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ABSTRACT
The phase transition behaviour of the Hamiltonian version of the two 

dimensional n-component cubic model is studied along the cubic transition 
line. 1/n expansion and anisotropy expansion around the 2n-state Potts point 
are used to determine the phase transition line and the latent heat. The 
latent heat depends on the value of the coupling whereas the crossover value 
of n, where the transition changes from second to first order, does not (it 
is n =2). The latent heat has essential singularity at n=2 along the cubic 
transition line.

АННОТАЦИЯ

Исследованы вдоль линии кубического перехода свойства фазового перехода 
гамильтоновского варианта двумерной n-компонентной кубической модели. Для оп
ределения линии перехода и скрытой теплоты применены методы 1/п разложения 
и разложения по степеням анизотропии в окрестности точки Поттса 2п-ого состо
яния. Скрытая теплота зависит от константы связи, а критическое значение п, 
при котором фазовый переход второго рода преобразуется в переход первого рода, 
не зависит от константы связи (пс = 2). Скрытая теплота имеет существенную 
особенность при п=2 вдоль кубической линии перехода.

KIVONAT

A két dimenziós n-komponensü köbös modell Hamilton változatának fázis
átalakulási tulajdonságait vizsgáljuk a köbös átalakulási vonal mentén. 1/n 
sorfejtést és a 2n-állapotu Potts pont körül anizotrópia sorfejtést haszná
lunk a fázisátalakulási vonal és a látens hő meghatározására. A látens hő 
függ a csatolástól, mig n kritikus értéke, ahol az átalakulás másod-rendűből 
első-rendübe változik, nem függ a csatolástól (ez n = 2). A látens hő n=2- 
nél lényeges szingularitást mutat a köbös átalakulási vonalon.



1. Introduction

In the first part of this work (Iglói 1984, hereafter 

referred to as Paper I) the (1+1) dimensional n-coraponent 

cubic model was investigated by mean-field calculation and 

by several renormalization-group (RG) transformations. The 

phase diagram and the critical properties of the (1+1) di

mensional model were found to be identical with those of the 

two dimensional (2D) model.

In this part of the work the properties of the cubic 

transition are investigated, when this transition is of first 

order. We use two methods of expansion both of which supply 

complementary information. The 1/n expansion for large values 

of n is a good approximation, while the coefficients of the 

anisotropy expansion around the 2n-state Potts point have 

small values when n is close to 2. These expansion methods, 

are unfortunately not suitable for investigating the neigh

bourhood of the multicritical point because at this point 

all terms of the perturbational expressions'become equally, 

important, signalling the role of competing effects.

The 1/n series is determined up to second order for the 

phase transition line, for the latent heat and for the cross

over value of nc , where the order of the phase transition 

changes from first to second order. While in the second part 

of the paper the 2n-state Potts model was taken as a refer

ence system, and the expansion was made with respect to the 

anisotropy. This series was determined in first order only
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because calculation of the higher order terms would need a 

knowledge of the properties of the 2n-state Potts model 

beyond the critical point, and these are not known.

The paper is arranged as follows: §.2. contains the 

formalism and the duality properties of the model; §§.3. and 

4, respectively give the results of the 1/n expansion and 

the anisotropy expansion; §.5. contains a summary. The 

details of the calculations are presented in the Appendix.
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2. Duality properties

The time-continuum limit of the 2D n-component cubic 

model was presented in Paper I. At the same time we detérmined 

the different representations of the ID quantum problem that 

serve as convenient calculational bases in the different 

phases (ferro-, para-, partially ordered). To investigate the 

duality properties of the model we use the strong coupling 

representation (Paper I, eqs. 2.1 and 2.2), and rewrite the 

Hamiltonian in the form:

n
E

k=l
2k-
l

2n-2k+l
“i+1

n-1
E

k=l
Q2n-2ki+1

(2 .1)
n_1 к n+kh, E S (M. + M. ) - h„ E Mn1 . . .  l l 2 . M .l k=l l l

Here X ^ and X 2 denote the couplings between the neighbouring 

spins, while h^ and h2 are the strengths of the external 

fields appearing in the Hamiltonian version of the model.

