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ABSTRACT

The phase transition behaviour of the Hamiltonian version of the two
dimensional n-component cubic model is studied along the cubic transition
line. 1/n expansion and anisotropy expansion around the 2n-state Potts point
are used to determine the phase transition line and the latent heat. The
latent heat depends on the value of the coupling whereas the crossover value
of n, where the transition changes from second to Ffirst order, does not (it

is n =2). The latent heat has essential singularity at n=2 along the cubic
transition line.

AHHOTALINA

WccnepgoBaHbl BAOMb JIMHWM KyBMUECKOro Mepexoda CBOWCTBa (a30BOro nepexoga
ramMuibTOHOBCKOIO BapuaHTa [BYMEPHOV N-KOMMOHEHTHOI KyGuuyeckoii mogenu. [nsi on-
pefeneHvst IMHAM MEPEXOAa W CKPLITO TEnnaoThl MPUMEHEHb MeToasl 1/m  pas3fioxeHus
N pasfiokeHusi Mo CTeneHsiM aHW30TPONMM B OKPECTHOCTU TO4YKu [oTTca 2n-oro CocTo-
AHVA. CKpbiTas TensioTa 3aBWCUT OT KOHCTaHTbl CBA3U, a KPUTMYECKoe 3HauyeHvie mn,
npu KOTOpOoM (a30Bbii NMepexos BTOPOro poga npeobpaslyeTcs B nepexof NepBoro poga,
He 3aBMWCUT OT KOHCTaHTbl CBA3U (ic = 2). CKpbiTas TennoTa UMEET CYWECTBEHHYH
0COGEHHOCTb Mpy N=2 BAOMb Ky6UUecKoli NUHWM nepexoja.

KIVONAT

A két dimenzidés n-komponensi koébds modell Hamilton valtozatanak fazis-
atalakulasi tulajdonsagait vizsgaljuk a kobos atalakulasi vonal mentén. 1/n
sorfejtést és a 2n-allapotu Potts pont koril anizotroépia sorfejtést haszna-
lunk a fazisatalakulasi vonal és a latens h6 meghatarozasara. A latens h6
fligg a csatolastol, mig n kritikus értéke, ahol az atalakulas masod-rend(bél
els6-rendibe valtozik, nem figg a csatolastél (ez n = 2). A latens h§ n=2-
nél lIényeges szingularitast mutat a kobos atalakulasi vonalon.



1. Introduction

In the first part of this work (Igloi 1984, hereafter
referred to as Paper 1) the (1+1) dimensional n-coraponent
cubic model was investigated by mean-field calculation and
by several renormalization-group (RG) transformations. The
phase diagram and the critical properties of the (1+1) di-
mensional model were found to be identical with those of the
two dimensional (2D) model.

In this part of the work the properties of the cubic
transition are investigated, when this transition is of first
order. We use two methods of expansion both of which supply
complementary information. The 1/n expansion for large values
of n is a good approximation, while the coefficients of the
anisotropy expansion around the 2n-state Potts point have
small values when n is close to 2. These expansion methods,
are unfortunately not suitable for investigating the neigh-
bourhood of the multicritical point because at this point
all terms of the perturbational expressions®become equally,
important, signalling the role of competing effects.

The 1/n series is determined up to second order for the
phase transition line, for the latent heat and for the cross-
over value of nc, where the order of the phase transition
changes from first to second order. While in the second part
of the paper the 2n-state Potts model was taken as a refer-
ence system, and the expansion was made with respect to the

anisotropy. This series was determined in FTirst order only



because calculation of the higher order terms would need a
knowledge of the properties of the 2n-state Potts model
beyond the critical point, and these are not known.

The paper is arranged as fTollows: 8.2. contains the
formalism and the duality properties of the model; 88.3. and
4, respectively give the results of the 1/n expansion and
the anisotropy expansion; 8.5. contains a summary. The

details of the calculations are presented in the Appendix.



