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ABSTRACT

High temperature series have led to the conclusion that phase transition 
occurs in the 2D Heisenberg model at a non-zero temperature. High temperature 
susceptibility diverges at the critical point and the low temperature suscep
tibility diverges at all non-zero temperatures.

Critical exponents are determined. It is found that high temperature sus
ceptibility diverges logarithmically} the critical isotherm is similar to the 
classical one (6 = 3) ; and the specific heat has no singularity if the magnetic 
field is zero but is singular as a function of the magnetic field.

It is also concluded that critical phenomena occouring in the 2D Heisenberg 
model can correctly be described and understood only when both long- and short- 
range effects are taken into account (duality hypothesis).

АННОТАЦИЯ

Высокотемпературное разложение приводит к возникновению фазового перехо
да в двумерной модели Гейзенберга. Высокотемпературная восприимчивость расхо
дится в критической точке, а низкотемпературная - везде ниже нее. Определены 
критические экспоненты. Сделан вывод, что высокотемпературная восприимчивость 
расходится логарифмически, критическая изотерма похожа на классическую (6=3), 
и теплоемкость не имеет сингулярностей. Наконец, сделан вывод, что критичес
кое явление, возникающее в двумерной модели Гейзенберга, становится понятным 
только при одновременном учете близко- и дальнодействующих эффектов.

KIVONAT
Magashőmérsékleti sorfejtés arra az eredményre vezetett, hogy a 2D 

Heisenberg modellben fázisátalakulás lép fel. A magashőmérsékleti szuszcepti- 
bilitás divergál a kritikus ponton, és az alacsonyhőmérsékleti szuszceptibili- 
tás divergál mindenütt ez alatt.

Meghatározzuk a kritikus exponenseket. Azt kapjuk, hogy a magashőmérsék
leti szuszceptibilitás logaritmikusán divergál-, a kritikus izoterma a klasz- 
szikushoz hasonló (6=3); és a fajhőnek nincs szingularitása.

Végül arra következtettünk, hogy a 2D Heisenberg modellben fellépő kri
tikus jelenség csak akkor érthető meg, ha mind a rövid-,mind a hosszutávu 
effektusokat figyelembe vesszük (dualitás! hipotézis).



1. INTRODUCTION

We have concluded in one of our earlier works (Praveczki, 1980) that 
phase transition occurs in the 2D Heisenberg model at a non-zero temperature, 
Tc>0, although in the low temperature phase there is no spontaneous magnet
ization (Mermin and Wagner, 1966). The critical temperature is defined by the 
divergence of the susceptibility. It should be mentioned that a similar con
clusion is drawn from the investigations by Stanley and Kaplan (1966). Note 
that an opposite conclusion is drawn for the model Brezin and Zinn-Justin 
(1976). Although the conclusion of these authors is strongly critized in the 
first part of the present work (Praveczki, 1985a).

The question now arises as to which are the values of the critical ex
ponents characterizing the non-analytic behaviour of physical quantities at 
the critical point.

We have made an attempt to determine the critical exponents in a mannar 
similar to that applied to investigation of the 3D Heisenberg- and Ising model 
(Praveczki, 1985b). The results are as follows:

a = a ' =  -1, Ф = 2/3
3 = 1 / 2 , p = 2,
У = о (log) , p'= 4/3

и 8 X = 2,
6 = 3 X ' = 0,

(1.1)

where ф characterizes the susceptibility below the critical temperature and 
p, p' X and X' are defined by the specific heat

x(T,H) = Х0 (Т)Н-Ф (T<Tc),

Co (T-Tc)-a+ C1 (T-Tc)-XHP (T>Tc) (1.2)
< _ry ' r n r

c o ( T c “ T )  + q ( T c-T) h p (T<TC).
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Note that 3 is interpreted as the limiting (d-»2) value of 3 (d) where d is the 
dimensionality.

