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ABSTRACT
The Hamiltonian version of the three dimensional q-state Potts model is 

studied by the block transformation method on triangular and square lattices. 
The transition is found to be of first order when the number q is larger 
than a critical value. The first order transition however, is not controlled 
by a discontinuity fixed point.The critical trajectory is attracted by a point, in which the trans­
formation is discontinuous. The correlation length is finite and there is no 
time rescaling at the transition point, which represents a first order 
transition.

АННОТАЦИЯ

Методом блочного преобразования исследован гамильтоновский вариант трех­
мерной модели Поттса, находящейся в состоянии q, для триангулярной и квадра­
тичной решеток. Показано, что наблюденный в модели фазовый переход является 
переходом первого рода, если значение q больше определенного критического зна­
чения, однако этот переход не контролируется дисконтинуальной фиксированной 
точкой. Критическая траектория притягивается точкой, при которой преобразова­
ние имеет разрыв. Длина корреляции является конечной и не возникает скалинг времени, характерный для переходов первого рода.

KIVONAT
A három dimenziós q-állapotu Potts modell Hamilton változatát tanulmá­

nyozzuk blokk transzformációs módszerrel háromszög- és négyzetrácson. Az át­
alakulást elsőrendűnek találjuk, ha q egy kritikus értéket meghalad. Az át­
alakulást azonban nem egy diszkontinuitási fixpont kontrollálja.

A kritikus trajektóriát egy olyan pont vonzza, ahol a transzformáció 
szakadásos. A korrelációs hossz véges, és nincs idő skálázódás az átalakulási 
pontban, mely elsőrendű átalakulásokra jellemző.



I . Introduction.

The q-state Pottsmodel is one of the most extensively studied models of
. . . . . 2 statistical mechanics. In two dimensions (2D) there are many exact and

3conjectured results, but the properties of the model in three dimensions 
(3D) are much less known.
An interesting property of the model is that the nature of the phase tran­

sition depends on the number q. In d dimensions the transition if of first 
order, if q > q^(d), otherwise it is continuous. A mean-field calculation
predicts q^(d) = 2 independently of dimension. More refined methods however

. . . 2show that q^ does depend on dimension, and it is exactly known that
qc(2)=4, and qc(4)=2. In 3D there is no exact result, but some numarical

4calculations have been performed. Kogut and Sinclair used the 1/q expansion 
and found (3) < 3. The same conclusion was obtained by Nienhuis et al.^

They applied the Kadanoff variational renormalization group (RG) for the 
Potts-lattice-gas model for dimensions 1.58, 2 and 2.32. By increasing 
the dimension a quickly decreasing q^ was found, and the result q^(3) < 3 
was obtained. The direct calculation in 3D (by the Migdal RG method), 

however, was not succesful in describing a first order transition. Our 
aim in this paper is to describe the first order transition in the 3D 
model by the RG method.

This work is the continuation of a series of papers^, in which J.Solyora,
P.Pfeuty and one of the present authors investigated the Hamiltonian version 

of the 2D Potts model by RG transformations. In the present paper the 
Hamiltonian version of the 3D model is studied. By performing the time-continuum 
lirait̂  a 2D quantum problem is obtained, which is isomorphic with the 3D 
classical model. The critical properties of the model are studied by the

g
block transformation , and a first order transition is found for q > q .
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In our case however, the manifestation of the first order transition in

the RG transformation is of a novel kind. A first order transition is gene-
. , , . 9rally described by a discontinuity fixed point (DFP), in which one eigenva­

lue of the transformation is b^ ( b is the rescaling factor). This fact 
results in a discontinuous behaviour of the order parameter, but some 
other properties of the transition controlled by the DFP are characteris­
tic of continuous phase transitions, e.g. diverging correlation length, 
critical slowing down, etc. These problems are related to the fact that the 
DFP describes the transition with the appearance of an instability.

In our case the first order transition is not controlled by a fixed point
in the usual way. The RG transformation has a special point which we call

the discontinuity point (DP), which attracts the transition points separating 
the ordered and disordered phases. By approaching the DP, however, this point 

becomes infinitely repulsive in the perpendicular direction, which is due 
to a crossing of energy levels of the first two excited states of the cell 

Hamiltonian. At the transition point one obtains a finite mass gap, i.e. 
finite correlation length, and there is no critical slowing down. The thermo­
dynamic quantities either show a jump at the transition point, or can else 
be described by critical exponents characteristic for first order transitions*^. 
The mechanism bringing about the transition is in accordance with the physical 
picture describing the phase coexistence. The transition takes place before 
the DFP desribing instability of the ordered phase would appear, because 

the disordered phase becomes more favourable from the thermodynamic point 
of view.

