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ABSTRACT

It is a general belief that in some early stages of the evolution of the
Universe unequilibrium situations played important role. In order to incor-
porate some deviations from thermal equilibrium into the description of the
evolution, here an extension of the thermodynamic formalism is given, where,
using the notion of ekaentropy, new terms are introduced into the Gibbs-Duhem
relation for representing the deviation. Two situations are investigated in
simplified models: the primordial thermalization in the symmetric phase of
GUT, and the development of a nonthermal distribution for massive neutrinos.

AHHOTALNA

O6WenpuHATLIM sIBASIETCA MNpeanosioxeHne, 4YTO Ha paHHUX cTaausix aBofuum Bce-
NIEHHOII paBHOBECHLIE YC/IOBUSI Urpanu BaxHyw pofib. B Uenax BK/IYEHWss B onucaHue
3BOJIOUMM PA3/MNUHbLIX OTK/IOHEHMWIA OT TEennoBOro paBHOBECUS B AaHHOI paboTe NpUBO-
ANTCSA pacuupeHve TepMmoagvHamuyeckoro dopmanuama, B KOTOPOM, WCMOMb3ysi MOHSATHE
9KasHTponuu, [ANs onucaHus OTK/IOHEHWUIH B cooTHouweHue u66ca-fiwrema BBOASTCHA HO-
Bble UY/ieHbl. B YMpOWeHHbIX MOAENsX paccMaTpuBawTCs ABEe CUTyauuu: MnepBuYHas Tep-
Manusaums B CMMMETPUYHOl (ale Teopun 60/bLIOro 06beJVHEHUST U YCTaHOB/EHUE He-
paBHOBECHOI 0O pacrnpegefnieHnss MacCUBHbIX HENTPUHO.

KIVONAT

Altalanosan elfogadott vélemény szerint az Univerzum fejlédésének korai
szakaszaiban a nemegyensulyi Tfolyamatok fontos szerepet jatszottak. Hogy a
hémérsékleti egyensulytdél vald eltéréseket beépitsiuk az evolucid leiréasaba,
kiterjesztjuk a termodinamikai formalizmust: az ekaentroépia fogalmanak se-
gitségével uj tagokat vezetink be a Gibbs-Duhem relacidba, amelyek az elté-
rést jellemzik. Két esetet vizsgalunk egyszerilisitett modellek segitségével:
a primordialis termalizacidét a GUT szimmetrikus fazisaban, és a tdmeges
neutrindk nemegyensulyi eloszlasanak kialakulasat.



1. INTRODUCTION

In the last decade the horizon of cosmology has remarkably marched
backward into the very early past, and now it almost reaches the Planck
time, which is the absolute limit until the unified theory of gravitation,
relativity and quantum effects is not known. This extension of the scope of
cosmology is a consequence of the birth of new particle physical theories
(as e.g. the Weinberg-Salam unification of the electromagnetic and weak in-
teractions [1] and Grand Unified Theories [2]), which can yield predictions
until at least 10 GeV energy. Of course, these new theories describe
exotic enough situations, thus it is not so easy to collect sufficient
amount of evidences for them. Concerning the unified electroweak theory,
two of the three new predicted particles, the W and Z coupling bosons have
been experimentally found [3], with the predicted mass. Nevertheless, the
Higgs boson is still unobserved, therefore one parameter of the Higgs self-
interaction is unknown. The situation is even more obscure at higher ener-
gies, where some version of the Grand Unified Theory (GUT) is expected to
describe the physics; no new particles or effects predicted by GUT have been
observed until now. (For a review see Refs. 4 and 5.) Nevertheless, here we
are not going to discuss the validity of these new theories; they are the
simplest ones for the corresponding energy ranges, so, if one needs physical
theories for constructing cosmological models for the very early Universe,
then they are the most obvious candidates until clear counterevidences are
not shown.

Nevertheless, even fTully accepting these theories, some additional in-
formations are necessary for a cosmological model. Generally speaking, the
description of a physical process needs a theory for the interactions, and
the specification of the initial condition. The new theories may correctly
describe the interactions, but cannot specify the initial conditions, and
one may have some doubts, how to choose the latter ones for our Universe,
which should have to be unique.

This problem is not very explicite in the usual models. Namely, gener-
ally the degrees of freedom of the matter of the Universe are represented by
several macroscopic data (which is, of course, necessary from technical
reasons), as e.g. particle numbers, energy and volume. Then the necessary
initial conditions are either directly connected to conserved observables
(as e.g. the total electric charge), or they can be calculated from observ-
ables. Then, of course, there remains the problem, what is the fundamental
reason of these specific initial data, nevertheless the practical problems
are solved. In the same time, it is very convenient to use such a restricted



set of characteristic data of the matter, and this is conform with our ideas
about the simplicity of the Universe. Such a restricted set is yielded by
thermodynamics [6-9].

Nevertheless, the axioms of thermodynamics do not guarantee that a
generic physical system can be described by a finite set of data, even ap-
proximately; it is stated only for equilibrium states [10]. Therefore, the
use of a thermodynamic formalism implicitely implies that one believes in
the existence of (at least local) thermal equilibrium. Now, this is not a
serious problem in a static system; either the initial conditions were lucky,
or, if not, the interactions will equilibrate the system in a finite charac-
teristic time anyway. Nevertheless, the Universe is par excellence nonstatic.
Therefore, the realization of the second possibility is a question of the
ratio of different characteristic times, while it would be unfair to a priori
assume TFTulfilment of the first one (and it is well known that in dynamically
evolving systems even the prearranged equilibrium may break down if the
changes are too rapid [11])- In addition, there are some signals for the
importance of deviations from equilibrium in the very early Universe: e.g.
it seems-that equilibrium processes cannot have led té generation of a non-
vanishing total baryon number from a symmetric initial state (which genera-
tion is generally permitted in GUT) [5]- \Y;

Therefore in this paper we want to discuss the possibility and the con-
sequences of unequilibrium states in the early Universe. Two specific situa-
tions have been chosen, when unequilibrium states seem to be probable: the
initial very rapid evolution of the Universe, when the characteristic time
of the expansion was too short, and the decoupling of the neutrinos. In the
second case it is obvious that after the decoupling there are no interac-
tions maintaining the equilibrium between the neutrinos and other particles,
but if the neutrinos are massless, their momentum distribution remains
thermal with a false temperature; if m» ~.0, the distribution cannot remain
thermal. Of course, when discussing such effects, one must not use the
thermodynamic description. Nevertheless, that formalism can be extended to
states without full thermalization [12], at the expense of introducing new
characteristic quantities; in principle an infinite set is needed, but, if
partial information is available, a finite set may be practically sufficient.

