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ABSTRACT

We report on a new variational method for determining the ground state
energy of antiferromagnetic Heisenberg spin chains with nearest neighbour
interaction. The method enables us to extrapolate to the exact energy and it

is shown that the first few approximations give better results than other
approximate methods.

AHHOTALWA

PaspaboTaH HOBbIi BapuauMOHHbLIA Moaxod, C MOMOWbI KOTOPOro MOXHO onpepe-
NNTb 3SHEPrui OCHOBHOMO COCTOSHUSA aHTUPeppoOMarHUTHOM rer3eH6eproBCKON CAWHOBOM
uennm c y4dyeTom B3aummodencTBuUsa OGanmxanwmx cocegenn. PaspaboTaHHblii nogxog nNpuro-
OEeH 1 ons onpefeneHust TOYHOIFO 3HAYEHUS 3HepPruu, nNoJjb3ysiCb 3KCTpanonauuer; npu

9TOM Yy4deT HeCKOJ/IbKUX NnepBbiX Waros pgaeT nydwme pe3ysbTaTtbl, 4Yem gpyrune |'|p|/|6r||/|—
XeHHble MeTOAbl.

KIVONAT

Egy uj variacios médszert Trunk le, melynek segitségével meghatarozhato
az els6szomszéd kolcsbnhatast tartalmazd antiferromagneses Heisenberg-spin-
lanc alapallapoti energiaja. A médszer alkalmas az egzakt energia extrapola-
cioval torténd kiszamitasara, tovabba az els6 néhany koézelités jobb eredmé-
nyeket ad, mint mas koézelitd eljarasok.



The exact value for the ground state energy of the anti-
ferromagnetic Heisenberg chain is known only for S=1/2 spins
(des Cloizeaux and Gaudin 1966). However, the Bethe-Ansatz
(Bethe 1931) can"t be applied for chains with spins larger
than 1/2. In these cases one has to perform approximate calcu-
lations. Recently quantum spin chains with S=1 are widely in-
vestigated both experimentally (Kjems and Steiner 1978) and
theoretically (Haldane 1983). The S=1 magnetic chain CsNiF3

has been described by the following Hamiltonian:

+d (s;/7 1] N+1=1 ()
rx Ty C= _
where 0j , = , oj are the components of the spin operator
on the jJ-th site, g and D are the exchange and the on-site
anisotropy, respectively (for CsNiF® £= -1, and D= 0.38 was

used) .

Our aim In this letter is to present a new variational
method for calculating the ground state energy of the Hamilto-
nian (1). In order to describe the above system for S > 1/2
various approximate methods have been used. One of them is
the straightforward diagonalization of (@) for finite rings.
Blote (1978) computed the ground state energy per lattice site
for rings containing N spins. The diagonalization can be per-
formed numerically for small N providing a set of energy
values E(N) which can be used to extrapolate to the exact value

in the thermodynamic limit: E(N)-*E(co) = E__ when N-* oo .
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In this case one uses finite systems to obtain information

about the iInfinite system.

Another group of methods is based on a simple mean-
-field theory (Mead and Papanicolaou 1982) . S6lyom and Ziman
(1984) applied this theory for the Hamiltonian (1) supposing
that the N-spin wavefunction is the direct product of one-spin

wavefunctions:

N

T=" _JL_TL @)

where the one-spin wavefunction ipib) raU)M) +cutoHo} 4

Here the kets represent the three possible state of one spin
with S=1 and aH1 , aloj , a (-4j are variational parameters.
Using the (@ variational trial function one can calculate the
energy per lattice site as a function of the variational para-
meters :

£ o)y al-1)] = ﬁl <TO !nl';“ rov> ®

The r.h.s. of< (3) doesn"t depend on N and minimization with
respect to aw ,ato)/ yields the ground o6tate energy
in the mean-field approximation. Although this calculation
refers to an infinite system it doesn"t include any correlations

between spins.

There are two possible way to improve this theory. The
first was done by So6lyom (1984) and is based on the following

idea. Let us construct a wavefunction which i1s the product of



K-spin wavefunctions instead of one-spin wavefunctions
* -
CK™:, :3,._.:) -

nA 4

8:___’5“};[!: ® JNjb+r ) @

In this case the chain of length N is divided into "clusters”
containing K spins and the cluster-wavefunction has the form

e.g. for K = 2:

yts,, V =cxU/Z1I;K*'t>+anox.0) +... +fti-M)K-1> O

After calculating the expectation value of the energy per Iattic%6
site In the (&) state and minimizing with respect to the vari-
ational parameters all, 1J,...,0/1-4,-1) one obtains a set of
approximate values for the ground state energy E(k) depending

on the cluster size k. Apparently E@) = E , Sso the E(kK)

6 X3C1
set can be used for extrapolation as well. This method (here-
after referred to as spin-cluster method) includes correlations
between spins belonging to the same clustef (the bonds inside

a cluster are treated correctly). However, there iIs no corre-
lation between spins of different clusters and the energy contri-

bution of bonds connecting the neighbouring clusters are ave-

raged in a mean-field like manner.

Now we present the second possible way to improve the
simple mean-field theory. The basic i1dea iIs that the energy
contributions of the nearest-neighbour exchange Hamiltonian @)
are connected with the bonds instead of sites. In order to

take into account all of the bonds with the same accuracy



let us divide the chain of length N into clusters containing

K bonds instead of kK spins (Fig. 1). In this way each bond

belongs to a well defined cluster (hereafter often referred to

as bond-cluster) and the neighbouring clusters are coupled

by the common spin.