We also looked into the question regarding the equation-of-state corre
sponding to the critical exponent estimates given above (Eq.1.1) and have 
arrived at the corrected critical equation-of-state

1 
M

2where 0 = I/kßT; tok~ к at small values of k; and p(T,H) has the non-ana- 
lytic properties

T
p(T,0) ~ In In § T (T>Tc);

c

p(Tc ,M) - ín J . (1.4)

In order to compare our results for critical exponents with other theoretical 
results known from the literature, we would mention that the estimate obtained 
by Stanley and Kaplan (1966) for у is remarkably higher than that suggested 
above but the difference can be understood from the difference in the values 
of the critical temperature obtained in the two works.

Unfortunately, there are very few experimental results with which we 
could compare our results. Karimov (1972)discovered that the susceptibility 
of the quasi-two dimensional Heisenberg ferromagnet, obtained by the diffusion 
of FeCl2 molecules into crystalline graphite, diverges under a non-zero 'tem
perature in agreement with our results. 2

к dk______
0 [ H+Mp (T,M) ш, ] (1.3)

2. SUSCEPTIBILITY

Because the critical temperature is defined by the divergence of the 
high temperature susceptibility, the first question we have to answer concerns 
the value of the critical exponent characterizing that divergence.

To answer the question, we used the high temperature expansion result of 
Stanley and Kaplan (1966) for the susceptibility and our result (Praveczki, 
1980) for the critical temperature. The investigations are accomplished in 
three different ways due to the essential role of the exponent. The first way 
is the simple ratio method; the second is based on the formulae derived in the 
first part of bur work (Praveczki, 1985b).; the third way is connected with 
the fact that if the susceptiblity, x» has a divergence at 0=©c (0=I/kgT) 
characterized by the exponent y, then 0 as a function of K=l~x 1 has a sin
gularity at K=1 which is characterized by the exponent 1/y.
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The results of the simple calculations are shown in Fig.l. It can be 
seen that extrapolation of approximate estimates leads uniquely to the conclu
sion y=0 in all three cases. Regarding the susceptibility to be divergent at
0=0 by the definition of 0 , the conclusion means that susceptibility di-c c
verges logarithmically at ©c.

More precisely, the above result is consistent with the general expression

X=Xn *ny Tc (2.1)
t _t c

where p is positive. In order to decide whether x diverges as a simple logar
ithmic function (p»l) or whether it exhibits more complicated behaviour, we 
examined the function

Ф= expx

which behaves asymptotically (Eq. 2.1),

~ (T-Tc)~X(u) ,

where

r~
if P>1,

A(p) =<|X0 if p=l and (2.2)
1[o if P<1

The results of the calculations are shown in Fig.2. Extrapolation leads 
us to the result that \ is finite. This means that y=l and the susceptibility 
diverges as a simple logarithmic function, Eq.2.1.

Taking into account that A(p)=xoif y=l (Eq.2.2), we can establish,Fig.2,
that

T
X = 7.39An - ф г  (T>Tc) (2.3)

c

3. CRITICAL ISOTHERM

Next, we undertake the task of determining the critical isotherm and the 
exponent 6. With this purpose, we investigate the equation-of-state on the 
basis of the results obtained by Baker et al. (1970) with the use of the high 
temperature series expansion method.

If 0<0C, K=th0H/M can be expanded into a series in powers of 0 as 

К = к (0) + Кх (0)М2 + К2 (0)М4+... (3.1)
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where Kn (0) is given in the form

Kn (0) - $ Knm®m ' (3‘2)m=n

and here, К _ are determined up to m=8(Baker et al.,1970) run

Because KQ (0) is the inverse susceptibility, we have to begin the inves
tigations with 1(̂ (0). If we define

L1 = 75“ <20-Ki> '

L2 - 7502(5e2-K2), (3.3)

L3 "* у ^ З (ХЗО^-К^) ,

and invert the series (3.2) with the use of the Legendre inversion formulae, 
we get the equations

0 - Z ra«l
0 Lm run n (3.4)

where the coefficients 0 have the values listed in Table 1.run
As can be seen from Table 1, the coefficients are all positive and in

crease as functions of n as well ав m. If we generalize these properties for 
all values of n and m, we arrive at the conclusion that Kn (0c) are finite,
Eq.3.3, satisfying the inequalities

20c >K1 (0ö)>20c (l- J Rj).,

50c -K2 (eö')- 5ec {1"T' V '

136c >К3 <ес)^13ес(1-т1 R3>'

where Rn is the convergence radius of the series in powers of Ln.
A more detailed investigation of the series shows that all Kn (©c) have 

positive values. What is more,those values can be determined approximately 
with the use of the simple successive approximation method. It turns out that 
the approximants of Kn (©c) converge well.