It is necessary to emphasize that nonequilibrium effects caused by
comparable characteristic times have been investigated in the cosraologic
literature. An excellent discussion can be found in Ref. 13. There it was
shown that the finite collision time leads to viscous irreversibilities.
Nevertheless, as the classical limit investigated in Ref. 12 clearly shows,
there exist genuinely unequilibrium irreversibilities which cannot be de-
scribed by transport terms as e.g. viscosity, although in such symmetric
space-times as a Universe model different irreversible processes can
simulate each other.

Since even a partial information seems to be absent about so early
states of the Universe when the particle theories do not work, this paper



is to be regarded as only an attempt to get some insight into the primordial
irreversibilities. However, it is interesting to see which predictions of
the standard model are direct consequences of the equilibrium hypothesis,
definitely not too physical for some stages of the evolution.

2. PSEUDOTHERMODYNAMICS

Generally in realistic nonequilibrium situations there are two different
types of deviations from equilibrium (although they may be connected with
each other in some extent): either there are inhomogeneities in the spatial
distributions of the characteristic quantities, or the momentum distribu-
tions deviate from the equilibrium ones. Obviously, spatial inhomogeneities
generate transport fluxes, which then maintain certain deviations in the
momentum distribution, too [14]. Nevertheless, this type of nonequilibrium
situations is widely discussed, and there exist some standard formalisms to
handle the problem. Furthermore, there are genuine unequilibrium situations,
when the sources of the unequilibrium behaviour are not gradients and cur-
rents but the incomplete thermalization of some initial configurations (as
e.g- iIn relativistic heavy-ion collisions [15]). Finally, in cosmology the
inhomogeneities automatically vanish on large scale. Therefore, it seems
that a formalism would be useful which can handle unequilibrium situations
without direct connection with inhomogeneities. For simplicity"s sake for
this paper, which deals with cosmology, we completely ignore spatial in-
homogeneities and currents in the local description of the matter, since
such terms must actually vanish.

Obviously, if the system is out of equilibrium, as in the presently
discussed situation, we cannot hold the usual assumption that the equilib-
rium extensives sufficiently describe the system; in the best case new
parameters are necessary. A way to introduce "unequilibrium" thermodynamic
parameters describing the unequilibrium features* was given in Ref. 12. There,
using the notion of ekaentropy P [16], and by the help of the generalised
Callen Postulates [17], it was shown that deviations from the thermal dis-
tribution result in a corrected entropy function, which, in Ffirst approxima-

tion, reads as

K @.1)

_ - K 1
S=5,(19 -1 VARV

where the X1,s are the usual extensives, stands for some extra, higher
momenta with equilibrium values X, while

@.2)



with pl = X~/V (the densities). The physical meaning of this formula is
transparent enough: the unequilibrium state is characterized by the higher
momenta too, and the entropy takes its maximal value in equilibrium.

Ref. 12 gave some formulae how to handle unequilibrium situations by
means of these extra parameters, at least for dilute classical Boltzmann
gases. These formulae should be generalized for (dilute) relativistic
quantum gases in order to discuss the early Universe; this generalization
can be done. Nevertheless, a slight detour seems to be useful.

It is necessary to clearly state the physical assumptions before going
into technical details, and the discussed situation is exotic enough to have
to be careful. Now, a postulate system is the standard way to collect all the
assumptions; and an axiomatic formulation guarantees the self-consistency of
the formalism, although, naturally, not its applicability to real physical
problems. Thus, before manufacturing our formulae for the actual situation,
here we give a postulate system following Callen"s thermodynamical postulates
as closely as possible.

Definition: Extensive parameters X1 are parameters proportional with the ex-
tension of the system, obeying balance equations and characterizing the
equilibrium states of the system investigated.

Definition: Pseudoextensive parameters X1 are parameters proportional with
the extension of the system, obeying balance equations, whose equilib-
rium values are 0.

Postulate 1: There exist particular states of macroscopic systems (called
pseudothermodynamic systems or PSTS) which, macroscopically, can be
completely characterized by a finite set {X1, X1}.

Postulate 2: There exists a function P, called ekaentropy, for any PSTS,
which is a homogeneous function of first order of the parameters
(X1, Xk).

Postulate 3: There exists the limit

lim POGLX) = P QO @-3)
X+0 °

Postulate 4: The function Pqg (X) is differentiable, and monotonously in-
creases with the energy; and

lim P =0 Q.4

Postulate 5:

ik =

Postulate 6: The matrix of the second derivatives of P with respect to X"s
is negative definitie.



We note that in these Postulates "finite" stands for "at most countably
infinite".

IT there exists a physical process X-l0, then at the end the system
reaches a thermodynamic state. Namely that state will be characterized
purely by extensives X1; P reduces to a Pq fulfilling the equivalents of
the Callen Postulates for ekaentropy, and for such functions there exists a
transformation PQ+S [17]. Note that we have not postulated that-for all the
real processes X~*0; a counterexample will be shown in Sect. 9. Postulate 6
means that the unequilibrium correction for the entropy (if one can define
it) starts as a negative quadratic term, being entropy one of the
ekaentropies [17].