The appropriate wavefunction will have the form:

1y > =X 1£> ©®
n

where In)«In,r..,AaM) («i*4,0,-4) are basic vectors and

cAn) « nM)* ClAtl,,,0% , ) oX L i f

.- a- Cnjk+11 «*, n NN 1 InN>

Here CI1l1®,,6t t ek> )is an element of a three dimensional
coefficient tensor which has k+l indices, and belongs to the
bond-cluster with bond configuration determined by the spin

configuration ,674 |

The expectation value of the energy per lattice site iIn

the state given by (®) and () 1is:

| <434 1>

N  <.YIY> (

This expression has to be minimized numerically with respect
to the elements of above mentioned coefficient tensor. If we
increase the size of the bond-cluster (Kl we obtain a set of

ground state energy approximations E(k). It is clear that



5

Lim ECKbE. .so0 we have the possibility for extrapolation
k+Q oatx

again.
It is worth-while to look iInto certain details of the
calculation. In order to evaluate (@) let us begin with the

norm of the trial Tfunction:

n

®
| ool H M- )

IT we define the 3 x3 nonnegative matrix

a0
-A
the norm can be expressed as
<4/1T> = $p~ T Nk ) 11

The nominator of (@) can be calculated straightforwardly in
similar manner and we obtain that the energy per lattice site

has the form

1 SptTelkk’5Q)
E = 'K Sp (,TN/kJ (12)

where Q 1i1s a 3 x 3 matrix and its elements are complicated
but well defined functions of the variational and anisotropy
parameters (the T matrix depends only on the variational para-

meters, see (10)). Let us suppose that T can be diagonalized by



similarity transformation i1.e. U IT U SO and T\ 1is diagonal
with elements \D> X, > Xa . It 1s easy to show that in this

case (12) can be rewritten in the form:

#
P _ J-S Qo.+(X/A.J Q,, "CX~X.) Q»
"k * \ +1 x,/x.T/AK (@)

Here Qcj»(U"4QU) 1j and now we are able to perform the N —*o00

limit for any given k:

E=£ K b Sco )

The above expression is a function of the cluster size k, the
anizotropy parameters g and D and the variational para-
meters. After numerical minimization we obtain a set of energies
ECU) for any given g and D values and the extrapolation to

the exact value can be performed from these data.

In order to check our method we have carried out the
calculation for S=1/2 where the exact results are known.
The ground state energy approximations in the isotropic anti-
ferromagnetic point (gslJ are given in Table 1 in the bond-
-cluster row up to kK = 5 . These values are shown in Fig. 2
as a function of I/k as well. It can be seen that ECk)-ECRI™ 1/k
for large k. First we have performed the I/k fit for neighbouring
points only. Then the I/k fit was applied again for the new
set of approximations. The result of the extrapolation and the
exact value Uft- Ini) are also given in Table 1 (the discre-

pancy between the extrapolated and exact result is ~0.045 %).



In Table 2 we have given our results for S=1 in the iIsotropic
antiferromagnetic point Cg"1,D=0j and in the XY limit 18=D*0).
In the $=1,0* 0 point Blote (1978) extrapolated from finite

rings to the value -1.400.

We have compared our approximate values to the data given
by finite-ring and spin-cluster calculations in Table 1. It can
be seen that the discrepancy between the approximate and exact
values are 10-5 times larger for the finite-ring method and
2-3 times larger for the spin-cluster method than for our bond-
-cluster method in the case of small U™* clusters.

In other words the relative discrepancy ranges from ~70 % to
«"I0 % for the finite-ring calculations, from ~15 % to ~9 %
for the spin-cluster method and from ~6 % to ~3 % for the

bond-cluster method.

In conclusion the above described bond-cluster method
takes Into account the contribution of each bond with the same
accuracy and due to the common spin of neighbouring bond-clusters
there 1i1s correlation between spins belonging to different
clusters as well. (It can be shown by straightforward calcu-
lation, that n/epr———ﬂ“:} where e and the X -“s
are the eigenvalues of the T matrix). Due to these advantages
the variational procedure gives considerably better approxi-
mations for small clusters (in practice only small sizes can be
treated numerically) than the other methods mentioned here.

The bond-cluster picture might be useful for other 1-D lattice

systems with nearest neighbour interaction.



It must be added that certain informations concerning
the phase diagram can be obtained by examining the final
values of the variational parameters. A ferromagnetic - XY
phase boundary passing through the g=-1 (D=0) point was
found for both S=1/2 and S=1 and for each value of k.

There was a possibility to detect an antiferromagnetic - XY
phase boundary through the appearence of the sublattice
magnetization which is zero in the XY phase and finite in the
antiferromagnetic phase. But, unfortunately we couldn®t find
any way to make distinction between the XY and the singlet
phase while iIncreasing the on-site anisotropy D. Therefore

the detailed study of the phase diagram wasn®"t possible.

Stimulating discussions with J. Sélyom are gratefully

acknowledged.
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Approximate energy values for

antiferromagnetic point using

finite ring -0.75

spin-cluster -0.25 -0.3750

bond-cluster -0.4078 -0.4155

Table 1

S=1/2 at the g=1 (and D=0) isotropic
different methods
3 4 5 extrapol. exact
-0.25 -0.5 -0.3736
-0.3761 -0.4040 -0.4031
-0.4217 -0.4255 -0.4282 -0.4429 -0.4431



Table 2

Approximate and extrapolated energy values for S=1 at two

points on the D=0 line using the bond-cluster method

K 1 2 3 4 Extrapol

@:ﬂi -1.3158 -1.3313 -1.3438 -1.3520 -1.3922

§ = -1.0796 -1.0887 -1.0944 -1.0981 -1.1159



FIGURE CAPTIONS

Fig. 1 Division of the chain of length N into bond-clusters

of size k.

Fig. 2 Energy approximations for S=1/2 at the isotropic

antiferromagnetic point as a function of 1/k.
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