As a final result, we write down the equation determining the critical 
isoterm,

0 H = 0.53M3+0.35M5+0.22M7+... c (3.5 )
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As can be seen from the equation, we have reason to conclude that H 
is an analytic function of M even at the critical temperature. Furthermore, 
if the analyticity postulate holds, then Eq. 3.5 gives us that <5 has the 
classical value of 3 as given by Eqs. 1.1.

4. SPONTANEOUS MAGNETIZATION

It is well-known that the 2D Heisenberg model cannot have spontaneous 
megnetization (Mermin and Wagner, 1966). It is, therefore, an intriguing 
question whether that exact result can be confirmed by the approximation 
methods applied in the present work.

Here, we briefly present the results of investigations accomplished by us 
on the basis of the inversion.method. Let us introduce the notation

L = 1-K (4.1)

and invert the series 3.1 as functions of 0. We obtain

where

0 = 1  ф (L)M2n 
n=0

Ф (L) = 0.25L+0.125L2+0.083333L3+0.06380L4+0.05977L5+...О

Фх (ь) = O.25L-0.0625L2+0.03125L3+0.03385L4+0.06901L5+...

(4.2)

(4.3)

We have to investigate series 4.2 at the critical temperature which 
corresponds to L=l, Eq. 4.1. It is easy to see that the series of ф (L),
Eq. 4.3, gives the critical temperature at L=1, ф (1)=0 (see one of our earl- 
ier works, 1980). As far as series of ф^(Ь) is concerned, the second term is 
negative but all the others are positive and decrease slowly with increasing 
index. If all higher order coefficients are positive and decrease so slowly 
as is confirmed at lowest orders, then the series diverges. Therefore, if we 
express M from Eq. 4,2, we get

M = в [0 -oc]1/2 + ...

where В=[ф^(L)]^2 tends to zero when H-0 (L=l)
This confirms the exact result that there is no spontaneous magnetization at 
non-zero temperatures.
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5. SPECIFIC HEAT

In this section, we investigate the specific heat near the critical tem
perature and at small values of the megnetic field. Firstly, we examine the 
zero-field specific-heat.

Richi and Fisher (1973) have determined some low-order terms of the high 
temperature series for the zero-field specific heat. In the special case of 
S = 1/2 , it reads as

• CQ (0) = 1-0.750-0.984402+1.757603+O.428804-1.283205+... (5.1)

As a means of invetigating the series near the critical temperature, 
we apply the inversion method. Let us define

L = i Co (0) .

Then, from Eq. 5.1, we get

^0 = L+1.5L2+8.4375L3+32.3478L4+170.0205L5+782.0053L6+... (5.2)

It can be seen that in the series obtained from the above, all the 
coefficients are positive. What is more, the coefficients increase rapidly 
with increasing value of the index which means that the value of 0 runs from 
zero to infinity when the value of L runs from zero to a finite estimate 
Lr<l(convergence radius of the series). More precisely,

O<L(0)<Lr<l

for all values of 0. With regard to this result and definition 5.1, we can 
conclude that specific heat has a finite value at the critical temperature,

o<do (0c)<i/0c .

What is more, we can establish, using the successive approximation method!, 
that CQ (0c)= 0.11 .