3. THE EINSTEIN EQUATION

According to fundamental assumptions of General Relativity, the geo-
metric properties of the space-time is determined by the matter content. In
the simplest realization of this idea it happens via the Einstein equation.
First, for weak gravitation and slow motion j (goQ-1) plays the role of the
gravitational potential [18], therefore the gravitational equation has to
contain second derivatives in order to get the Newtonian limit. Then the
simplest possible equation is linear in the second derivatives of g.~* The
only such tensor of two indices (up to trivial algebraic manipulations) is

the Ricci tensor and then the gravitational equation has the form
Rik  kQjk G.D
where Kk is an appropriate constant, and is a still undefined tensor

characterizing the distribution of the matter.
Now, the combination R~"k~(R/2)gik is divergence-free by construction,
thus

ik ik.r ., _
@™ - 29" rrk- 0 (3,2
That is, this combination is an object of four conservation laws. However, we
know that in a closed system the energy and 3-momentum are conserved, there-

fore (except for trivially conserved terms) we has to identify this combina-
tion with the energy-momentum tensor. Hence

°ik -5 » A ‘v 1VKI 1k <3-31
where A is a new constant. Then eq. (3.1) obtains the form

>
ik IR ikt Mk T Tk G-D



which is the usual form of the Einstein equation. By means of a proper defi-
nition of the zero point of the energy (i.e. that of the vacuum) the cos-
mological constant can be made O [20]. This form of the gravitational equa-
tion will be accepted here. From the Newtonian limit one obtains [19]

K = 866 (3.5)

where G is the gravitational constant.

4. THE HYDRODYNAMICAL APPROXIMATION

The energy-momentum tensor characterizes the distribution and motion of
the matter; its form may be quite complicated. By a formal way it can be
decomposed with respect to any timelike unit vector field ul as

“¢.D

Because of the structure of the energy-momentum tensor p is the energy
density, qi is the energy flux 3-vector and pik is the spatial stress tensor,
measured by an observer whose velocity is ul. If such a velocity field is
preferred by certain physical reasons, then the other quantities on the right
hand side of eq. (4.1) possess some physical meaning, otherwise the decom-
position is a purely mathematical operation.

If there is a unique and physically important flow velocity field in the
matter, then it is natural to choose this vector field as u. In this case
the quantities p, qi and pik are measured in a system comoving with the
matter, one may expect no substantial local velocities, and therefore the
relations among p, q and p may be similar to the classical relations [14,
21]1. (For an example, when this program cannot be realized, see the two fluid
model [227.)

Nevertheless, it is definitely not obvious how to choose the velocity
field. The so called Landau gauge can always be constructed. Then ul is the

flow velocity of the energy [23];
Tlrur = -tul “.2
Then g1 = O.

If there are identifiable particles in the system, one can investigate
their current densities. The currents can be decomposed as



n,ul +

“.3

where labels the different particle degrees of freedom. If these degrees
of freedom are physically important, then it would be necessary to choose

the flow velocity of the particles as u, since the agents of interactions
are the particles. Unfortunately, generally there is no guarancy that all

the current vectors are proportional to each other. If, however, they are

from some physical reason, or if there is only one such degree of freedom,
then one can choose

172 -9

where n is the particle density. This velocity vector is generally not an
'k, therefore qI / 0.
In our special case, as we shall see, the two gauges coincide, since

eigenvector of T

the high symmetry of the space-time guarantees the uniqueness of the veloc-
ity field. Therefore here it is not necessary to discuss further the physical
differences between these gauges.

We have seen that the energy-momentum tensor is divergence-free:

Tir =0 4.5)

These four equations can be decomposed in such a way that three equations of
motion are obtained for the three independent components of ui, while the
fourth one is the differential form of the First Law of Thermodynamics [24]
(i.e. a balance equation for the energy). In the simplest case when the
matter possesses only a single thermal degree of freedom, these four equa-
tions completely determine the evolution of the matter (an obvious example
is the blackbody radiation), and eq. (3.4) yields the geometry. When addi-
tional degrees of freedom exist, extra evolution equations are needed. E.g.,
for the particle densities the continuity equations

are valid. However, there is no a priori information about the source terms
¢4 ; (except for some unequalities coming from the Second Law of Thermo-
dynamics) ; they can represent e.g. chemical transmutations, or even sponta-
neous annihilation or creation of particles [25]. Conservation laws give
algebraic constraints for the source terms.

The explicite forms of the balance laws and the Second Law will be
discussed after imposing the symmetry principles on the system.



5. SYMMETRIES

It is a more or less general belief that the Universe (on a large scale)
possesses a symmetry which is maximal in some sense. This belief is often
referred as cosmological principle [26]. Here, using Occam"s razor, we
accept that the symmetry is the maximal which is*compatible with the ob-
servations, and that it is valid for the individual components building up
the energy-momentum tensor, too. (As a counterexample see Ref. 27.) This can
be formulated in such a way that for some set of Killing vectors KM the

Killing equation

Kai:k + Kak:i = 0 G-D
- . . - - n n jkE
holds, and the Lie-derivatives of the material fields, p, g , u and p
vanish along the K1 fields [28]:
Iwlk-""= 0 G2
K
ik o )
where w represents the relevant quantities connected with the matter.

Now, the maximal number of Killing vectors in four dimensions is 10 [29],
nevertheless, this case is excluded by the observations [18]. Furthermore,
imposing Conds. (56.2) on ul one gets that no such timelike vector field can
exist. Therefore we can conclude that such a high symmetry is impossible
from some reason? the next natural symmetry principle is full spatial sym-
metry, i.e. the existence of six space-like Killing vectors. Then there are
only three possibilities for the symmetry group:

K = +1 0 -1
Group: S0® E(3) S0(3,D)

[29].- In the lack of serious counterevidence, we use this symmetry group.
Then eq. (5.1), in adapted coordinates, leads to the line element

ds2 = -dt2 + R2(® {dr2+x (r) 2 (d92+sin0dtp2) }
K = +1 0 -1 G3)

x(r) = sin r r sh r

By evaluating Conds. (56.2) in tizese coordinates, one gets



all the currents in the matter are parallel to ul, and the scalars can have
t-dependence only. One can see that for such a symmetry the stress tensor is
isotropic, the stresses are represented by a single scalar P.

