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Synopsis

The application of Landau’s theory of second-order
phase transitions to magnetic phase transitions is examinéd,
with special regard to the superposed magnetic structures.
The role of mixed invariants in the description of canted
magnetic structures is emphasized. An extension is given
to many-step magnetic phase transitions and the concept
of "quasi phase transition” is introduced™ The magnetic

structure of Wn SO , FeJ(fO”g. 8HgO and some
dihydrated formats is examinad in detail.

I. Introduction

As it is well known the Landau theory of second-
order phase transitions /see Landau and'Lifshitzéll,
Lyubarskii®2// enables us to determine the symmetry of
the new phase arising in a second-order phase transition.
Dzyaloshinsky7” and Kovalyov?/ applied the theory to
the case of magnetic phase transitions. In the old form
of the theory the structures attainable by second-order
phase transition were rather simple, the linear dimensions
of the new magnetic unit cell could be at most four times
larger than that of the paramagnetic one. Therefore the
Landau theory, in its old form, was not able to explain
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the occurence of the spiral magnetic structures.
Dzyaloshinsk /5/ and Kovalyov~0/ were able to extend

the theory to account for these structures. Their
considerations are completely different. Dzyaloshinsky’s
considerations give not only the criteria for the
existence of spiral structures but also enables us to
calculate the turning angle of the spiral.Unfortunately
his method can be applied only to those cases when the
turning angle is small. The extension given by Kovalyov
can be only used to decide whether the spiral structure
can arise in a second-order phase transition or not, and
to describe the possible orientations of the magnetic
moment.

The structures obtained by Kovalyov are more compli-
cated, than the structures proposed earlier for Mn02
and ‘obtained by Dzyaloshinsky. Kovalyov has not said
anything of the cause of this disagreement. In our
opinion Kovalyov’s method is more appropriate to treat
the nmon-colllnear magnetic structures in insulators but
one has to distinguish, as Dzyaloshinsky did, invariants
of exchange type and relativistic origine. The so-called
mixed invariants have an important role in this
description. In the case of Mn02 one can show, that
the deviation from the simple spiral structure is small
and only very accurate measurements can point it out.

The perturbational method is the reason, why Dzyaloshinsky
obtained only a simple spiral structure.

Another problem in the theory of the magnetic
structures is the existence of superposed magnetic
structures and the taking place of more successive phase
transitions. There are magnetic structures, which cannot
arise directly from the paramagnetic phase. These
transitions appear in the temperature dependence of
the susceptibility and specific heat as peaks. But as
it will be shown not every peak corresponds to a real
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phase transition, we shall introduce the concept of
"gquasi phase transition™. Also in this case the mixed
invariants have an important role*

First we shall give a thorough discussion of the
method, with special regard to the superposition of
simple magnetic structures and the successive phase
transitions. As an application the magnetic structure of
MnS04 ,Te3(P04)r- 8H20 and some dihydrated formate
salts will be examined in detail. In HnSO04 we have a
three -step phase transition and the magnetic structure
may deviate a little from the described one. In Fgj(PQp~"SHgO
we explain the two peaks of the specific heat by the aid
of a*real and a quasi phase transition. In the case of
the dihydrated format salts we shall examine the problem
whether there are oriented magnetic moments on both sub-
lattices or only on one of them.

Il« The role of mixed invariants in the description
of second-order phase transitions

Let GXR be the magnetic symmetry group of the consi-
dered crystal in the paramagnetic phase. Here G denotes
the ordinary space group of the crystal, R is the time-
reversal that reverses all magnetic moments* Let M (r)
denote the density of the magnetic moment in the crystal*.

As it is well known the basis functions of all non-
equivalent irreducible representations of a group form
a complete set, i.e, any function can be expanded in terms
of these basis functions. AIll the irreducible representations
of the group G are known. The irreducible representations
of the group GXR can be obtained by taking the direct
product of the irreducible representations of group G
and group R , which contains only the elements E /unit
element/ and R . The group R.has only two one-dimensional

irreducible representations: EH R, E=i, R=~1.