Once the specific heat has a finite value at the critical temperature, it 
is expected that it is an analytic function at the same value of the tempera
ture T T

Co (0) = Coo+Col(1- ^ )+Co2(1- -F>2+ —

With the aim of conforming to the expectation, we differentiate series 5.1 
with 0, once then twice. We arrive at the series
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- 0 = L1+5.357L2+60.875L2+ 835.7851^+12834.626L^+... 

j 0 = L2+10.714L2+240.0201*2+6604.2071,2+203758.7701*2 + .. .

where

L1 7.875 1.5 +
dCo (0)

d0

0 d C o<0>
2 “  15.75 dQ2

(5.3)

The results (5.3) show that as well as I*2 has a finite value at the 
critical temperature as long as series 5.3 are continued with terms having 
the same properties as can be established at low orders. Furthermore, we can 
determine approximate values of Cq1 and Co2 with high accuracy. As a summary 
of the above investigations of the zero-field specific heat, we may write.

CQ (0)= 0.11 - 2.57(1-Tc/T)+0.321(1-Tc/T)2+... (5.4)

From the above, we assume that CQ (0) is an analytic function of the tem
perature at the critical point. If this is so then a=a'=-l as given by Едз.1.1. 
(Note that we can write a =a'=0 instead of a=a'=-l as in the classical the
ory of phase transitions).

Let us now turn to the problem of determining the field-dependence of
the specific heat at the critical point. On the basis of the results obtained
in Section 3 for the critical isotherm, it seems reasonable to state that free2energy is an analytic function of M at all temperatures, that is

F(T,M) = Fq (T) +F1 (T) M2+F 2  (T) M4 + . . . (5.5)

where the coefficients F (T) , F^T) , ..., are finite and are given by the 
coefficients KQ (T), K^(T),..., Eqs. 3.1, as

FX(T) = Ko (T)/2,

F2 (T) = Кх (Т)/4, (5.6)

at small values of H. Therefore, the specific heat is determined as

C(T,H) = C^TJ+C ĵ T,!!) ,



8

where CQ (T) is determined above, Eq. 5.4, and

C1 (T,H) = -2-- 
Э T z

Ko (T) 2 K1(T) 4~~2—  M'(T,H)+ M4 (T ,H) + . , . (5.7)

When investigating C^(T,H), we have to distinguish between the two cases 
corresponding to T>T and T<T .
if t >t c ,

Ko (T) = 0.14/ in
C

which yields, neglecting the second term in Eq. 5.7,

Tc _2 2
C1 (T,H) = 2.43(1--^) . (5.8)

If T<Tc, the first term is identically equal to zero in Eq. 5.7 which is a 
consequence of the zero-field.susceptibility diverging at all temperatures 
below the critical temperature,see Stanley and Kaplan, 1966 and Section 6.
So we obtain from Eq. 5.7 and Eqs. 3.1 and 3.5, that

C1 (T,H) = C1;l (T)H4/3 (5.9)

where

c,l(T) - -Ü. e-5/3Kj1/3/4 .
Э T z

As we have seen in Section 3, K^i©) has a finite value at ©c. Furthermore» 
the first derivative of (0) with respect to 0 is also finite which can be 
seen from the series obtained from the series of (0), Eq.3.2, as

0 = R+3.0314R2+12.7004R3+ 59.2234R4+294.7472R5+...

where

In fact, we get
d
a© Kx(0))...

d_
d© - 0.8

Unfortunately, it is impossible to determine the value of the second 
derivative of (0) at ©c with satisfactory accuracy. However, it can be sup
posed that it has a finite value. A consequence, however, is that C^fT) has 
a finite value at the critical temperature, Eqs. 1.1 and 1.2.
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As a summary of the present section, we can establish that zero-field 
specific heat has no singularity at the critical temperature. This result can 
be well undestood on the basis of the fact that critical exponents of other 
physical quantities cannot be related to the zero field specific heat due to 
the absence of the spontaneous magnetization. Furthermore, field-dependent 
specific heat is singular at the critical point as given by Eqs. 1.1 and 1.2.