Q and M are 2nx2n matrices:

■ 1 0 0 0 0 ... 0 1'

0 CO 1 0
2CO
• M =

1

• 1

0 •

_0 • • П 2n-l0 со J 0 0 1 0 .
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and со = exp (^~) • These matrices commute in different sites; 

on the same site they satisfy the Z(2n)-algebra:

к A k+A Q .Q . = 0. l i 1

к A k+AM.M. = M. i 1 1

к A kA A к Mfi. = со Q.M l i  l i

(2 .2 )

Let ut now introduce a dual lattice and define the 
к кoperators Q^, on the sites of the dual lattice, i.e. on 

the links of the original lattice:

nk =l П M_ 
j = i -

Q2n~k к
i+1

It is easy to see that these operators also satisfy the Z(2n)- 

-algebra. The (2.1) Hamiltonian operator can be written in 

terms of the new operators as:

H
n
E

k=l
тт2к-1 M .l

n-1
E

k=l
_ 2k M.

n_ ̂
, „ „ кт:2п-к тгп+к—п-кч ,- h. E E (Q.£l.,. + £2. Q. )-h„1 . 1 1 l l+l l i  2l k=l

E l l+l l

(2.3)

Comparing (2.1) and (2.3), one can see that the model is not, 

in general, self-dual. However, by using the parametrization
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X

(2.4)

the Hamiltonian can be written as

H = H + H о p

2n_1 k k 2n-l .
H = -E E -hE E M - (X-l)
° i k=l 1 1+1 i k=l 1

n-1
E E Q. Q2k _2n-2k
i k=l i i+1

(2.5)
n-1

+ h E E M 
i k=l

2k

H = (X-l)*h E ( E M2k-M? 
P i\k=l 1 i/

Hq obeys the duality relation:

H (h,X) = h H (h-1,X) о о

and its self-dual line is h=l independently of X. The original

model (described by H) is self-dual if H = 0. This is true
p

for the Ashkin-Teller model, where n=2, and at the 2n-state 

Potts point, i.e. at X = 1. The plane given by eq. (2.4) was 

used by Kohmoto et al (1981) in their study on the Ashkin- 

Teller model.. It turned out that this subspace contains all
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the interesting regions of the phase diagram (Iglói and 

Sólyom 1984). Finally we would mention that the (2.5) form 

of the Hamiltonian will be used in the §.4. to perform an 

anisotropy expansion around the 2n-state Potts point in 

powers of A.-1.



3. 1/n expansion

For several spin systems, in which the number of com

ponents of the spin is a parameter and the n -*■ 00 limit is 

exactly soluble, a well-converging 1/n expansion can be 

defined. The method was introduced by Kogut (1980) and was 

applied to several spin- and gauge-systems. The success of 

the method is due to the fact that even in first order in

finite terms of different orders of the usual Brillouin- 

Wigner perturbation series have to be summed. In contrast to 

this procedure, we can mention another expansion, say 1/m, 

where m is the number of coupled spins (Iglói et al. 1984). 

Now the different terms in powers of 1/m corresponds to the 

different orders of the Brillouin-Wigner perturbation series. 

The convergence in the latter case is less pronounced. By 

comparing the two methods we can see that, in some sense, 

there is an obvious analogy with the different perturbation 

methods for dense gases or liquids. The Mayer expansion for 

dense gases used for treating the rapidly varying perturba

tions, is the analogue of the 1/n expansion. On the other 

hand, the usual high-temperature expansion used for treating 

slowly varying perturbation in liquids and gases are the 

analogues of the 1/m expansion.

The essence of the 1/n expansion may be summarized as 

follows. The ground state energy of the system as a function 

of the coupling has to be determined for different powers 

of 1/n, both in the weak-coupling and the strong-coupling
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regime. The crossing point for the two expressions is ident

ified with the phase transition point in the given order. 