KFKI 2412



Lt ~

Let Epp)(r) be the j -th basia function of the -£-th
irreducible representation of the groyp 66 In the even
representations of the group GxR Rt™ Cr)=Qyif), in the

odd representations R/ (r) =- ) * For the magnetic
moment is odd with respect to the time*-reversal, in its
expansion only the basis functions belonging to the odd
representations of the group GxR can occur. Expanding-

each component of W (r) in terms of ip \r) ’s we get

<£> ,f(r) M

cSj eNM«(r)

4**
where (cx is the unit axial vector in the cx
direction. In the paramagnetic phase M(r) =0 i.e(i)él:’b-(o.
In the magnetic phase some of the coefficients are

different from zero. As in a second-order phase transition
the density of magnetic moment varies continuously as a
function of temperature, the coefficients v ch&nge
continuously, too. The free energy of the system is
expansible in terms of either of them. /We shall use them
alternatingly in the applications, in the general treatment
we shall work with the coefficients .l The free energy
of the system must be invariant under any symmetry
transformation of the group GxR , For this reason one
has to know the transformation properties of H(r.) and

the coefficients Cjoc . Under a symmetry transformation

the basis functions q/j*(Y) and the axial vectors en
respectively transform among one another in a known way,
the coefficients remain unchanged. Equivalently the *s
can transform among one another and the functions [/ (W
and the vectors are unchanged. The transformation
properties of (f*(r) and determine that of

Bearing in mind this it is possible to set up all the
invariants and to write the free energy in the following
way
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where /y CemCj®. )and [/~ (... ) are the invariants

of second- and fourth-order respectively. Minimizing, the
free energy with respect to Cjot ’s, the value of these
coefficients can be determined and the density of magnetic
moment, too.

n
The Cjoc /with the same index 1 / transform

according to the direct product of the i-th irreducible
representation and the axial vector representation. The
3nf coefficients / is the dimension of the { -th
irreducible representation, /[ form a reducible
representation of the space group. The direct product
representations with different indices { can contain
common irreducible representations. Therefore besides

the invariants, consisting of coefficients with the same
index ( y there are invariants consisting of coefficients
with different indices { . These so-called mixed
invariants play an important role, if the aim is to
determine the orientation of the magnetic moments and
not only the magnetic space group. The occurence of the
mixed invariants is the consequence of the vector character
of the magnetic moment. In the case of ordering of alloys
the probability distribution of the atoms is written in a
series like /I/..In that problem a scalar function is
examined, every irreducible representation occurs once
and only oncel Each invariant in the expansion of the free
energy belongs to one of the irreducible representations,
there are no mixed invariants.

In the paramagnetic state Ay>0 for all w
A phase transition takes place, when one of the Ap ’s,
say A /the coefficient,of the second-order invariant,
consisting of some of .the Ca* 's/ will be negative, the
values of these * @ will beAdifferent from zero. At the
same time also some other CQo ’s that form a mixed
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invariant with the former c\. s will be different from
zero« Thus we get two or more sets of non-vanishing coeffi-
cients, e.g* 0 =n2,...ab and Q =1,2,. .. nft)
Generally < and B may be different and the magnetic
moment obtained in this way had x and (3 components, too.

That part of the free energy which has total spherical
symmetry corresponds to an exchange type interaction™*
The other part is the energy of anisotropy or represents
a Dzyaloshinsky-Moriya type anisotropic superexchange
interaction. These are of relativistic origin. So it is
possible to determine the order of magnitude of the
different components.

The mixed invariants play an important role in the
description of canted magnetic structures and weak ferro-
magnetism. Dzyaloshinsky’s consideration of weak ferro-
magnetism7” is quite different in form as the above
treatment. He writes the free energy in terms of the
invariants formed from the magnetic moments of the sub-
lattices, instead of using the ’s /apparently the
two methods give the same result/. There are two combina-
tions of the moments which transform according to the
same representation and the corresponting mixed invariant
represents the anisotropic superexchange interaction.

The above treatment clearly shows why an irreducible
representation can occur more than once.

Those coefficients Cb , from which no mixed
invariant can be constructed, may be treated separately,
they cannot have non-vanishing value at the same time.