Now, with such an isotropic pIk and with qI =0 egs. (4.5-6) yield the
following balance equations for p and n

b + (ptP)u =0
G-5
n.A + nAUr =0
where the dot derivative is urV . Because of the spatial symmetry the
i r
entropy current s has the form
s' s (5.6)

s denotes the entropy density. Here, for reasons to be fully understood in
Sect. 7, we assume that

s = s(p, nA, zF) G.7D

P
where z are some scalars representing extra degrees of freedom, with the
balance laws
zr\barzrur},\ - Y
a = a (. ,2) (5.8)

£ =£ (p.n .2
Then the Second Law of Thermodynamics can be formulated as [14]
sr> = & + sur_ >0 * 5.9

Using the balance equations, and separating the terms of different UPIT

dependence, uneq. (56.9) leads to
s - sp (p+P)-SRnR-asrzr = 0 (5.10)
SRiR + srér > 0 (5.1D)

where, as a shorthand notation, a lower index of s means derivation.
While uneq. (56.11) is a constraint for the source terms, eq. (5.10)

expresses P as a function of p, nA and zr

, if the form of the entropy func-
tion is given. For the chosen symmetry the only two nontrivial components of

the Einstein equation (3.4) with X = O are as follow:
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B2 -85 2y

5.12
R=- 40 (piP)R 12

whille the balance equations for nA and zr read as

(5.13)

where the dot derivative is the t derivative. Having the function s(p,nA,zr)
and the functions mA, ar, £r fixed, the system of egs. (5.10), (5.12-13)
completely determines the evolution of the Universe.

In this paper, Tfor obtaining simple formulae for the particle physical
relations, we use such units that

ft=c=1 (5.14)
In these units

(5.15)

9

where M is the Planck mass, 1.22.10l GeV.

6. CONDITIONS FOR EQUILIBRIUM

The description of the .continuum is the simplest if it is in thermal
equilibrium. Then, for_simple systems [14] the local state is determined by
the parameters p and n . For simplicity"s sake, consider a dilute gas of one
type of particles. If it is sufficiently dilute, then the two-particle cor-
relations are negligible, the local state is described by a momentum dis-
tribution function f (d)

3

dN = F(p)dv ~ 6.1
P

and the right hand side of the Einstein equation is built up from some
momenta of f. Then the coupled Einstein-Boltzmann equations are to be
solved [14]. In thermal equilibrium ¥ is known up to two continuous and
one discrete parameters as

(-u pr-u)/T
fo€) = (¢ r + 6.2
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where ul is the flow velocity, u is the chemical potential, T is the tempera-
ture, and g depends on the quantum properties of the particles: qg=+1 for
fermions, -1 for bosons, and 0 if quantum statistics can be ignored. Obvi-
ously, p and n are functions of u and T; these functions can be inverted,

so the local state is determined by p and n, indeed, in equilibrium.

Nevertheless, generally the equilibrium is incompatible with the
Einstein-Boltzmann equations. Some exact negative statements are known for
exact equilibrium [14]: it cannot hold, if the particles possess nonvanishing
rest mass, and there is no timelike Killing vector; for massless particles
the necessary condition for equilibrium is the existence of a timelike con-
formal Killing vector. The line element (56.3) possesses timelike conformal
Killing vector, so a gas of massless particles may remain in thermal equi-
librium during the expansion, however, it is not necessary that it reach
equilibrium starting from a generic initial state.

Nevertheless, the above mentioned theorems tell us very little about
approximate equilibrium. Without specifying the system, consider a matter of
some particles, near to thermal equilibrium and with an equilibrating process
of some characteristic time x. If T is changing, the distribution of par-
ticles has to be being continuously rearranged, and this cannot be effec-

tively done if

[11,30]- On the other hand, if the temperature change is sufficiently
moderate, then the equilibrating process dominates, and so the system
probably remains near to equilibrium.

There exist some indications that unequilibrium situations were im-
portant in some stages of the evolution of the Universe; e.g. Ref. 31 lists
four such situations, namely

a) supercooling in the GUT symmetry breaking phase transition, result-

ing in inflation;

b) subsequent unequilibrium decay of the X bosons leading to baryon

excess;

c) supercooling in the quark-hadron phase transition; and

d) inequilibrium in the nucleosynthesis, leading to the present

chemical composition of the Universe.
In cases a) and c¢) there were two phases, but possibly both phases were in
thermal equilibrium with themselves; in the other two cases the chemical
equilibrium did not hold, but the thermal one might be valid. Now, obviously,
there is a third possibility that the momentum distribution is not thermal.

For simplicity"s sake, assume that the Universe is radiation-dominated.
In equilibrium both p and p are determined by T [4]

0 “ 3P = 15 nt4 6.4
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where N is the number of helicity states, N=N]}7N~/8. The characteristic
time T is in the order of the time between two subsequent collisions of the
same particle, therefore it can be estimated as

no

where n is a characteristic density sum for all kinds of particles with
which the collision is possible, and a is an average cross section. Both
quantities are expected to depend on T, for n

(€©))
N*T* 6.6)
u

where £(3) is. the Riemann function, N*=Nj+3Nf/4 for the particles considered.
In a gas of point particles, up to a number constant depending on the details
of the differential cross section,

az( 6.7)
.

[4]1, where a(T) is an (effective) coupling constant. In a radiation-dominated
Universe RT - const., therefore, using eqs. (56.12) and (6.3-7), one obtains
that the approximate equilibrium cannot hold if

T J45N £Q

M »4n N -“3 a2 6.8

We are going to evaluate this unequality for two cases. The first is the
decoupling of (massive) neutrinos (if m™ = 0, the decoupling does not alter
the form (6.2) because there exists timelike conformal Killing vector; the
upper limit for any neutrino mass is several dozen eV [32]). Then, for weak
interaction at low energies [33]

a (6.9

where ae-m- = 1/137, and E ~ 100 GeV is in the order of the rest mass of the
W or Z bosons, and the scale of the symmetry breaking in the Weinberg-Salam
theory. Then uneq. (6.8) holds for temperatures lower than a certain limit.
Using the numerical values N*=2 (photons), = 4(e++e )+3x2 (neutrinos),
one gets that this limiting temperature is cca. 9.4 MeV; below this value .
the distribution of massive neutrinos starts to deviate from a thermal one.
The second case is the thermalisation of the primordial distribution of

the GUT particles. At temperatures definitely higher than 1015 GeV it is



13

believed that all the particle masses are negligible; N*=82 and Nf=90 in
minimal SU(5) GUT, and a - 1/45 [4]. Using these numbers, one gets that
uneq. (6.8) holds above T = 6.2.1015 GeV. Thus at such temperatures thermal
equilibrium is not expected, unless there were some evidence that the
primordial distribution had been thermal, which is not probable. Notice

the coincidence between this temperature value and the critical value of
the GUT scale parameter at which viscosity is strong enough at the phase
transition to produce sufficient entropy and to stop the cooling [34].