The setup of the paper is as follows. In section II the Hamiltonian version 

of the 3D Potts model and the RG tranformation are presented. Section III 
contains the results of the calculation (structure of fixed points, critical



\

couplings and exponents) for square and triangular lattices. In section IV 

there is a discussion on the nature of the first order transition, while

section V contains a summary.
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II. Description of the method.

The interaction energy of the q-state Potts model^ is

Hint -  x У бV . S.3.<1J> 1 J

where s^ =1,2..... and the summation goes over nearest neighbours. The
(d-1)- dimensional quantum system whose groundstate properties are isomorphic 
with the thermodynamic properties of the d-dimensional classical system, 
can be obtained by making use of the time-continuum limit^. Its Hamiltonian 
can be written in the form:

H = H. + H-. . ,int field

where the external spin flip field is

q-1 ,
H ,. 1 , = -  h У I  M.field v . L. ii k=l

is the spin flip operator:

M

0 1 0 ... (Д
0 0 1  ... 0

1 0 0 . . . 0

For some calculations it is more convenient to use the representation in 

which i-s diagonal^ :

Hf ield h I R.
L l i

q-iH.int - - f  I l ̂<ij> k-1
мк м Г кI J
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where R is the nxn diagonal matrix:

q-1
-1
-1

The order parameter of the system in the original representation is:

S = 61, s.

and has the form:

I
q

q-1

in the transformed basis.

The critical properties of the system are investigated by the block transforma-
g

tion method developed for quantum systems . One of the present authors has shown 
that this method, which at first sight seems completely ad-hoc, is the zero 
temperature limit of a first order approximation to a free energy preserving 

mapping defined at finite temperature.
In this method the lattice is divided into blocks labeled by an index a. For 

the triangular lattice the block was chosen as a triangle with three spins, 
while for the square lattice it is a square with four spins. Both blocks 
have the property that all sites of the cluster are equivalent. The Hamilto­
nian of the system is split into two parts. The unperturbed part contains 
all the field terms and the couplings within the blocks, while the perturbation 
contains the intra-block couplings. First the Hamiltonian of a cell is diagona- 
lised exactly or numerically. The energy spectrum of the 2D blocks is similar 

to that obtained in lD̂ : the ground state is non-degenerate (with energy Ej), 
while the first excited state is (q-l)-fold degenerate (with energy E^)• Thus
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the first q states of the block are identified with the states of a block- 
spin, which has the original Potts symmetry, while the higher lying states 
of the block are omitted. The renormalized values of h are determined by
the energy spectrum of the block. In the nth step the transformation is:

(n-1) (n-1)
u (n) _ 2 Ь1

At the same time the energy levels of the block shift by
P(n—1) / I \ . p(n-l)

(n) E2 (q !) + El

in one renormalization step.

To obtain the renormalized values of the Л coupling, let us first inves­

tigate the transformation properties of the operator. The matrix elements 

of in the space of block-spin variables depend on the states. They are 
different, depending on whether the ground state is flipped, or the excited 
ones:

Cell< l| Mi | q >Ce11 = cell< 21 M j  1 >Ce11 =4

cell _I .. I „ cell cell ,\ .. \ » cell cell i w i , cell r< 3| M̂ l 2 > = < 41 M.J 3 > = ... = < q| M̂ | q-1 > =4,

As a consequence, the matrix elements of also depend on the number of
I C611gr> und states flipped. It is Xj/q, and if two,one or zero |1 >

states are flipped, respectively. The three couplings are not independent, they 

can be expressed by 4^°^ and :

(n)
( n ) < 1 2 1 HI 2 1 > (n) 2(4[П))2

(n)
(n) <1 31 HI 2 2 >(n) 9 (n) (n)

* 4  2̂
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(n)

— —  = ( n ) < 2 3 1 HI 3 2 > (n) = 2 ( c l n) ) 2q l

The factors 2 on the right hand side appear due to the fact that there are 
two couplings between blocks, both for triangular and square lattices.
The subsequent renorraalisation steps do not increase the number of different
matrix elements . So in the th . n step they are:

£(n) _ 
1 a(n)all sín

-1) + a(n) a 12
r(n-l)
*”2

5<">- a(n)a21 5<"-1) + a(n) 22
r(n-l)
^2 (2.2)

and

«i0> -
(°)

^2 = 1

We mention that the structure of the RG equations, as well as the type 

of the new couplings is the same as for the (1 + 1)D model**. In the following 

we use couplings X, h, and /£j to describe the state of the system.
For the physical model x=l. The ground state energy of the physical system 
can be calculated from the shift of the block energy (2.1) along the flow 
trajectory:

“ -<0
E0 U / h )  = I  I___

i=l i ns
where ng is the number of spins in the block. The orderparameter can be 
calculated from the renormalisation of £] and (eqs.(2.2)) along the flow 
trajectory:

s = lim s(n) (2.3)
n-x»

where
s<n) ■ Ц  ( 2.s[n) . (q—2) s<"> )

q
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III. Results■

The physical picture given by the RG equations is the same for the triangular 
and square lattices, and it is similar to that obtained for the (1+1)D model.
The physical model (x=l) is ferromagnetically ordered for large values of X/h 
and it is paramagnetic if X/h is small. At the critical value of the coupling 
(X/h)c> there is a phase transition in the system. When

X/h >(X/h) ; h^n  ̂ -*■ 0 , Х^П -̂*° and x^n -̂*- 1
n-*» n-*° n-x»

the ground state is q-times degenerate, ferromagnetically ordered.
When

X/h < (X/h)c ; h(n)+ h°> 0 , X(n) ■> 0 and x(n)+ 0
n-̂ ° n-**» n->°°

the ground state is nondegenerate and paramagnetic.

At the critcial value of the coupling the properties of the transition are coir 

trolled by nontrivial fixed points. The structure of these is given in fig. 1. 
for q <q^ , i.e. when the transition is of second order. In this case the transi­
tion of the physical model is controlled by a critical fixed point, denoted 

by Cl in fig.l. The two nontrivial fixed points on the x=0 axis (C2 and T2) con­
trol the RG flow on this invariant line, but do not affect the critical proper­
ties of the physical model. There is another attractive point of the phase dia-

2gram at the position x=°°, X/h=0 but(X/h).x is finite. This point denoted 
by D in fig.l is a DFP for q=3 on the triangular lattice, but for larger values 

of q and on the square lattice this point becomes a DP. While postponing the 
detailed analysis of the behaviour at point D to the next section, here we only 
mention that the point D in all cases can be seen as describing a first order 
transition in the system. The regions of first and second order transition 
points are separated by the tricritical fixed point Tl.



10

By increasing the value of q, Cl and Tl, as well as C2 and T2, move 
towards each other. At q » q^ they annihilate each other, and the transition 
of the physical system is controlled by D, so it is of first order. The cal­
culation can be performed only for integer values of q, therefore the mecha­

nism of annihilation cannot be examined in such detail as in the (1+1) D model.^ 
The transition is found to be of first order for q > 5 for the square lattice 
and for q > 6 for the triangular lattice. Both values for qc are somewhat 
smaller than that obtained for the (1+1)D model in the simplest case(with

g
two spi^s in a block) where q (1 + 1) =■ 6.81 was found . These values however,

4 5are also rather far from the conjectured * q^ <, 3 .

The critical properties of the transition (critical coupling, correlation length
critical exponent) for q < q^ are given in table 1 both for triangular and

12square lattices. The series expansion results for the Ising model (q=2) are 

given in brackets. One can see that the results for the square lattice seem 
to be more accurate, which can be ascribed to the fact, that in this case 
more spins are in a block, in comparison with the triangular lattice. The 
critical couplings as a function of q are given in figs.2.a and 2.b for
triangular and square lattice, respectively. The result of the 1/q expansion 

is also given in fig.2.b.

4



IV. Properties of the first order transition.

In this section we return to the question of the nature of the transition con­
trolled by the point D in fig.l. Indeed this calculation is the first RG calcula­
tion which shows a point like the DP. Here we will give arguments why we believe 
it is possible that this point represents a first order transition.
When the point D is a DFP (for q=3 on the triangular lattice), the first 
order nature of the transition is signalled by the fact that the specific heat 
exponent a=l. To calculate a we make use of the scaling relation for quantum 
systems:

2 - a = (d-l+z) v

where z is the dynamical exponent, defined by

lim
n-*»

h(n+1)
h(n)

In the DFP h^n  ̂->0 and z> 0, which gives a diverging correlation length and
n-*=°

critical slowing down at the transition point, characteristic also of continuous 
transitions.