2. Duality properties

The time-continuum limit of the 2D n-component cubic
model was presented in Paper I. At the same time we detérmined
the different representations of the ID quantum problem that
serve as convenient calculational bases iIn the different
phases (ferro-, para-, partially ordered). To investigate the
duality properties of the model we use the strong coupling
representation (Paper 1, eqgs. 2.1 and 2.2), and rewrite the

Hamiltonian in the form:

N k. 2n-2k+l n-1 2n-2k
k=1 k=1
2.1)
n.1 +k
" e G-y L

Here X and X2 denote the couplings between the neighbouring
spins, while h”™ and h2 are the strengths of the external
fields appearing in the Hamiltonian version of the model.

Q and M are 2nx2n matrices:

ml O 0 00 ... 0O 1"
0 ® 10
o 1
L) M:
- 1
O L)

0 == B oty 0 010 .



and @ = exp (N~) = These matrices commute in different sites;

on the same site they satisfy the Z(2n)-algebra:

K.A __Kk+A
Q[Qi - 01
A +A
g =k @2
M?!é = G¥AQ?MK

Let ut now iIntroduce a dual lattice and define the

K

operators QK, on the sites of the dual lattice, i1.e. on

the links of the original lattice:

Q2n~k

- X

+1

It Is easy to see that these operators also satisfy the Z(2n)-
-algebra. The (2.1) Hamiltonian operator can be written in

terms of the new operators as:

n n-1
H E NATIZK‘l E .2
k=1 k=1
2.3)
n_n 5
= ZMN—-K TEN+HK—=I1- K
“ha B aEy @l * 2 & Ny N

Comparing (2.1) and (2.3), one can see that the model 1is not,

in general, self-dual. However, by using the parametrization



2.4)
X
the Hamiltonian can be written as
H=H_ +H
o p
2n 1 k k 2n-1 . n-1
H = -E E_ “hE E M -D E e oK Q?SIZK
° i k=1 1 1+1 i k=1 1 i k=1 ! !
2.5)
n-1
+he e m
i k=1
H = (X-1D*h E( E M2k-M?

P i\k=1 1 i/

Hqg obeys the duality relation:
HO ,X) = h Ho h-1.,%

and i1ts self-dual line is h=l independently of X. The original
model (described by H) is self-dual If H =0. This is true
for the Ashkin-Teller model, where n=2, I[::md at the 2n-state
Potts point, i.e. at X = 1. The plane given by eq. (2.4) was
used by Kohmoto et al (1981) in their study on the Ashkin-

Teller model.. 1t turned out that this subspace contains all



the interesting regions of the phase diagram (Igléi and
S6lyom 1984). Finally we would mention that the (2.5) form
of the Hamiltonian will be used in the §8.4. to perform an
anisotropy expansion around the 2n-state Potts point 1in

powers of A.-1.



3. 1/n expansion

For several spin systems, in which the number of com-
ponents of the spin is a parameter and the n a® limit 1is
exactly soluble, a well-converging 1/n expansion can be
defined. The method was introduced by Kogut (1980) and was
applied to several spin- and gauge-systems. The success of
the method is due to the fact that even in first order in-
finite terms of different orders of the usual Brillouin-
Wigner perturbation series have to be summed. In contrast to
this procedure, we can mention another expansion, say 1/m,
where m is the number of coupled spins (Igléi et al. 1984).
Now the different terms in powers of 1/m corresponds to the
different orders of the Brillouin-Wigner perturbation series.
The convergence in the latter case is less pronounced. By
comparing the two methods we can see that, iIn some sense,
there i1s an obvious analogy with the different perturbation
methods for dense gases or liquids. The Mayer expansion for
dense gases used for treating the rapidly varying perturba-
tions, 1is the analogue of the 1/n expansion. On the other
hand, the usual high-temperature expansion used for treating
slowly varying perturbation in liquids and gases are the
analogues of the 1/m expansion.