7. RELATIVISTIC UNEQUILIBRIUM STATES

Here we give the relativistic version of a recently developed un-
equilibrium formalism [12] which keeps thermodynamic language for un-
equilibrium states, so will be referred as pseudothermodynamics. The essence
of this formalism was to introduce higher momenta as new extensive vari-
ables; then an entropy function can be defined which depends on both the
equilibrium and the.unequilibrium parameters, and starts quadratically with
the unequilibrium ones near equilibrium; the evolution of the system is
determined by the form of this function and by the specific evolution equa-
tions for the unequilibrium parameters. Now, mutatis mutandis, we are going
to repeat the steps of Ref. 12.

For simplicity"s sake, let us start from the assumptions of Sect. 6.
So the system is sufficiently dilute to be described by one particle dis-
tribution functions (there are some arguments that even the GUT continuum

before the symmetry breaking phase transition at 10_37

s can be regarded as
a dilute gas [4]): in addition we assume full spatial homogeneity with
vanishing conductive currents. (This second assumption may be strong,
nevertheless it is the proper assumption for the Universe; without it one
could expect the familiar transport terms too.) For such a gas an entropy

flux can be defined [14]:

3
s = - [FInf + q(l-gF)In(l-qF)--q YA p %-F @.1)
(the parameter g was defined in the previous Section). The distribution
function f is governed by the relativistic Boltzmann equation:
L) = C(H 7.2

where L is the Liouville operator,

L(F) = [pr3r-rrstprpS -~]:E(p\xK) 7-3)
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and C(F) 1is the collision integral; its specific form depends on the parti-
cular statistics and on the interactions [13]. For ideal gases the equation

C(f0) = 0 7.4

possesses the solutions given in (6.2) without assuming thermal equilibrium.
From hence fQ stands for the solutions of eq. (7.4); its parameters ul, T
and u may depend on the coordinates (here, due to the spatial homogeneity
only on time). Therefore, if the actual distribution function f is suf-
ficiently near to one of the set ¥ , then C(F) is linear in f-f ; here we
restrict ourselves to the relaxation time approximation

c® (urpr) (f-1Q) @.9

where ul is the flow velocity of the matter defined by eq. (4.4); for this
specific form see the Appendix. Of course, because®™ of the high symmetry in
the discussed case, T is not depending on the spatial coordinates.

Now, consider an arbitrary given distribution function f; one has to
establish a connection between the actual f and the corresponding member of
the set ¥ . This can be done by requiring as many constraint equations for
f as the number of its free parameters. If that number is five, then one
may use the Eckart form of matching conditions [14]:

P .6

P f(rur)2 ~ = PO

if the particle number density is not an ihdependent characteristic (e.g.
for charge-symmetric situations, cf. Ref. 35) a different system may be
necessary.

_ Via egq. (4.4) the matching conditions (7.6) guarantee that n=n and
u':ud- These conditions single out an ¥ for any given f. Now, takeAany con-
venient basis of functions {® G(d)}- (On mass shell, the p° dependence in Ff
is superfluous.) Then f-f can be expanded on this basis as

fIETX1) = f,oG"™x1) + E ap (xl)cpp @ .7

The basis iqm (E)} is completely arbitrary, except for the condition that its
functions keep the matching conditions, i.e.
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, 1 -
I d P p° °
.8)

*d)a Prur)2 AP =0

Then the local state is completely determined by the five parameters of f
and by the new parameters aa. The evolution of aa s can be deduced from the
Boltzmann equation and in an equilibrating process aa 0.
Because of the assumed symmetries

st su' (7.9
the extra terms would be proportional with the heat conduction flux ql [14],
and we ignore here such fluxes. Then s is the entropy density. By construc-
tion s depends on T,u and aa. Instead of aa one can introduce a (generally

infinite) set of extra tensorial momenta b'k"' as

k- - feyp ek, 4JE (7.10)

n and p are among the members of this set. Then, by means of egs. (4.4),
(6.2), (7.5 and (7.10), one can introduce n, p and the extra b\K‘*’#s
instead of T,u and aa .

Consider a fixed volume V. Then, from the density-like bik*'*'s one can
form parameters proportional to the extension of the system as
cik... = Fik-ee(v,N=nV,E=pV)bik"-*
FIK. .. XV, XNF JE) = K (u/ND (7-11)

otherwise the functions F'k*** are arbitrary convenient functions. Thus

S = sV = S(V,N,E,cr) (7.12)

where the capital Greek index is a shorthand notation for combinations ik...
other than in N and E. Because of the assumed homogeneity S is additive for
subsystems

S@+2) = s() + S() (7.13)

whence S is a homogeneous function of Ffirst order of its variables. Consider
equilibrium states of the matter. The Cp parameters take some values there

(V,N,E) (7.14)
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and one can form new parameters vanishing in equilibrium:

Z =Cc -¢C (7.15)

introducing Zr instead of Cr in S. Because of its homogeneous linearity, S
fulfils the Euler identity

vils +Nis.F 3s rjs_
V 8V+ N 8N+ E 3E+Z azr " S (7-16)
which can be read as
p— N N
S=EvV EN +2E+Ahzr (7.17)

This equation defines some homogeneous quantities of zero order.

If there is equilibration in the system, then Zr —>0. The time evolu-
tion of Zp can be obtained via the Boltzmann equation, using the defining
eqgqs. (7.10-11), (7.14-15) too; e.g. in the relaxation time approximation,

1 k' - = iIk"" "r- I kee*
dik r;r :TL u (bik r bolk r) (7.18)

by using Gauss® theorem [14]. Then, for zF = Zr/V one can get balance equa-
tions, generally with right hand sides, so the quantities Z will not be
conserved. The proper choice of the functions F'%sx can be used to get con-
venient form for these balance equations; if the equilibrium can be preserv-
ed iIn the system, then [13]

eq 1:o
(7.19)

L(fo) = O

and then the form (5.8) can be achieved. (Nevertheless, the existence of the
equilibrium is not trivial [14]; this question will be discussed in Sect.9.)