The irreducible representations of a space group
are labelled by two indices, one is the wave vector K
which is characteristic to the translational properties,
the other index distinguishes the representations
belonging to the same vector k . More exactly not one
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vector but a set of vectors 'Ywhiéh can be obtained from

one another by symmetry transformations/ is characteristic

to a representation. This set of vectors forms the star

of the representation. We shall call two vectors different,

if they belong to different stars. Because of the real

character of the magnetic moment a non-real representation
and its complex-conjugate representation T- most

occur in the expansion /1/ with complex-conjugate coef-

ficients. The representation 'tj + is called a physically

irreducible representation*

Prom the coefficients belonging to the representations
of the space group with different wave vector kK it is
impossible to form a mixed invariant. Only such magnetic
structure can arise in a second-order phase transition,
at Which the different components of the magnetic moment
belong to the same Kk , i.e. they have the same translat-
ional symmetry. If the components of the magnetic moment
have different translational properties, the structure
could arise only in more successive phase transitions, in
every step with different K

To a given wave vector K some representations of
the group belong. Generally not all of them can describe
a magnetic structure. A condition was given by Kovalyov? /
to decide which irreducible representations must be taken
into account in the expansion /1/. Let G(A) denote the
proper point group of the magnetic atom A , let fi’ be
the elements of this group. The symmetry transformations
'R leave the position of the atom A unchanged. The
representation of the point group é of the crystal is
reducible with respect to the point group G(A) » In the
expansion / 1/ one get magnetic moment from the represen-
tation only if it contains the unit representation
of the group G(A) . Physically it means, that the corres-
ponding basis functions cp”(r) have non-vanishing value
at the position of the atomv-“he mathematical formulation
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of this condition is the following: those representations
$an describe magnetic structure for which

x(A') #0 / 3/

where X(f\) is the character of the group element &

In a structure with more sublattices it is possible to
fulfil this condition only on one sublattice. The corres-
ponding structure has magnetic moment only on one sub-
lattice. This it the situation in the antiferromagnetic
phase of FeRfx «

I1l. Many-step magnetic phase transitions, "quasi
phaseltransition”

The above described procedure can be applied not
only*to paramagnetic-magnetic transitions but also to
transitions between two different magnetic phases, if
the transition is of second-order. Let us suppose that
the considered crystal has two successive second-order
phase transitions at temperatures and V -/T, .>\ /o
let Mar,T) *and M2(r,T) denote the moment density
above the lower Neel point and below it respectively.
Let us examine the following function:

Me(IM, T)-MXr ,T2) if T<L

Md(r,T) Al
0 if T>T2

In a second-order phase transition M2(f, )=MUr 12)
and therefore MA(r,T) 1is a continuous function of
temperature. We can expand this function in terms of
the basis functions of the irreducible representations
like /1/. Minimizing the free energy the coefficients
Ci%g can be determined. The magnetic moment dertbity
« _ .
corresponding to these values of coefficients
gives only MA™(r,T) j the magnetic moment corres”
ponding to the phase above TO0 is also present. In such
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a way in several steps one after the other very complicated
magnetic structures can arise.

If the transitions are near in temperature, one may
suppose that the expansion '/1/ is valid in the nieghbourhood
of Tp , too./ It is not a necessary condition, the results
are valid also in the more general case, but the treatment
is more appropriate in this simplified model./ Por the sake
of simplicity let us assume, that the free energy has the
form

®-DO*A(/QE +AZ (N(c®)+cc/(r)(bA /51

and n f b are second-order invariants consisting
of the coefficients <cj¥ and cj™ respectively,
a mixed invariant. Let us assume that the latter term is
caused by a relativistic interaction or a weak exchange
interaction between the sublattices. Decreasing the tempera-
ture from the paramagnetic phase, a phase transition takes
place at when or Ag, say A" , becomes negative*
There appears a magnetic structure described by the coeffi-
cients ce')° » Because of the existence of the mixed
invariant there appears also the magnetic moment described

by the coefficients , but it means only a small perturbat-
ion in the structure. Further decreasing the temperature
becomes negative at "L can have larger value. The