Furthermore, the difference in the slopes of the two curves 

at the crossing point is proportional to the latent heat, 

also in the given order of 1/n. The latent heat defined in 

this way is positive for large values of n; however, it 

becomes negative with decreasing values. As was pointed out 

by Kogut (1980), the polynomial fórra of the finite series is 

not able to account for the essential singularity in the 

latent heat corresponding to the second to first order change 

in the transition. Therefore the latent heat obtained by 1/n 

expansion has a physical meaning only” for its positive values. 

The crossover value of n is defined by the zero of the latent 

heat expression, while for its negative values the transi

tion is assumed to be of second order. The estimate for the 

crossover value of n turned out to be fairly accurate even 

in first order for the Potts model in two and three dimensions 

(Kogut et al. 1980, Kogut and Sinclair 1981). The further 

terms give a slight improvement though, the convergence of 

the series is rather slow. For illustration, the approximate 

crossover values of n are summarized in Table 1 for the 

n-state Potts model in 2 dimensions. Here, the exact solution 

of Baxter was used both for the latent heat (Baxter 1973) and 

for the jump in the magnetization (Baxter 1982):

AM = 1

£ + n
2
2n

+ A  + 263 4 n n * 4n

1 3 9 27 82
n 2 3 4 5n n n n
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From Table 1 it can be seen that the two series for nc
go from different directions to the exact value of 4.

The 1/n expansion is easier to apply for systems where 

self-duality holds. In these cases the weak-coupling and 

strong-coupling series are connected by self-duality, and the 

approximate transition points coincide with the self-dual 

point in every order of the calculation.

In our model, where self-duality generally does not hold, 

the two expansions have to be carried out separately. The first 

few terms of the weak- and strong-coupling series are given in 

the Appendix. In the neighbourhood of the phase transition 

points the terms of the series can be arranged in powers of 

1/n if the condition

2n h^ »  h 22 (3.1)

is fulfilled. This condition is true for the cubic transition1. j- .
line. Unfortunately, the multicritic.al point cannot be in

vestigated by this method. In that region all terms of the 

series become of the same order of magnitude, a fact that 

clearly represents the role of competition in creating multi- 

critical points. In the following the phase diagram and the 

latent heat of the cubic transition are given up to second 

order.

The ground state energy in the strong- and weak-coupling 

limit up to second order in 1/n is given in the Appendix.

The phase-transition point is given as:
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2h = 1+A + •J—■ ex. (A) + — —— x <x_ (A) + ... 
2n 1 (2n)2 2

(3.2)

Here

a^A) = - (А-l) (2+A +

while the form of (A) is given in Fig. 1. The latent heat

is:

L = 2nh {1 + ~  6. (A) + — ~ 7? 6„(A) + ...} 
2n 1 (2n)2 2

(3.3)

where

6X (X) = -6 + (X-l) 2 ( -1
A+3

2

while 6 2 (X) is sketched in Fig. 1.

We also give the results in the original space of 

couplings up to first order, when the formulae are relatively 

simple:

4nhl - V X2 + 25 ■4nh2+2A^ - < w
Л2+ЗЛ1 J

+ (3.4)
n

L = 2nh, [i - 1 h27 ^4-9 ( X 2 ~ X 1 \ 2 1 + a(-^) '
l1 2n h. \ A-.+3A. jL 1 \ 2 1 / J n J

Г (3.5)

In the following let us discuss some consequences of 

these formulae.

i) In zeroth order, i.e. in the n •> 00 limit, the phase- 

transition points (3.2) and (3.4) are the same as in the 

mean-field calculation (Section 3 Paper I). Therefore the 

mean-field phase diagram is exact for the cubic transition 

line in the n -* 00 limit.
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ii) The position of the multicritical point for large 

values of n can be obtained from condition (3.1). It is

2 22nh^ ~ h*

This expression is also in agreement with the results of 

mean-field calculation.

iii) The latent heat depends on the values of the 

couplings, even in first order of 1/n. Therefore there is 

no universality for the first order transition.