Now, let us stop for a moment to look over the results of this section.
We have a system, which, at least iIn stationary space-times, can be in
equilibrium at f . Then one can recognize the Zp quantities as pseudoexten-
sives (obeying balance equations, with vanishing equilibrium values), while
V, N and E are extensives. Evaluating S via egs. (7.1)," (7.6), (7.9 and
(7.12), one gets

S = Sq (V,N,E) ;L 2 (@Po ) d3p+6(a3) (7.20)
P

P —2f0+1
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where SO is the entropy in the equilibrium, so it starts quadratically with
p
a , so with Z too:

S = Sq(V,N,E) - SrA(V,N,E)ZF ZA + 0(Z3) (7.21)

whejfe SrA is a homogeneous function of order -1. Then S satisfies Postulates
2,3, 5 and 6; SO obviously satisfies Postulate 4, and, since f is determinsd
by fO and a , the actual state is completely charac}erized by V, N, E and Z ,
the only question is whether the necessary set of Z is countable or not.

It would be difficult to decide this in the general case, but this question
is immaterial for practical purposes, when the set is truncated somewhere
anyway. Therefore one can conclude that our present formalism is conform

with the postulate system given in Sect. 2, so it will be called pseudo-
thermodynamics .

In the formulation of the postulate system we assumed the notion of the
equilibrium states but did not assume that the system can in fact remain in
these states. The meaning of this distinction will be explicitely shown in
Sect. 9.

Obviously, for practical use, a moderate set of pseudoextensives would
be needed. This is equivalent with the problem how to choose the most proper
set of functions {p"Cp)}, whose truncation causes the smallest possible
error. This question was discussed in some extent in Ref. 12; the answer
would need the knowledge of the initial conditions and the exact form of
the collision integral. For the primordial equilibration of the Universe one
obviously cannot know the initial conditions; for the neutrino decoupling
the problem could be solved in principle, but this would involve serious
technical difficulties. So here we give only a model calculation with
maximal simplifications: the pseudothermodynamical states are characterized
by a single pseudoextensive, which is chosen according to maximally analytic
expressions. For the primordial equilibration it is the use of Occam"s
razor;, for the neutrino decoupling the model can be improved if necessary.l

8. EQUILIBRATION IN THE VERY EARLY UNIVERSE

Grand Unification Theories enable us to look back into the very early
stages of the evolution of the Universe, almost until Planck time (cca.
10_43 s). The picture suggested by GUTs may or may not be correct, con-
sidering that clear evidences for these theories (e.g. proton decay) are
still absent, the extrapolations are very strong (for example, the desert
between 10 and 10 GeV), and some predictions (as the monopolé dominance)
are disturbing [4,5]- Nevertheless, there are no competitors for so early
times, therefore here we do not discuss the validity of any specific GUT.
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GUTs contain a spontaneous symmetry breaking at some energy determined
by the energy scale parameter, which is believed to be roughly 1015 GeV [36,
37]. Above this energy the fermions and Gauge bosons are massless; at
asymptotic temperatures radiation-dominated behaviour is generally assumed
[4,5]- Since the situation is charge-symmetric, in these stages the only in-
dependent extensive density is the energy density p. Assuming complete
thermal equilibrium one arrives at the standard model [4] discussed in Sect.
6. Since

one can directly express s by p, through eq. (6.4).
Now, observe that for k=0, which is a good approximation for so early
stages [4], egs- (5.12) and (6.4) yield

8.2)

But then, with a velocity field (5.4), the vector field v1=ul/T fulfils the
conformal Killing equation

* Vi 8.3

Vik
in Robertson-Walker metrics. Therefore, evaluating the Liouville equation
for fO with such ul and T, and with u=0, one obtains

ey MR @9

o] T R o )
Thereforemfor massless particles L(fQ) = 0, the set of distributions f is
a stable endpoint of the evolution of ¥ [14].
Now, consider a state when.f~f , but f is still isotropic according to
the assumed symmetries. Then, being°p°2 = £2,

P = 3p (8'5)

In the absence of particle density as extensive density, one can define ul
in the Landau gauge (4.2), and then the only remaining matching condition is

P = PQ (38.6)

Then the parameter T of ¥ belonging to the actual f fulfils eq. (6.4), so
the statements of the standard model remain valid for R(t) and T(t):
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R = Ry/E
@.7D

1/4
- 1/2
EH% Sﬁ%%

The evolution of f can be calculated on this geometry.

Let us use the relaxation time approximation (7.5), with a relaxation
time according to egs. (6.5-6), (6.9). Then, as it was shown in Sect. 6,
15 GeV, above which the
collisions were ineffective to produce equilibrium. For earlier stages we

there is a characteristic temperature Tq s 6.2.10

do not have any information, and it would not be fair to assume equilibrium
as initial condition. Therefore we expect that at Tq Ff essentially differs
from fo, however, of course, do not know how. From this reason there is no
way to Ffind the optimal basis (®a (J3)}" i.e. only a guess can be done. This
will happen according to the principle of maximal simplicity (Occam"s razor)

Consider one particle component, either fermion or boson, and assume
that the most important mode of deviation is

f = fO{JxF a[e 2x (eX+q)+A]l}
8.8
X = E/T
where A is determined by the matching conditon (8.6) as
45 2
A 4 154 (8-9)

The chosen deviation function has a decent behaviour; it is simple enough
with a maximum at E ~ T and with an exponential tail, it would be difficult-
to tell more for its favour. The most convenient extra momentum is the
particle number excess:

z (f-F)E2dE = L C (3)1T3 (8.10)
w

Because of the relaxation time approximation its evolution equation is
z + @.11)

where, using the approximations of Sect. 6,

1 N*£(3)

a T (8.12)
T GUT 4
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and this particular component gives a contribution to s (up to quadratic
terms) as follows:

s s, 32w (1 ~7APA .
[L- U C(3)]2 (15-g)n
n (8.13)
205- R (_(15/—\q)_n4)

where T can be expressed by p via eq. (6.4).
Now, the calculations should start from Tq given by eq. (6.8) with
a(m = aﬁﬁT_— 1/45. Using egs. (8.7), (8.11-12), the result is

T
zr R3 = (26 83) exp {-- -1} (8.14)

where the initial conditions zg represent the complete lack of knowledge
about the situation above Tqg. In any case, one can guess that for so early
stages the deviations were substantial. Therefore the assumption of equilib-
rium is groundless for such temperatures when the exponential factor is not
sufficiently small.