moment that was earlier less oriented, begins to become
more oriented. At T2 no phase transition takes place in
the rigorous sense of the word but in the temperature
dependence of the specific heat and the susceptibility a
peak can appear. In the zeroth approximation, leaving the
term OLf*"Xc”] C&) we get two separate phase transitions
with two peaks in the specific heat and susceptibility.
If this mixed invariant represents a small perturbation
it does not destroy the second peak, but this peak does
not mean the appearing of a new phase. We may say, that a
"quasi phase transition" takes place in the crystal.
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We think that this is the explanation of the two
peaks in the specific heat of vivianite and "-[CNH2)2C§j6Br2.

IV. Application to MSO"

Recently G. Will et al#/ 8""9/ haYe reported, that
the orthorombic HnSO* at 4.2°K has a conical spiral
magnetic structure. Neutron diffraction measurements
were made at the temperatures 77°K and 4.2°K. The addi-
tional peaks, found at 4.2°K, indicate the magnetic
ordering but no measurements were made in the neigh-
bourhood of the transition, from other measurement it
is known, that the Neel temperature of HnOS? is at
11*5°K,/ 0//. The z ~component of the magnetic moment
of the Mh atoms are coupled ferromagnetically in the
(OCH) sheets but the adjacent sheets are coupled anti-
parallel /so-called CrVvO/ type magnetic structure/.
In the ab plane there is a cycloidal spiral arrangement
of the magnetic moments, with the propagation vector
directed along the a. axis. This structure is.the
superposition of at least two simple structures /a simple
antiferromagnetic and a spiral structure/. We will
examine this structure in detail.

The space group of MnSO" is v (Oncm)

The Bravais cell Is a base centred orthorombic cell.
The Mn atoms are situated at the points (000) (OO-r)
42 T O/ and (y vy 2) the Bravais cell /see Pig.l/.
The symmetry elements of this space group are the
following ones: the unit element ~ |, the rotation
through 180° about the O axis and translation in the
C direction with the half of the lattice parameter

92~ {~r\00-~2 } " » the rotation through 180° about
the b axis J1,, the rotation through 180° about the
C axis and translation in the c¢ direction |
the inversion and- the products of these elements
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926=927"25 - 4rM V ?/ 19rBc 9725 -/We use the notation
of Kovalyov’s book/ * »/

If one wants to determine all the possible magnetic
structures, all the possible irreducible representations
of the space group should be examined. One is up against
a simpler problem, if the magnetic structure is roughly
known and the problem is to decide whether this structure
could arise in a second-order phase transition or not and
to make some refinements upon the structure. In the
knowledge of the neutron diffraction measurements we
shall examine the magnetic structure of MnSO"

" The z component of the moment transforms at a trans
lation according to the wave vector k=0 , because
at a translation with each lattice vector the moments
are the same,

The cycloidal spiral component in the Q.b plane
transforms according to the wave vector k=(f,0,0) of
the reciprocal space. Namely this vector has the property,
that at a translation with the lattice parameter in the
b or ¢ direction it gives parallel moments /the moment
of the atom at the position (00mj) may be parallel or
antiparallel/, but in the Q direction we obtain the same
moment only after a translation . [According to the
measurements ju ~ 3 /.

As the z and x,y components of the magnetic moment
have different translational symmetries, there is no mixed
invariant from the corresponding coefficients c<1<IO .the
antiferromagnetic z component and the spiral coomponent
in the O-b plane cannot arise in the same phase transition.
There must be at least two phase transitions in Mn SO™
We must still examine the behaviour of the rotating
component,

In this space group the vector ” =("0~00) has four
two-dimensional irreducible representations /see Kovalyov/”?
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The functions in the expansion /1/ transform

according to these representations’#eWhich of these repre-
- sentations satisfy the condition /3/ ? The proper symmetry

group
are

matri
these

of the Mn atoms is C2h |, the symmetry elements
%w{ } hzs, fir . One.can easily see from the
ces that only T and ~ satisfy the condition J/ 3/,
representations can describe magnetic structure¥*.