By increasing the value of q, the DFP disappears, and the phase transition is 
attracted by a DP. To have a closer look at the nature of DP let us investi­
gate the RG transformation in the neighbourhood of this point. Now it is more

2convenient to use the variables 1/x and Xx /h. The result of one RG step at 

the 1/x=0 line for q=3 and q>3 are sketched schematically in fig.3.a and 3.b 
respectively. One can see in the figures that the RG transformation is discontinuous 
at this line due to a crossing of the energy levels of the first two excited 
states at a point denoted by CP. This discontinuity has no effect on the critical 

behavior for q=3, when the transformation still has a DFP. For q>3, however there
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is no fixed point of the transformation, the phase transition trajectory is 
attracted by CP, which we call a discontinuity point (DP). We may still identify
however an "imaginary" DFP (indicated between parentheses in fig.3.b), if the

' 2second excited state of the block is used in the RG transformation for Ax /h<CP. 
This "imaginary" DFP can be taken as the instability point of the ordered phase : 
the overheated system would melt at this point due to fluctuations.

The transition of the physical system is controlled by the DP, so let us have a 
closer look at its properties. First we mention that the transition in this point 

has the physical picture of phase coexistence, characteristic of first order 
transitions. At the phase transition point, scaling to DP does not determine the 
properties of the system uniquely, since the ratio of the eigenvectors belon­
ging to the same excitation energy of the block and so the ratio of the coexisting 

phases, are determined by external variables.

The scaling for 1/x > 0 is continuous, because in this region hybridization

of levels occurs instead of their crossing. The transformation properties of the
RG equations close to DP, however, are special. Suppose that a point is at
the position h,l/x and Ac(h,l/x) + i.e.AA^ is the distance of the point

. 2 . . . .from the phase transition trajectory in the Ax =A3 direction. This point 
transforms as:

h' =■ y, . h h

(AA3)'= UX-AA3

where the eigenvalues are:

const
2x
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u = const < 1X

бу - const.Xл
6=2 for triangular lattice, and 6=3 for the square lattice.

According to these equations we can state that the DP is attractive in the 1/x
direction, but becomes infinitely repulsive in the perpendicular direction.

1 3Furthermore,on the phase transition trajectory

h(n> » h" > 0
n$oo C

Therefore the mass gap is finite at the transition point, which means finite 
correlation length. One can also see that there is no time rescaling (since 

-*■ 1), so there is no critical slowing down at the transition. Thus we can 
conclude that the properties of the transformation at the DP are clearly charac­
teristic of first order transitions. This discontinuous behaviour does not show 
up so clearly in the ground state properties of the system. Due to the approxima­

tions in the RG equations, the order parameter (eq.(2.3;) goes to zero at the 
transition point. However, the corresponding critical index ß equals zero which 
according to the scaling hypotheses*^, is characteristic of first order transitions

The DP therefore exhibits many properties characteristic of first order transitions 
It is an interesting question whether the DP will remain present when larger

cells are used, when we go to higher order1'-14, Cr when other RG schemes are
.15used

?
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V. Summary.

In this paper the Hamiltonian version of the 3D Potts model was investigated 
by RG transformation, and it was found - for the first time for a 3D model - 
that the transition is of first order for 4>4C- In the simplest approximation
q =5 was obtained for the square lattice, and q =6 for the triangular lattice.c c
These values are rather far from the conjectured q^ < 3, but the quantum RG

8 1 1method generally gives rather approximate values *

The first order transition appeared in a novel way in our RG transformation. 
This transition is controlled by a discontinuity point (DP)% by an attractive 
point, which is not a fixed point of the transformation. The transformation 

is discontinuous on the line containing DP, due to a crossing of the levels 
of the first two excited states. The phase transition controlled by the DP 
is found to be of first order, because at the transition point the correlation 
length is finite and there is no time rescaling.

Further investigation will have to show however whether the DP can be placed 
on the same footing as the DFP in describing first order transitions within 

RG theory.
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triangular lattice square lattice

q

(X/h)c V (X/h)c V

2 .381 ( .400) 1.59 ( .64) .610 ( .658) 1.20 ( .66 )

3 .805 1 .65 1 .210 1 .03

4 1 .303 1 .55 1 .896 0.84

5 1.908 1 .29 2.630 0.66

6 2.526 1 .04

Table I

Table caption

Critical properties of the (2+1)D Pottsmodel obtained by RG transformation 
on triangular and square lattices.

(X/'h)c and v denote the critical coupling and the correlation length critical
• . 12 exponent, respectively. The results of series expansion for q=2 are given

in parentheses.
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Figure captions

fig. 1 : RG phase diagram of the (2+l)D Potts model for q<qc» Empty circles
and full dotts represent the trivial and nontrivial fixed points, 

respectively.

fig.2 : Critical coupling as a function of q for the (2+l)D Potts model:

a. On triangular lattice
b. On square lattice

4For the square lattice the results of the 1/q expansion are given 

by the full curve.

fig.3 : Renormalisation map in the limit l/x=0 (schematic).

a. In the presence of a discontinuity fixed point
b. In the presence of a discontinuity point(see text)
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