Of course, we do not have any objective measure Tfor the smallness of
this factor, not knowing the initial conditions decaying. Nevertheless, it
seems to be decent to require that the"factor should be at most some percents
to get approximate equilibrium. It is cca. 5% at T=T /4, which seems to be
1.5.1015 GeV. Above this value the completely unknowR initial conditions can
be felt, therefore, although the expansion of the Universe is not affected,
the predictions of GUT calculations cannot be regarded as unique. This gives
a technical limit for the energy scale parameter lower by a factor 4 than in
Ref. 34; for higher values the symmetry breaking phase transition would be
affected by the unknown initial conditions.

9. NEUTRINO DECOUPLING

In Sect. 6 we gave an estimation for the temperature where the neutrinos
became decoupled; the result was cca. 10 MeV. The history of the Universe was
quite complicated iIn that temperature range; possibly with individual tem-
peratures for the different types of neutrinos and for the electromagnetic
sector (et, e and y):; there is an annihilation process for the e+-e pairs
at 0.5 MeV [30]. Nevertheless, the decoupling of the neutrinos does not
automatically lead to the development of unequilibrium distributions; if
some process disturbs the equilibrium distribution then the collisions may
be i1neffective to reestablish it, nevertheless it seems that if the neutrinos
are massless, there is no obvious candidate for such a process. However, they
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are not necessarily massless; cosmological observations are compatible with
a several dozen eV mass [38], and some measurements seem to indicate such a
mass [32]. But then ¥ 1is not a solution of the Liouville equation [14],
therefore the particles cannot remain in equilibrium during the expansion of
the Universe. OFf course, for high temperatures, when m2/T2 is small enough
and the cross sections of weak iInteraction are substantial, f 1is a good ap-
proximation for f, the deviations will continuously develop. Here we want to
get some insight into this process.

OFf course, as we mentioned above, the real situation during this process
was complicated, so some computer simulation would be necessary; this will be
done in a subsequent paper; here we are going to manufacture a simple carica-
ture to emphasize the important features of the process. Therefore

a) we ignore the electromagnetic sector, and consider three kinds of
neutrinos only, with a common mass m and temperature T;

b) the pair annihilation will be neglected below some temperature Tq,
which may be e.g. the decoupling temperature, there the neutrinos
will be approximated by a Boltzmann distribution; and

c) everything will be calculated only up to m2 terms.

The first simplification underestimates slightly the expansion rate, the
first of b) is not very rough, because without mass terms the pair number ~T3
would be conserved in equilibrium, the second is a technical trick; none is
explicitely causing or forbidding thermal unequilibrium. As a support for c),
we shall see that they are indeed the leading terms of unequilibrium con-
tributions .

Now we can proceed as follows. We have two balance equations for the
extensive densities:

n+ 3 % n =20
©.1)
p+31 (P) =o

where P is not necessarily the pseudothermodynamic pressure given by eq.
(7.17). Since the quantities n and p can be calculated from ¥ too, via the
matching conditions (7.6), eq. (9.1) determines the evolution of the para-
meters of f . The right hand side of the Boltzmann equation can again be ex-
panded around fQ, and we take the form (7.5); nevertheless now L(fQ) f O,
thus ¥ is not a solution. Using the operator (7.3) the term L(fo) can be
evaluated; it contains ﬂ, ? and R/R. If WT were constant and u'/? were a
conformal Killing vector, L(fo) would be proportional to m2 (cf. eq. (8.4));
these conditions do not hold, but this is caused by mass terms too (compare
the present situations with that of discussed in Sect. 8), so one expects

L(f ) to remain proportional to m ; we shall see that this is, indeed, the

situation. Neglecting first any unequilibrium contribution in P, for a

Boltzmann distribution fQ egs. (7.3) and (9.1) give
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J

b(£o} = - ’\ﬁ I @ M— fr+ Dfo + 6(md) 9-2

So, calculating L(Ff-f ) one gets two competiting terms: the collision integral
attracts the state towards fo’ while L(fo) Jepels it thence. The actual state
iS the result of a momentary balance between these forces.

The optimal basis could be determined from the details of the differen-
tial cross sections. Here we are manufacturing only a caricature, therefore
we simply assume that the most important mode of deviation is

(F-f )/f aa-—--——- (E2+AmE+Bm2) -3)

This is a function leading to less emphasized thermal peak. The correspond-
ing extra density is chosen as

zZ = c-C
o)

c = n2/3 (d-nm ) (9.4

d = fE3£-£

Then the evolution equation is

R 1 ,R 2 1/3
Z+3Rz_-_-xz+Rmn ©-5

Observe that there is a source term, which does not depend solely on

pseudoextensives, as it was assumed in eq. (5.8), therefore P in eq. (56.10)
cannot be the pseudothermodynamic pressure. Repeating that calculation for
the entropy production with eq. (9.5) one gets that the Second Law requires

P=p+ Infins? ¢ (9-6)

Eg. (9.5 suggests that after a previous thermalization, until the momentary
balance between C(F) and L(f ) does not break down, z is expected in the

2(ﬁ/R). Therefore 8ither the pseudothermodynamic corrections in p,

order of m
or the corrections (9.6) in P are proportional to m , that is, our neglec-

tions have been justified. The entropy production is

1
3 + 3R 3= T SZ? ®-n

starting as 22/T ~ m4(§/R% /T.
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Now one should calculate s(n,p,z) for a Boltzmann gas with a deviation
function (9.3); then P could be taken from egs. (7.17) and (9.6), and the
system of equations to be solved would consist of egs. (6.12), (9.1) and
(9.5). Nevertheless, ours is a simplified model anyway, so here we perform
an analytic approximation yielding some insight into the global behaviour of
the system.