The essence of the 1/n expansion may be summarized as
follows. The ground state energy of the system as a function
of the coupling has to be determined for different powers

of 1/n, both in the weak-coupling and the strong-coupling



regime. The crossing point for the two expressions is ident-
ified with the phase transition point in the given order.
Furthermore, the difference in the slopes of the two curves
at the crossing point 1is proportional to the latent heat,
also in the given order of 1/n. The latent heat defined in
this way 1is positive for large values of n; however, it
becomes negative with decreasing values. As was pointed out
by Kogut (1980), the polynomial férra of the finite series is
not able to account for the essential singularity in the
latent heat corresponding to the second to first order change
in the transition. Therefore the latent heat obtained by 1/n
expansion has a physical meaning only” for its positive values.
The crossover value of n is defined by the zero of the latent
heat expression, while for i1ts negative values the transi-
tion is assumed to be of second order. The estimate for the
crossover value of n turned out to be fairly accurate even

in first order for the Potts model in two and three dimensions
(Kogut et al. 1980, Kogut and Sinclair 1981). The further
terms give a slight improvement though, the convergence of
the series is rather slow. For illustration, the approximate
crossover values of n are summarized in Table 1 for the
n-state Potts model iIn 2 dimensions. Here, the exact solution
of Baxter was used both for the latent heat (Baxter 1973) and

for the jump iIn the magnetization (Baxter 1982):

2
£ + + A + 26 -

n n2 n3 n ﬁ

B 1 3 9 27 8

AM =1 5 2 3 4 5



From Table 1 it can be seen that the two series for nC
go from different directions to the exact value of 4.

The 1/n expansion is easier to apply for systems where
self-duality holds. In these cases the weak-coupling and
strong-coupling series are connected by self-duality, and the
approximate transition points coincide with the self-dual
point in every order of the calculation.

In our model, where self-duality generally does not hold,
the two expansions have to be carried out separately. The first
few terms of the weak- and strong-coupling series are given in
the Appendix. In the neighbourhood of the phase transition
points the terms of the series can be arranged in powers of

1/n 1f the condition

2n h™ » h2 3.1

is fqﬂfilled- ijs condition is true for the cubic transition
line. Unfortunately, the multicritic.al point cannot be iIn-
vestigated by this method. In that region all terms of the
series become of the same order of magnitude, a fact that
clearly represents the role of competition in creating multi-
critical points. In the following the phase diagram and the
latent heat of the cubic transition are given up to second
order.

The ground state energy in the strong- and weak-coupling
limit up to second order in 1/n is given in the Appendix.

The phase-transition point iIs given as:
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2h = 1+A + Jmex (A) + — — X X (A + ... (3-2)
2n 1 @n)2 2
Here
a”A) = -@A-1) (2+tA +

while the form of (A 1is given in Fig. 1. The latent heat
is:
L=2nh 1+~ 6. (A +- ~"76,(A + ...} (3-3)
2n 1 @n)2 2

where

-1 2
6XQ) = -6 + (X-D)  2( 3

while 62() 1is sketched in Fig. 1.
We also give the results in the original space of
couplings up to Ffirst order, when the formulae are relatively

simple:

manh2+2an - & W + G-4)

n2+3n01 J

4nhl - V X2 + 25

o LT B (TR o) oo

In the following let us discuss some consequences of
these formulae.

)] In zeroth order, i.e. iIn the n =« ® limit, the phase-
transition points (3.2) and (3.4) are the same as in the
mean-field calculation (Section 3 Paper 1). Therefore the
mean-field phase diagram is exact for the cubic transition

line Iin the n = ® limit.
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ii) The position of the multicritical point for large

values of n can be obtained from condition (3.1). It is

2nh2 ~ h’2

This expression is also in agreement with the results of
mean-field calculation.

iii1) The latent heat depends on the values of the
couplings, even iIn first order of 1/n. Therefore there is
no universality for the first order transition.