6. EQUATION-OF-STATE ON THE BASIS OF THE RENORMALISED SPIN-WAVE THEORY

With the aim of writing down the critical equation-of-state and casting 
more light on the nature of the phase transition in the 2D Heisenberg model, 
we refer to one of our previous works (1977) where it is ahown that the equa
tion-of-state for the Heisenberg model (at any value of the dimensionality) 
can be given in the form

1 = ( dDk_______
M > th0[H+A(k,0,H)

where Л is the exchange part of the renormalised spin-wave energy and it can 
be given as a series in powers of H.

oo
Л (k,0,H) = E Л (k,0) H 2n+1 (6.2)

n=o
where H =0H and Лп (к,0) can be expanded into a high temperature series, for 
instance, as

OO

Лп (к,0) = E Л (k) 0m . (6.3)
m=o

Equations 6.1 - 6.3 are based on the canonical ensemble of the states 
of the model and do not converge at T<Tc.To get rid of we suggested previ
ously that H in the expression of Л(к,0,Н), Eqs. 6.2 and 6.3, must be elim
inated by the magnetization and the temperature using the equation-of-state 
obtained by the usual type high temperature expansion,

M = th0[H+a) (0,M) ] , (6.4)

where

ш (0,M) = E ш (0)M 2n+1 
n=o

in which wn (0) is given by a series of the form

ш (0) = 2 io 0n ___nmm=o
m (6.5)
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If we insert the expression of H, Eg. 6.4, into the expression of 
Л(к,0,Н), Eg. 6.2, we arrive at the eguation-of-state

1
M th0[Н+Л(k,0 ,M)]

(6.6)

instead of Eg. 6.1 where Л is given as
OO

Л (k,0,M) = E Лп (к,0)М 2n+l (6.7)
n=o

and here, the coefficients are determined, Egs. 6.2 and 6.3, in the form of 
the high temperature series

In the above eguations, M denotes the magnetization as well as M being 
based, both of Egs. 6.1 and 6.4, on exact definitions. Therefore, we may write 
M=M which results from Eg. 6.6 being a self-consistent eguation for M as a 
function of T and H. However, there is another possibility, viz. that we regard 
M in Eg. 6.6 as a parameter determined by Eg. 6.4.

The second approach is reasoned by the situation that шп (0) and Лп (к,0) 
as functions of 0 are generally determined in different orders. However, there 
is a second and more deeper reasoning which prefers the second approach to 
the first one.

Eguation 6.7 as well as Eg. 6.1 reflects first of all the long-range ef
fects ( wave properties of the elementary excitations) whereas Eg. 6.4 re
flects mainly the short-range effects (particle properties of the spins).This 
means that if we conserve the notation in Eg. 6.7, we have to conserve it in 
Eg. 6.4, too. Thereby, we arrive at a pair of eguations which reflects the 
long-range effects as well as the short-range effects (dual properties of ex
citations) .

Here, as a means of illustrating the above statements we carry out a 
brief investigation based on the lowest order approximations for <o(0,M) and 
Л(к,0,М) which are

With the use of these expressions, we get from Egs. 6.4 and 6.6 the eguations- 
-of-state

oo

10(0, M) = M

Л (k,0 ,M) = M(0k

M = th0[H+M] (6.8)
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and

1 
M

Equation 6.9 can be seen to be the result of the mean field approximation 
which reflects the local properties only (particle approach). The spontaneous 
magnetization and the zero-field susceptibility are determined as

[ d к 
' th[H+Mwk ]0

Mo = [3(1-0C (©)]1/2 ,

XQ = ТГ^0 (0c=1) * (6*10)c
Next, insert M = M into Eq. 6.9. We then get the equation-of-state which 

is known as that obtained with the random phase approximation. We can easily 
see that QC (D) (D is the dimensionality) is given as

which diverges when D-2. Consequently, there is no phase transformation ac
cording to this approach (Wave-approach). Note that the same dimension-depend
ence is obtained for the critical temperature by applying Brezin and Zinn- 
-Justin's (1972) field-theoretical method as well as by the renormalization 
group method of Migdal (1975) and of Forgács and Zawadowski (1970).

Finally, let us investigate Eqs. 6.8 and 6.9 in accordance with the 
duality hypothesis which tells us that critical phenomena (especially those 
occurring in the 2D Heisenberg model, etc.) can correctly be described and 
understood by taking into account both the long-range and short range effects.

