
paramagnetic impurities - metal would be very interesting to compare their 
results with the present theory.

We are grateful to Prof. L.Pál for his continuous interest in this 
work. One of us /A.Z./ is grateful to Prof. H.Suhl for stimulating and in
teresting discussions and he wishes to thank M.H.Cohen, J.H.Rowell, A.F.G. 
Wyatt and N.V. Zavaritsky for the discussion on different points, of exper
imental data and the theory.



Remarks on Appelbaum’s calculation of the anomalous current

In some cases the total current may he calculated from the 
transition matrix elements corresponding to the tunneling current by 
using the "golden rule". It is a possible way of calculation if the pre
vious diagram /I/ can be cut into two parts, which correspond to single 
particle tunneling through the barrier. It may be represented symbolically 
by the diagram;

The product of the matrix elements of these single particle 
tunnelings appears in the "golden rule formula".

This procedure can be applied to non-interacting electron gases 
without any further considerations. In the case of superconductivity this 
method does not work, because it gives only the one-particle current and 
fails to account for the Josephson current. In the second case we have 
to go back to e.g. the calculation of the original diagram /I/.

The general diagram for the tunneling current density is

where line C is the cutting line.
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Appelbaum has calculated the anomalous current due to para
magnetic impurities. The diagram calculated hy him is in Abrikosov’s 
notation:

where Tj stands for the spin dependent tunneling coupling and J for the 
simple interaction with spin. He has calculated the contribution of this 
diagram by the application of the "golden rule". If this diagram is cut 
into two parts by line C, then the two particular* scattering cannot be 
intei'preted as single electron scatterings through the barrier, because 
there are spin lines, too. The electron and the fictitious spin particles 
corresponding to the lines cut by C are not necessarily on the energy Shetl
and this fact makes the application of the "golden rule" very ambiguous."

We have calculated in our paper the tunneling current in the 
absence of external magnetic field and we have got similar current express
ion as АрреГЬаш/^ 0//.

¥
On the other hand we have calculated the tunneling current in 

the presence of magnetic field /to be published/ and our results show 
disagreement with the results derived by Appelbaun/“1'0^. E.g. in the third 
order of perturbation theory in the conductance we have got terms propor
tional to <M">> /whei'e M is the magnetization of the localized spin/, too.

We may соnclude that the application of the "golden rule" to the 
calculation of the tunneling current is very ambiguous in the case of 
interacting electron gas. In some cases it gives wrong results: e.g.i, 
Josephson current, 2, anomalous current due to paramagnetic impurities in 
external magnetic field. In the latter one the magnetic splitting of spin 
energies probably makes the energy variables of lines cut by line C much 
more important than in the field-free case and that may be the reason why 
the difference between the results calculated by different methods occurs 
only in the case of external magnetic field.
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Figure captions.

Fig.l. The potential of the right /а/, left /Ъ/ and the original problem 
with the barrier В /с/.

Fig.2. Schematic plot of the renormalization factor against the energy 
in the case of ferro- /а/ and antiferromagnetic /Ъ/ coupling.
In Fig. 2/Ъ/ the dotted lines represent a good approximation of 
Z/E/ if Eq 4í.T /the background curve/.

Fig.3» Schematic plot of voltage dependence of conductance or resistance, 
/а/ The conductance for ferromagnetic coupling. /Ь/ Resistance 
for antiferromagnetic coupling if TS>Eq. / с / - /d/ Resistance 
and conductance for antiferromagnetic coupling if T £ E q. The 
dotted lines represent the background curve.
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where the cross in the harrier /В/ denotes the current coupling of the
15Green’s functions, ontroduced by Bardeen ^ and the dot stands for the cur

rent operator.

The corresponding formula is

U)

'•*. -  Г * * ЧX ill

X-P*'
where S denotes an arbitrary surface in the harrier. The expression of the 
current may he regarded as a response function of the coupling of the two 
different Green’s functions and the operation /С-»R/ denotes the replacement 
of the causal response function in this formula hy the retarded one.

The Green’s functions may he written as

Я -  = i _  2 . ql” (oC = t,'r| 131

where JJ^is the self energy due to scattering on paramagnetic impurities.
In our approximation the interaction between the impurities and the inter
ference effects are neglected. We use the self energy obtained hy Abrikosov8 
summing up a very wide class of diagrams in order to describe the resonance 
scattering.

In, Z (E) =-|n?S(SH)»rE i ft)
where у is the density of states at the Fermi energy,x is a number of order 
unity as estimated by Yosida and Okiji1 .̂
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