3), Nn3) @
n = If<°+ 4 « 4>r+ Moe ()” '2<x). ’\2( )) ni

As T( -fx*)y™\r) =gp\-r)=~}and at the lattice points

IP(i)(Rn) =f(i)(0)eikRV it is true that (P"Rn) »
For the magnetic moment must be real, we get =Cn"
The three unit axial vectors transform separately

according to the following transformation rule:

KFKI
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From /6/ and /8/ we get the transformation propertji.es

of cA} ’a.
W 7 ¢80- b 6@ € —

c QO r CO r r ©) I
’ C2y 13 Sy Iy I<
co ccon~ T (62)) C3;
7 27 4 Ciz ) C2z C

As the x and y component of the magnetic moment
transform according to different irreducible representa-
tions, they cannot occur in the same phase transition
/there is no mixed invariant from the corresponding
coefficients cjL4 /. The spiral component of this
structure must arise in two steps. As the oscillating
components in the cI and b directions occur at different
temperatures, generally the amplitudes are different and
the spiral structure is an elliptical spiral one*

It is interesting to note, that the coefficients
C? and C<3) transform according to the same representa-

tio’%‘. The %ituation is the same in the case of CFO and
C(>:<>’) . This means that there are mixed invariantzs
consisting of and or and ¢ Writing

the free energy in terms of these coefficients /we
write here only the part that contains c¢cx and C because
the terms with Cy can be treated separately/ we get

=00+ A, oy +A; o)

(0 AS
o B g, e MR

B c@ A g KD T v
8% €2 9% EY o

i-g ne3)rw\2  fp,
Ir gs(.c]x) crx® +‘r‘E,£l, C<(S)’C§?
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The terma with the coefficients AI and B contain
the energy of exchange interaction, the terms with the
coefficient oi correspond to a Dzyaloshinsky-Moriya
type interaction. Writing the free energy in terms- of
the magnetic moments the latter terms have the form
D(8.,x Sg") . The ratios and /g are much
smaller than 1.

The above expression for the free energy can be
separated into two parts, we shall deal only with the
first part. For the free eng:bqy and the magnetic moment
are real quantities, the ’a can be written in the

following form: , CC ="ze'* ,
CZz* '4ze'IX 2
d5 Po+A: 4* + Arlr (“y+ar)"1l*b *
J o + . 1 K Yy

+Z2°\"U *'TB2V i+ ®me
Minimizing this expression with respect to (j”and

A, the following equations are obtained
2A ("x +C* 1+40t2) 7 h 2B1 ™11’ 0
IH/
2A 2 7 2+ (<x(f «+2),Zx12B2 * 0

In the zeroth approximation, neglecting the relati-
vistic interaction /the terms with 06 / we have for <0
and AEYO0

> 47" 0 li21

In the first approximation for the ratio 4x1™1%
we,get from the second equation of /11/ /neglecting the
higher order term B2mnz/

4z A + 02 13/
2A2
It Is; clear from the above mentioned arguments,
that » Together with the oscillating

component in the a direction there must be an additional

TR 2412



- 15

oscillating component in the C direction. It seems,
however, difficult to observe it in neutron diffraction
measurement because of the small amplitude.

Summarizing the result: the described structure of
MnSO” can arise only in three successive magnetic phase
transitions, if all the transitions are of second-order.
The x,y and z components of the moment appear at
different temperatures. The spiral structure in the X,y
sheet is an elliptical spiral one. A small oscillating
component can.settle on the antiferromagnetic z component,

V, The magnetic structure of vivianite

In the temperature dependence of the specific heat
of vivianite two peaks were found by Porstat et al./'*'2/
/see Pig.2/. In the knowledge of the HMR measurements®”/
it was interpreted that two phase transitions take place
iat different temperatures. It is possible, however, to
explain the two peaks in such a way that the peak at
lower temperature corresponds to a "quasi phase transit-
ion" .

Vivianite / Fe"PO"+8H20 / is monocline: with a
space group c|*(C2/m) . There are two types of Fe++,
their positions are /as it is shown in Pig. 3/.