iv) In order to investigate the convergence of the series 

(3.2) for the phase transition points, we compare it with the 

results of other methods. At A = 1 (at the 2n-state Potts 

point) eq. (3.2) is exact. In another part of the phase- 

diagram: at A = 0, we compare it with the result of the self

dual RG calculation (Section 4, Paper-I). Fig. 2 shows that 

the results of the two methods are quite close to each other 

for n £ 3.

v) As already mentioned, the latent heat expression

gives the possibility to estimate the crossover values of

n , where the phase! transition changes from first order to c
second order. The estimated n values for different valuesc
of A are given in Fig. 3. It is generally supposed (Nienhuis

et al. 1983) that the exact value of nc is 2 independently

of the value of L  In our case, even in this low-order of

the calculation, the estimated values of n are in the rangec
2.8-3.6, and there is no strong dependence of n on Л. Soc
this picture can be considered to be consistent with the 

conjectured one.
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vi) By expanding eqs. (3.2) and (3.3) around the 

2n-state Potts point in powers of (A.-1) , the following 

series can be obtained:

2h = 2+U-l) [1 -[1 3 3 . . ] +2n (2n) 2 *

[- 5 . 1 + 27 1
4 2n 8 2 * ’(2n) Z

(3.6)

. . . ] +

L = 2nh {1 - _6_
2n (2n)

+...+ (Л-1)[2n (2n)
(3.7)

ft
It will be shown in the next section that in first order of 

(A.-1) the coefficients can be summed. This exercise will be 

done by using anisotropy expansion around the 2n-state Potts 

point.
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4. (Л-l) expansion around the 2n-state Potts point

Let us turn back to expression (2.5), where the 

Hamiltonian of the system is split into a self-dual part (Hq) 

and a perturbation (H^). Let us suppose that n>2. The phase 

transition is of first order so the transition is accompained 

by a crossing of energy levels. Let us denote the difference 

between the two lowest levels by F(h,A-l), and the same 

quantities for Hq and are denoted by Fq and Fp , respect

ively. The gap vanishes at the phase transition point, so:

F(h*, Л-1) = 0 (4.1)

In the 2n-state Potts point, and for the system described by 

the Hamiltonian Hq the transition point is just h*=l, there

fore

F (1,0) = 0, Fq (1,X-1) = 0

By expanding (4.1) in first order in (Л-l):

F(h*,A-l) = F (1,V-1) +
3Fо
3h (h*-l)+F (1,Л-1)+. 

A=1 p
h=l

0

Thus the change in the phase transition point is

h*-l
Fp (l,0) 

Ж  Fo (h'0)
(4.2)

The denominator on the right-hand side of (4.2) is 

proportional to the latent heat of the 2n-state Potts model, 

that can be written by using the Hellman-Feynman theorem as:
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д 2n-l
ár F (h,0) = < 1 1E E 
3h ° i k=i

M.1
2n-l

i >-<o |e e 
i k=l

м±к |о> (4.3)

where |0> and |1> denote the ground state and the first 

excited states of the 2n-state Potts model, respectively. 

The numerator of (4.2) has a form similar to (4.3), viz.

FP (1,0 ) (А-l) [<1 E
i

M2k-Mnl 1 1 1 > -

—  <0
n-1

S E 
i \k=l

M2k-Mn' 1 1 0>]

The two expressions are proportional to each other and their 

ratio in (4.2) is just (n-2)/ (2n-l). (Л-l) .

Thus, the phase transition points in first order are 

given by:

h* = i + (X ~ 1 ) + . . . (4.4)

This result coincides with the result of the ^ expansion in 

eq. (3.6). It is pointed out that eq. (4.4) holds for the 

single phase transition part of the phase diagram, otherwhere 

it may be considered as a "duality line".