iv) In order to iInvestigate the convergence of the series
(3.2) for the phase transition points, we compare it with the
results of other methods. At A = 1 (at the 2n-state Potts
point) eq. (3.2) is exact. In another part of the phase-
diagram: at A = 0, we compare it with the result of the self-
dual RG calculation (Section 4, Paper-1). Fig. 2 shows that
the results of the two methods are quite close to each other
for n £ 3.

v) As already mentioned, the latent heat expression
gives the possibility to estimate the crossover values of
nC, where the phase! transition changes from first order to
second order. The estimated n. values for different values
of A are given in Fig. 3. It is generally supposed (Nienhuis
et al. 1983) that the exact value of nc iIs 2 independently
of the value of L In our case, even in this low-order of
the calculation, the estimated values of nC are in the range
2.8-3.6, and there i1s no strong dependence of n. on . So
this picture can be considered to be consistent with the

conjectured one.



12

Vi) By expanding eqgs. (3.2) and (3.3) around the
2n-state Potts point in powers of (A.-1) , the fTollowing

series can be obtained:

3 3

2h = 2+U-1) [1 - N
2n @n) 2 G.6)
5 .1 4+ 27 1 1.
-2 " on 8 an ? ]
6
L = 2nh {1 - > ...+ (-
2n @n) 2N @n)

@.7N

It will be shown iIn the next section that iIn first order of
(A.-1) the coefficients can be summed. This exercise will be
done by using anisotropy expansion around the 2n-state Potts

point.
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4. (1-1) expansion around the 2n-state Potts point

Let us turn back to expression (2.5), where the
Hamiltonian of the system is split into a self-dual part (Hq)
and a perturbation (H"). Let us suppose that n>2. The phase
transition is of first order so the transition iIs accompained
by a crossing of energy levels. Let us denote the difference
between the two lowest levels by F(h,A-1), and the same
quantities for Hq and are denoted by Fq and Fp, respect-

ively. The gap vanishes at the phase transition point, so:
F(h*, N-1) =0 “4.D

In the 2n-state Potts point, and for the system described by
the Hamiltonian Hq the transition point is just h*=l, there-
fore

F,0) =0, Fg (1,X-1) =0
By expanding (4.1) in first order in (J-1):

3F
F(h*,A-1) = F (1,v-1) + 3h° (h*-D+F  (1,1-1)+. 0
A=1 p
h=1

Thus the change in the phase transition point is

Fp (1,0)
h*-1 4.2)

X Fo (h0)

The denominator on the right-hand side of (4.2) 1is
proportional to the latent heat of the 2n-state Potts model,

that can be written by using the Hellman-Feynman theorem as:
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il 2n-1 2n-1
ar F (h,0) = <11 E M, i>-<oe e M+K |o> (4.3)
3h ° i k=i i k=1

where |]0> and |1> denote the ground state and the Tfirst
excited states of the 2n-state Potts model, respectively.

The numerator of (4.2) has a form similar to (4.3), viz.

FP @.0) A-D [<1 If M2k-Mgl 1>-
n-1
.<0OS E M2k-Mp" 0>]
i \k=I % 2

The two expressions are proportional to each other and their
ratio in (4.2) is just (n-2)/ (2n-1D). (- .
Thus, the phase transition points in first order are

given by:

h* = i + ®-1) + ... 4.4

This result coincides with the result of the ™ expansion 1in
eg. (3.6). 1t is pointed out that eq. (4.4) holds for the
single phase transition part of the phase diagram, otherwhere
it may be considered as a "duality line".