Introduce a fictitious particle density conserved even above the
decoupling temperature, n, and write

Z = ny (9.8)
(Above the decoupling the difference between n and n is proportional to m2.)
Then substitute R(t) and T(t) from the standard model; 1in this approximation

y satisfies the equation

y + At“5/2y = B

5/4
0 E)) 2 1 @3wWs/2 (-
A N*aem e4 &u) SN%)
©-9
2/3 3 172 7
4n "N\
B w3 - (g5 = ay + A4
E 100 GeV
A and B can be scaled out by writing
y = A2‘3Bn
(9-10)
t = A2/3x
and then
n.,, + x“5/2n = (9.11)

The solution of this equation, starting from equilibrium, can be written as

X
N = e2x=3/2/3  -2X"-3/12f3 . ©.12)

There are clearly three different regimes in the evolution. For x « 1 the
solution of eq. (9.11) is

n=x>? (*.13)
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The other asymptotic solution for x » 1 is
n=x 9-1%

while x ~ 1 is the transition period. Now one can directly see the charac-
teristic features of the asymptotic stages from eq. (9.11).

For x « 1 the second term of the left hand side dominates the first
one. There is some balance between the equilibrating tendency of collisions
and the effects of the time-dependent geometry; the situation is a near-
equilibrium one. In fact, restoring the dimensions and using eq. (9.7) one
sees that z is proportional to m2 T (R/R), the pressure correction is propor-
tional to m4 T(R/R), while the entropy production is proportional to
m4 r(ﬁyR)z- This 1is just the result which could be obtained by using a
viscous model with Stewart®s bulk viscosity at /T « 1 [39].

On the other hand, when x » 1, the first term of the left hand side of
eg- (9.11) dominates the second one; this is a drift driven by the disturbing
force of the changing geometry. Here no cross section occurs in the entropy
production and in z; the state is monotonously evolving away from the
equilibrium.

- _ _ _ 2/3
The transition period is, as we have seen, at x ~ 1, i.e. at t ~ A :

the corresponding temperature is in the order of magnitude of the decoupling
temperature estimated in Sect. 6. Here the evaluation of eq. (9.12° vyields
the evolution of the pseudoextensive z, therefore our model is a demonstra-
tion for calculating continuous decoupling (or, in the langauge of heavy ion
physics, break up).

Thus we get the following picture. The deviations from equilibrium are
small far above T = 10 MeV; they are increasing with decreasing tempera-
ture as ~ T~ , thigcincrease is governed by an energy scale (m E /Ma )
~ 0.1 MeV. The deviations would become substantial at this temperature,
nevertheless, somewhere not far above T”ec the near-equilibrium formalism
breaks down. Then there is a -continuous transition into a collisionless
Knudsen gas, which ends somewhere not far below Tdec, and there the devia-
tions begin to increase linearly with t, i.e. with the inverse square of T.
This indicates that after some time the system effectively forget the history
of the transition period; the energy scale of the increase is /BM ~ m, there-
fore the extreme unequilibrium features are developed at T ~ m.

Since this history is in agreement with our knowledge collected from
different approximations, the presented unequilibrium formalism can indeed
be used for describing a continuous decoupling, if informations are needed
about the transition period.
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10. CONCLUSIONS

In this paper we have demonstrated that deviations from the thermal
equilibrium can be incorporated into a mathematical treatment analogous with
thermodynamics, which is consistent with general relativity and relativistic
continuum mechanics. By means of this formalism two steps of evolution of
the early Universe have been investigated in simplified models: the prim-
ordial equilibration in the symmetric phase of the GUT continuum, and the
breakdown of the thermal distribution of neutrinos. In the first case the
initial conditions are completely unknown; nevertheless the model calcula-
tion indicates that the continuum cannot effectively forget the initial con-
ditions until cca. 1.5.1015 GeV temperature, while below this value the
thermalization is very rapid. Therefore GUT calculations may be questionable
above 1.5.10""” GeV, which is thus a technical constraint for the energy
scale parameter, four times lower than given in Ref. 34.

For massive neutrinos our calculation reproduces both the neutrino
viscosity at high temperatures, and the collisionless dethermalization well
below the decoupling temperature, together with an intermediate stage of
evolution where none of these approximations can be use. In this formalism
the direct source of dethermalization is the time dependence of the geometry,
inevitable in cosmology. The rate of this unequilibration is proportional
to m2.

There is some intimate connection between the unequilibrium processes
discussed here and the relativistic bulk viscosity effects, and, in fact,
the results are very similar in both formalisms for the high temperature
stage of the evolution of the neutrino distribution. Nevertheless, these
mechanisms are not identical, as it is directly shown by the fact that the
bulk viscosity vanishes for the massless particles in the symmetric phase of
the GUT continuum, while deviations from equilibrium in the momentum space
still lead to entropy production.
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APPENDIX

Here we give some arguments for the form of the relaxation time ap-
proximation (7.5). Near the equilibrium - i.e. near the fQ distribution
defined by (7.4 - one expects that the collision integral can be "expanded"
in a power series:

CH =C(fo) §F (F-FQ) + d((f-fo)3) A.D
(0]

I 6C

where the symbo denotes some derivative of C(F) taking it at fQ. The

o}
actual form of this expression depends on the details of the interactions.

It is a reasonable assumption that the matter four-velocity appears in it
while the invariance of the Boltzmann equation requires some scalar func-
tion: the simplest one which is dimensionally correct:

6C
6f . P T1(f0)
(0]

A.29

where x is some scalar functional with time dimension.

In the nonrelativistic limit - i.e. in flat spacetime and at slow
motion - in the comoving coordinate system the (7.3) Liouville operator
takes the form

U m(v grad)f = L(F) (AD

while (A.2) becomes

(A-D

One sees that in this case (7.2) reduces the usual nonrelativistic
Boltzmann equation in the relaxation time approximation and x is the non-
relativistic relaxation time.
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