The latent heat can be calculated from the slope of the 

F(h,A-l) curve at h*:

T - _ 3F(h,X)
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By expanding L in first order of A.-1:

L = -
9F (h,A) о

9h h=h

9F 
__E9h (4.5)

h=l

The first term can be expanded as

9F (h,A) о 3Fo (h,l) 92F (h,1) о
3h h=h* 9h h=l 3h2

(h*-l)
h=l

(4.6)
Э Fq (h, A)

эКэХ (A-l) +...
h=l
A=1

The first term is just the latent heat of the 2n-state Potts 

model; the second is zero due to the duality properties of 

the Potts model. The third term of (4.6) as well as the 

second term in (4.5) are proportional to the latent heat of 

the 2n-state Potts model. Therefore we can write up to first 

order:

L Potts [1 + 1
2n-l (A-l) +. . . ] (4.7)

This formula is also in accordance with the result of the 

1/n expansion (3.7). According to eq. (4.7), in the n-com- 

ponent cubic model on the cubic transition line for nl2 the 

latent heat vanishes whereas for n>2 there is finite latent 

heat. Thus at n=2, the phase transition changes its nature 

from second order to first order. Furthermore the latent 

heat shows essential singularity at n=2 along the cubic 

transition line, similarly to the 4 state Potts model
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(Baxter 1973). Finally it is mentioned that the higher order 

terms of the anisotropy expansion should be exposed by the 

derivatives of the free energy of the Potts model at the 

critical point; however, these are not yet known.
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5. Summary

In this paper, which represents the second part of our 

work on the (1+1)D n-component cubic model, the properties 

of the system were investigated along the cubic transition 

line, for first order transition. We used 1/n expansion and 

anisotropy expansion, which supply complementary information. 

The results show the cubic transition to be of first order 

for n>2, independently of the coupling. The latent heat de

pends on the coupling (there is no universality), and has 

essential singularity at n=2. At the multicritical point all 

terms of the series are of the same order of magnitude, which 

prevents the application of a perturbational expansion.
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Appendix

1. Strong-coupling expansion

The strong-coupling representation (Paper I, eqs. 2.1 

and 2.2) is used in the calculation. The unperturbed part of 

the Hamiltonian is

H = H.. + £ h O A i 2

while the perturbation

V - Hh - I h2

The ground state of Hq is given by

4js '° = 11 1. . ,1>о 1

A
with the energy E®'° = -N —  + Nh2.

The lower lying excitations of Hq contain one flipped spin, 

and they are of two kinds:

ф®'? = 11 1...1 к 1...1> 

with energy = E®'° + A1 + A2, and

= |1 1...1 (n+l)l...l>1, n+i
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S O  s owith energy: E,' = E ' + 2 \ л . The two excitations arel,n+l о 1
N(2n-2) and N-fold degenerate, respectively. The higher 

lying excitations of Hq contain more flipped spins.

The first few terms of the Brillouin-Wigner perturba- 

tional series for the ground state energy are the following:

E®'° = -N (— ■ + h )O 2 2

e s ,:l = О

■.s, 2 _ _N (2n-2)
Л1+Л2 2X1

,s,3 _= -N (2n-2)(2n-4)
< W

+ 2(2n-2) hlh2
(Л1+Л2)2Л1

(2n-2) hlh2

(Al)

< w

ES/4 _ N (2n-2)(2n-4)
(л1+л2)

A well defined 1/n expansion exists if condition (4.1) is 

fulfilled. Then the ground state energy can be written as:

N
1 _S , 1
2n + 1 s,2

(2n)2 °
+ . . . (A2)
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The zeroth order term is just:

The first order term is the sum of a geometric series, which 

stands in the first column in the right hand sides of (Al). 

These elements have the property that in the <0|VgV...gV|0> 

perturbational expression the V perturbation always acts on 

the same spin. The sum of these terms is

2nh,

-S/l _ -2nh. \ 1 + \ 2
2nh, + 2nh,

1 -
V X2

The second-order term in (A2) is more complicated and consists 

of different parts, which can be summarized as follows:

1. V always acts on one spin

i) There is no intermediate state of |n+l>, there is 

no flip with n.

ii) There is no intermediate state of |n+l>, there is 

one flip with n.

iii) There is one intermediate state of |n+l>, there is 

one flip with n.