Type I: (000) and (-jr ~fr O)
type I1: t (0 0-39 0) and -ty 0) - (O 0.39 0)

The HMR measurements can be explained if we suppose
that in the antiferromagnetic state type | ions are anti-
ferromagnetically coupled and type Il ion pairs are anti-
ferromagnetically coupled /the ions in the pairs of type
Il can be coupled either ferromagnetically or antiferromag-
netically/. The moments lie in the UC plane or along the
b axis. Por the sake of simplicity we examine the latter
case but the result is the same in the former one, too.
KFKI 2412
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In order to examine the structure let us denote thje
magnetic moments at the positions (000),C~0),+(0 0390)
and (jj"0)-(0 0.390) by S|, According to the
ML measurements we assume that =-§2,S59" ~Sg , .
Instead of using the coefficients Cj2. we expand the free
energy in terms of these moments, /it makes the calculation
easier, but it can be used only if the dimensions of the
magnetic unit cell are known./ let us write first the

transformation properties of , Sg and /they denote
the b component of the vectors/. The crystal has four
symmetry elements: the unit element m | the rotation
through 180° about the b axis , the inversion :

and the reflection in the QC plane h28 . Examining only
the b component of the moment the following transformat-
ion properties are valid;

S N n25 *2f]
S, S,

S3 S3 s4 s4

s4 s4 s3 S3

, SM6| and S3*-54 transform according to the
following rule

N N N25 n28
S, 4 I 1 i
S3+S4 1 I i I
S3-S+ i 1 -1

Up to the second order the free energy has the
form

D=d0+ T Ai SF*T A2(S3+S4)2+
M/

+T  CS3~*uy) + ®SA V.  *u)+ "¢
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The term BS”(S3+S+) describes the exchange interaction
between the two sublattices /it can be very weak in this
case/. This can cause a "quasi phase transition". Let us
assume that decreasing the temperature at T the coef-
ficient A4 changes sign, at T2 the coefficient A2 does
so i.e. A=a ~T -T j)" "2)* Bel°w 1/ there is an aligned
maghetin  moment on the first sublattice and there is a small
ordering on the second sublattice, the moments in the pairs
are ferromagnetically coupled. Below T the moments on
the second sublattice are more oriented but no change of
symmetry, no real phase transition takes place at T2
I f ,and ®/c12 are much smaller than 1 , one can
expect a peak at T2 in the temperature dependence of the
specific heat.

Maybe the second peak corresponds to a real phase
transition but in that case the magnetic structure 1is not
so simple. Let us suppose, that A and A3 change sign
at T and T2respectively. When A*becomes negative there
appears magnetic moment only on the second sublattice,
with antiferromagnetic coupling in the pairs. At tempera-
tures below the second phase transition there is a small
component on the second sublattice with ferromagnetic
c'oupling in the pairs and a big component with aniiferro-
magnetic coupling in the pairs, i.e. the magnitude of
S, and are different.

The two peaks found in the temperature dependence
of specific heat on Ni[(NH2)2CS]6 Br* can be
explained in the same way. A quasi phase transition can
take place also in this compound.

VI» On the structure of some dihydrated formates

Prom y-ray studies it is known that the dihydrated
formates of Mh , NI++ and Fe++ have common monoclinic

KPKI 2412
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structure. The unit cell contains two each of two inequi-
valent types of metal ion sites. In spite of this fact
different magnetic structures were concluded from
susceptibility measurements, ESR, NMR and Md&ssbauer
experiments. In Mn (HCOOQ0)2 «2H20 'two peaks were found in
the susceptibility / One of them can originate from
Fe++ impurities? 0/ but it can be the result of a
"quasi phase transition™, too. Oriented magnetic moment
is only on one sublattice. In Fe and M salts7 «
there is one phase transition. In the Fef+salt there

is oriented magnetic moment on both sublattices while

in the Mi** salt only on one of them. Supposing that

the phase transitions are of second-order we will examine
this problem>*

The space group of these salts is c\~r(P21/c,)
The metal ions are situated on the edges of the elementary
cell and on the centre of the faces /see Pig. 4/. The
origine of the symmetry transformations is at (0~
The symmetries of the crystal are: the unit element ,
the rotation through 180° about the b axis and translat-
ion in the b direction the inversion followed
by a translation Ars”~rb”~r rp tlie reflection in the Qc
plane followed by a translation in the C direction

'r 1 . These transformations connect the

atoms in the be plane but the adjacent planes are
independent.