The latent heat can be calculated from the slope of the

F(h,A-1) curve at h*:

T - _ 3F(h,X)
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By expanding L in first order of A.-1:

oF_ (h.A oF
L=~ "o o (4-5)

The first term can be expanded as

9F (h,A) 3Fo (h, 1) 92F (h,1)
%an oh ° -1
h=h* h=1 3h2 h=1
(4.6)
3 Fag (h, A
A-1D) +_._.
3KaX h=1
A=1

The Tirst term iIs just the latent heat of the 2n-state Potts
model; the second is zero due to the duality properties of
the Potts model. The third term of (4.6) as well as the
second term in (4.5) are proportional to the latent heat of
the 2n-state Potts model. Therefore we can write up to first

order:

L Potts [1+ ZHEI A-D o+ -] “-1
This formula is also in accordance with the result of the
1/n expansion (3.7). According to eq. (4.7), in the n-com-
ponent cubic model on the cubic transition line for nl2 the
latent heat vanishes whereas for n>2 there is finite latent
heat. Thus at n=2, the phase transition changes 1iIts nature
from second order to fTirst order. Furthermore the latent
heat shows essential singularity at n=2 along the cubic

transition line, similarly to the 4 state Potts model
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(Baxter 1973). Finally it is mentioned that the higher order
terms of the anisotropy expansion should be exposed by the
derivatives of the free energy of the Potts model at the

critical point; however, these are not yet known.
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5. Summary

In this paper, which represents the second part of our
work on the (1+1)D n-component cubic model, the properties
of the system were investigated along the cubic transition
line, for first order transition. We used 1/n expansion and
anisotropy expansion, which supply complementary information.
The results show the cubic transition to be of first order
for n>2, independently of the coupling. The latent heat de-
pends on the coupling (there is no universality), and has
essential singularity at n=2. At the multicritical point all
terms of the series are of the same order of magnitude, which

prevents the application of a perturbational expansion.
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Appendix

1. Strong-coupling expansion

The strong-coupling representation (Paper I, egs. 2.1
and 2.2) 1is used in the calculation. The unperturbed part of

the Hamiltonian 1is

while the perturbation

V. - Hh - I h2

The ground state of Hgq is given by

4j§'° = }1 1. .,1>

A
with the energy E®"° = -N — + Nh2.

The lower lying excitations of Hq contain one TfTlipped spin,

and they are of two kinds:

p®*? = 11 1...1 k 1...1>

with energy = E®*° + Al + A2, and

= |1 1...1 (n+DI...1>
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SO

with energy: El,n+l

= qu + Z\ln. The two excitations are
N(2n-2) and N-fold degenerate, respectively. The higher
lying excitations of Hg contain more flipped spins.

The Tfirst few terms of the Brillouin-Wigner perturba-

tional series for the ground state energy are the fTollowing:

E§"® = NG, m+ hy)
es,ll =0
"S2 _ N (2n-2)
ni+n2  2x1
,S,3 hih2
S5 = LN (2n-2)(@n-4) +2(20-2) (1inoyam
<
(AD
@n-2) h1h2
< W
ES/4 = N (@2n-2)(@2n-4)
(n1+n2)

A well defined 1/n expansion exists i1f condition (4.1) is

fulfilled. Then the ground state energy can be written as:

1 5.1 1 s,2 ., 2
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The zeroth order term is just:

The Tirst order term is the sum of a geometric series, which
stands in the first column in the right hand sides of (Al).
These elements have the property that in the <0]VvVgV...gV]0>
perturbational expression the V perturbation always acts on

the same spin. The sum of these terms is

2nh,

s/ \1+\2

-2nh. onh, + 2nh,

V. X2

The second-order term in (A2)

7]

more complicated and consists

of different parts, which can be summarized as follows:

1. V always acts on one spin

) There 1s no intermediate state of |n+l>, there 1is
no flip with n.

There 1s no intermediate state of |n+l>, there 1is

-
o/

one Tlip with n.

iii) There is one intermediate state of |n+I>, there 1is
one Tlip with n.
(This must be the first or the last spin flip.)

iv) There 1is one intermediate state of |n+l>, there 1is

no flip with n.
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2. V acts on two spins

i) The two spins are not nearest neighbours.

ii) The two spins are nearest neighbours.