(This must be the first or the last spin flip.)

iv) There is one intermediate state of |n+l>, there is 

no flip with n.
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2. V acts on two spins

i) The two spins are not nearest neighbours.

ii) The two spins are nearest neighbours.

The higher order terms in (A2) contain expressions with 

more flipped spins and the terms with fewer flipped spins 

have to be evaluated in the given order of 1/n.
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Appendix

2. Weak-coupling expansion

The weak-coupling form of the Hamiltonian (Paper I, eqs. 

2.5 and 2.6) is used in this calculation. The unperturbed 

part of the Hamiltonian is

Hо Hh + I (n-1) 5n

while the perturbation is

v - Hx - l (n‘1)

The ground state of Hq is given by

ф™'° = о 1

T ?with the energy Eo '° = -N[ 2 (n-2) h1~ (n-1) -^]

The lower lying excitations contain a flipped pair of spins, 

and they are of two kinds:

^*1'2 k = I I'l' • • -1' (2k) ' (2n+2-2k) '1' . . .l'> k=l,2...n

with energy E^'°k = E ™ ,°+4nh1+4 (l^-h^) , and

^1)2k+l = I1'1'••.1'(2k+l)'(2n+l-2k)'1'...l'>
k=l, 2 ,. ..,n-l
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with energy E™'° = EW '°+4nh,. The two excitations arel,2k+l о 1
N*n and N(n-l)-fold degenerate, respectively. The higher 

lying excitations of Hq contain more flipped spins.

The first few terms of the perturbational series for 

the ground state energy are:

E*'° = —N[ ( 2n-2) h - (n—1) ■— ), E™'1 = Оо 1 2n О

rw,2 = -N
A. 2

м -é)2n 4nh-^+4 (h2~h^)
A 2

+ (n-1) (-=é)2n 4nh.

?w, 3 _= -N n(n-1)

A -] 2 A«
(— -) • _v2n' 2n

[4nh1+4(h2~h1) ] ‘

A, 2 A„
(— ) —„ , , _____  2n 2n______ ,П П [ 4nh1+4 (h2~h1) ̂ nh.^

+ (n-1)(n-2)

A~ 3 ,
<2H>

(4nh1)

The 1/n-expansion can be written in the region (4.1) as

EWо
N

w,o , 1 W,1e ' + Tr— E +о 2n о (2n)
7 ew '2 +. 2 о (A3)

The zeroth order term is:

A~w,o _ , , 2e = -2nh. + о 1 2
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The first order term, is the sum of elements, where the V 

perturbation acts on the same pair of spins:

.w, 1
4nV X2

1
2

8nh,

1 - X 2 + X l
8nh,

1
2

8nh,

1 - X 2 X 1 
8nh,

The second order term in (A3) consists of four parts:

1. V acts on one pair of spins

i) Taking it into account that the energy denominators 

may be 4nh^ and 4nh^ + 4(h2~h1)

ii) Taking it into account that the number of spin-flips
A-l A-2

are n and n-1 for and ^  , respectively. 2

2. V acts on two pairs of spins

i) The two pairs have no common spin.

ii) The two pairs have one common spin.

The determination of the second order term in this case is

somewhat more complicated than for the strong-coupling
*1series. The reason for this is that the factor -r—  is2n

associated with an odd number of spin flips therefore only
^1the even powers of should appear in the expansion.

The higher order terms in (A3) contain more pairs of 

flipped spins .
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Order
Crossover value of n

latent heat magnetization

1 6 1

2 5.646 2.303

3 5.346 3

4 5.106 3.378

5 4.911 3.598

Table 1

Zeros of the latent heat and the magnetiza
tion series in powers of 1/n for the 2D 
n-state Potts model.
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Fiqure captions

Fig. 1 Second order expansion parameters of the phase 

transition point (a2) and of the latent heat (62).

Fig. 2 Phase transition point at X = 0 , for different values

of n. -----  RG calculation, - - - l/n expansion in

second order, • • • l/n expansion in first order.

Fig. 3 The critical values of n where the nature of thec
transition changes. - - - second order calculation, 

• • • first order calculation.
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