Let us denote the magnetic moment of the ions at

(ooo) (Or-y),(t 0t ) anci(HO) bT s, ,82,53

and . Transformlng the components of these axial
vectors we get the following: S*-S* | S2y 1S"z - S2z
S3x™ S4x 7 j S3 1S4z %f%bransform according to
the unit representation of the space group, +S7X; A

V  S2z >S3x+ S4X1S3y- 64yl S3z+ S+z transform
according to the "3 representation*

KFKI 2412
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It is possible to set up mixed invariants from
both sets. The invariants of S2x) (SN +S2y) type
correspond to a Dzyaloshinsky-Moriya type interaction,
the invariants of (S" -$2x)("3x~ "4x) ~¥YPe correspond to
the exchange interaction between the two sublattices.
The minimization of the free energy gives that the
members of either the first or the second set will be
different from zero. In the former case we get Sfx=-S2x)

Nu~ "2y "V N2z ) A3~ Mx ; MN3y= ;o N3z~~"MAz. y
in the latter ease S(x=S2x , S)y=-S2;( , S)z=S2z ,

®3x=®4X, S32z°S4z

The exchange interaction between the two sublattices
causes that moments must appear on both sublattices at
the same time. This interaction can be weak and the moment
on the second sublattice can be small in comparison with
the moment on the first sublattice. The magnitude of the
interaction depends on the type of the metal ion, in the
Fe++ salt it may be stronger than in the Nt++ and
salts. As a result of this the moments on the second
sublattice will be more oriented in Fe salt than in
other salts.

These salts have a resulting weak ferromagnetic
moment in the b direction or in the ac plane.

There is a possibility that Vquasi phase transition"
takes place in these salts /there are a lot of mixed
invariants in the free energy/. The two peaks in the
susceptibility of the Mn salt can be explained in this
way,too.
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VII  VII, Summary

The above considerations show the application of
Landau’s theory of second-order phase transitions to
three different cases. First one can determine the
orientation of the magnetic moments in the magnetic phase.
We have shown that the formate dihydrates of iron, nickel
and manganese are weak ferromagnets and there is magnetic
moment on both sublattices. The moments on the second
sublattice can be oriented more or less. Second it is
possible to investigate many-step magnetic phase transi-
tions and to determine the so arising complicated

structures. In connection with this we have pointed out
that the conical-spiral magnetic structure of Mh SO°
has to arise in three steps. At last we have called
attention to the fact that not every peak in the tempera-
ture dependence of the susceptibility or the specific
heat corresponds to a real phase transition. Introducing
the concept of the "quasi phase transition” we could
explain the behaviour of vivianite.

The experimental investigation of these transitions
would be of interest. First of all neutron diffraction
measurements ought to be made. This is not an easy job
because the intensity ratios have to be measured with
great accuracy. NMR and MdOssbauer experiments are also
favourable to determine the moments from the internal
field. Care should be taken of the small components of
the magnetic moment. In the case of MnSO” the existence
of the three successive phase transitions can be examined
with the aid of specific heat and susceptibility measu-
rements, too*

I wish to express my appreciation to Prof. L.Pal
who directed my attention to the application of group
theoretical methods to the theory of second-order phase
transitions. | am most indebted to Mr. A.Zawadowski and
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Mr. Cs.Hargitai for useful discussions and their help

in preparing the manuscript. | am grateful to dr.G.Shirane
for sending a copy of the paper on the neutron diffraction
measurements on MnSO” Dbefore publication, and to

Mr. E.Krén for calling attention to the problem of the
dihydrated formates.
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Fig. 1

The Bravais cell of MnSO* with the
positions of the Mnh atoms.

The magnetic-specific-heat- versus-temperature
curve for vivianite.
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Fg.3.

The unit cell of vivianite. Only the iron posi-
tions are shown

The unit cell of the dihydrated formate salts.
Only the metal ion positions are shown.
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