The higher order terms in (A2) contain expressions with
more fTlipped spins and the terms with fewer flipped spins

have to be evaluated iIn the given order of 1/n.
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Appendix

2. Weak-coupling expansion

The weak-coupling form of the Hamiltonian (Paper 1, egs.
2.5 and 2.6) 1is used in this calculation. The unperturbed

part of the Hamiltonian is

o] Hh + I (n-1) 5n

while the perturbation is

vV - Hx - I(n“D

The ground state of Hgq is given by
mMwo —
q)o 1

™
with the energy Eo* = -N[2(N-2) hl~-(nh-1) -]

The lower lying excitations contain a flipped pair of spins,

and they are of two kinds:
~A*12k = 111" ee-17 (2k) " (2n+2-2k) "1° ...I"> k=1,2...n
with energy E~"°k = E™,°+4nhl1+4 (I™-h") , and

AL)2k+Hl = 1171%ee.17(2k+1)" (2n+1-2K)"1".._1">

k=1,2,. ..,n-1
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i ™= o — o - -
with energy EI,2k+I E% +4nhI. The two excitations are

N*n and N(n-1)-fold degenerate, respectively. The higher
lying excitations of Hgq contain more flipped spins.

The Tirst few terms of the perturbational series for

the ground state energy are:

*%"o - _ — _ _ ™™ -
Ex N[ @n-2>h - (-1 & ), EF*1=0

A 2

A 2
w,2 _ ;
= N MA)  gnhnig (h2-hr) D GO g

Ad 2 A«
W, 3 = -N n(n-1) SQn -2n
[4nh1+4(h2~h1)]*

A, 2 A,

o 20 2n .
nn [4nh1+4 (h2~h1)Anh. A

A~ 3,
<A
(4nh1)

+ (n-1)(n-2)

The 1/n-expansion can be written in the region (4.1) as

EW

o] w,o |, W, 1
N €o + E% Eo + (

ew "2 +. A3
Zn)E ¥

The zeroth order term 1is:

W,0 , 5

€ T Ty 5
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The Tfirst order term, is the sum of elements, where the V

perturbation acts on the same pair of spins:

w.l 1 8nh, 1 8nh,
avoxz oz xesxt 2 x2xi
~ 8nh, 8nh,

The second order term in (A3) consists of four parts:
1. V acts on one pair of spins

i) Taking it into account that the energy denominators
may be 4nh” and 4nh™ + 4(h2~h1l)
i1) Taking it into account that the number of spin-flips

M A2
are n and n-1 for and ~ , respectively.?2

2. V acts on two pairs of spins

i) The two pailrs have no common spin.

ii) The two pairs have one common spin.

The determination of the second order term iIn this case 1Is
somewhat more complicated than for the strong-coupling
series. The reason for this is that the factor %% is
associated with an odd number of spin flips therefore only

~
the even powers of

should appear in the expansion.
The higher order terms in (A3) contain more pairs of

flipped spins .
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Crossover value of n

Order
latent heat magnetization
1 6 1
2 5.646 2.303
3 5.346 3
4 5.106 3.378
5 4.911 3.598
Table 1

Zeros of the latent heat and the magnetiza-
tion series in powers of 1/n for the 2D
n-state Potts model.
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Fiqure captions

Fig.

Fig-

Fig-

1

Second order expansion parameters of the phase

transition point (a2) and of the latent heat (62).

Phase transition point at X=0, for different values
of n. —— RG calculation, - - - I/n expansion in

second order, = e e 1/n expansion in Ffirst order.

The critical values of nC where the nature of the
transition changes. - - - second order calculation,

e e« e Tirst order calculation.






1/n









Kiadja a Kozponti Fizikai Kutaté Intézet
Felel6s kiad6: Krod Norbert

Szakmai lektor: Fazekas Patrik

Nyelvi lektor: Harvey Shenker
Példanyszam: 320 Torzsszam: 84-689
Készilt a KFK1 sokszorosito lUzemében
Felel8s vezet6: Toreki Bélané

Budapest, 1984. december ho