From Eq. 6,8, at small values of H and M, we get

1
M

.D. d k
0[H+Mwk ]

which yields for the zero-field susceptibility, Eqs. 6.10,
Г

if T>Tc and 

if T<Tc

At the same time, spontaneous magnetization is given as

Mo~(D-2)(0-0c)1^2 О

(6.11)

(6.12)

if D-2
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As we see, the results obtained from the system-of-equations 6.8 - 6.9 
are in full qualitative agreement with the results obtained in the former 
sections.

It can be shown that increasingly better results can be obtained for the 
critical behaviour of the magnetization, susceptibility, etc. by using better 
approximations for (on (0) and Лп (к,0) as high temperature series. Some of the 
critical exponents (6, 6, etc.) take their correct values at lowest order ap
proximation and do not change their values when we use longer and longer high 
temperature series approximants. Similary, we get that zero-field susceptibil
ity diverges at all temperatures below the critical one in all orders of ap
proximations. Some other critical exponents (y, for instance) have approxi
mate critical exponents that are different in different approximations for 
high temperature series. However, it can be ensured that they converge to the 
right value.

7. CORRECTED CRITICAL EQUATION-OF-STATE

Based on the results achieved in the previons section, it is possible to 
construct the corrected critical equation-of-state. We accomplish the task by 
accounting for the duality hypothesis.

First, we would mention that some of the critical exponent estimates are 
given correctly by the system-of-equations 6.8 and 6.9, as was mentioned in 
Section 6. In view of this we need only renormalize in that system-of-equa
tions and then combine them into one equation.

The result is given by Eq. 1.3 where p(T,M) is an analytic function of T 
and M if M^O and T^Tc, respectively, and it has the singular properties 
given by the expressions,1.4, otherwise.

8. REMARKS

To complete this (present) work, we would mention that the scalling law 
(as given by the critical equation-of-state, etc.) is invalid for the 2D 
Heisenberg model judging by our investigations. A similar statement is true 
for some of the critical exponent relations (a+2ß+y=2, for instance).

As further support for our conviction that the critical phenomena (es
pecially those occurring in the 2D Heisenberg model, etc.) cannot be described 
and understood correctly without accounting for both the long- and the short- 
-range forces simultaneously (duality hypothesis), we briefly show the main 
steps accomplished in one of our former works (197(») in which Heisenberg films 
were investigated.

If we define the Green function

Gff,(t,t') = <<S~(t); S+,(t')>>
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we get the equation-of-state

§£ Gff,(t,t') = M6ff,6(t-t')-i I I [p(g(f,f';t,t')Gff,(t,t')-
g 4

-p(f,g,f';t,t')Ggf,(t,t')]

where
<[S°S~(t); S+ (t')]>

p(g,f,f';t,t') = ---------------------
<[S (t); sj, (t') ]>

The long-range effects can be taken into account by an approximation for p 
satisfying the asymptotic equality

lim p(g,f,f';t,t') = M (8.1)
g-f - °°

It can be satisfied using the approximation p(g,f,f';t,t')“M which gives the 
equation-of-state obtained in the RPA. However, if we also wish to take into 
account the short range effects, it is necessary to find an approximation 
which satisfies the equality

lim p(g,f,f';t,t') = 1 (8.2)
f-g - О

at least.
Equation 8.1 and 8.2 are both satisfied by the approximation

p(g,f,f';t,t') = ----------
l-2<SfSg>

This approximation leads to the result that there is a phase transition 
at a non-zero temperature (where the high temrepature susceptibility is di
vergent (but the spontaneous magnetization is absent below the critical tem
perature as well as above.
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Table 1. Values of the coefficients 0__ determining 0 as a function of L ,nm n 1
Eqs. 3.3 and 3.4.

1 2 3 4 5 6

1 1 2.0476 5.0193 14.978 44.156 133.31

2 1 3.0224 11.501 48.022 210.88 955.70

3 1 4.0290 20.533 115.22 681.51 -

Table 1
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