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ABSTRACT

A nonlinear least squares procedure based on the Meiron method is de­
scribed for the evaluation of the convolutionally distorted decay curves con­
sisting of exponentials. Most of the special procedures are well known and 
the selected ones proved to be the most effective. Some new procedures are 
introduced to facilitate the evaluation work and literature data are analysed 
as an example.

АННОТАЦИЯ

Описывается нелинейный метод наименьших квадратов, основывающийся на ме­
тоде Мейрона, служащий для оценки кривых затухания, искаженных сверткой и 
определенных экспоненциальной суммой. Большинство специальных процедур, 
используемых в программе, выбирались из хорошо известных,наиболее эффектив­
ных. Введено несколько новых процедур, облегчающих проведение анализа и, в 
качестве примера, анализируется экспериментальный результат, приведенный в 
литературе.

KIVONAT

A Meiron módszerre alapozott nem-lineáris legkisebb négyzetek módszert 
ismertetünk exponenciális összeggel értelmezett, konvoluciósan torzított le- 
csengési görbék kiértékelésére. A programban alkalmazott speciális eljárások 
többségét a jól ismertek közül választottuk ki a hatékonyság alapján. Néhány 
uj eljárást is bevezettünk a kiértékelő munka megkönnyítésére és példaként 
az irodalomban közölt kísérleti eredményt analizáltunk.



1 .  INTRODUCTION

Nowadays the parameters of convolutionally distorted multicomponent ex­
ponential decay curves can be evaluated [1] without difficulty, but even so 
because many laboratories are working in this field it is thought that the 
publication of these results might help to crystalize the best method. In 
this paper we summarize our own experience and offer some new ideas to facili­
tate the evaluation work.

The instrument independent D(t) decay curve characteristic of materials 
is assumed to be the sum of exponentials

D(t) = IAk ;expt-t/xk ] (1)
Because all the components of the D(t) decay curves are convolutionally dis­
torted by the instrument function K(t) the kth convolute

Ck (t)
t

K(t) . Dk (t - t')dt' (2)
О

and the experimental decay curve F(t) is simulated by the sum of the convolute
Jrcomponents C (t) :

m кF (t) • C(t) = I CK (t) (3)
k=l

The determination of the decay parameters Ak and xk is then a deconvolu­
tion procedure.

A rather large error comes from the usage of K(t) in Eg.(2) if it is 
supposed that it does not contain any noise.

The calculations were performed on a home-made microcomputer consisting 
of a Z-80 microporcessor with a 16K ROM and 48K RAM memory. The software sys­
tem is based on CP/M BASIC using two MOM (Hungarian Optical Works) floppy 
discs. We found that TRS-80 BASIC was the most effective and economic because 
of its integer, single and double precision representation. A DZM-180 line 
printer was utilized to represent the alphanumeric and HP-MOSELY Model 135 AM 
X-Y Recorder the graphic information.
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2. THE NON-LINEAR LEAST SQUARES Cn LSQ) METHOD

Of the numerous known methods [1] for evaluating Eq.(2), the most ef­
fective and fastest procedure is the non-linear least squares method. The 
basic equation is for the improvement of the i-th parameter in the (j+l)th 
iteration step

Xi+1 = xi " ui (4)
where u^ is an element of "correction vector" U. Using the Gauss-Newton ap­
proximation U can be defined as a scalar product

U s restr V = Q-1 . G (5)
where Q 1 and G are the inverse of the covariance matrix (Hessian) and the 
gradient vector, respectively and "restr" means a special restriction pro­
cedure applied to V. The quadratic Hess matrix is generated as a scalar pro­
duct of the P matrix (Jacobian)

Q = ET • 1 (6)
where g contains the first order partial derivatives of the descriptive C(t) 
function against the parameters

Pti = 3C(t)/3x± , (7)
thus the size of the g matrix is N x M, where N and M are the numbers of

Tmeasured data points and parameters, respectively and g is the transpose of 
g. The gradient vector is calculated as the scalar product of the transposed 
Jacobian and the residual vector R

TG = 1 . R , (8)
where •

R = C - F (9)
represent the difference of the calculated C and experimental F decay curves.

In general there is no problem in calculating the Jacobian, Hessian and 
gradient vectors. However, we are not able to calculate the optimum value of 
the "correction vector" defined by Eq.(4) because the elements of vector V 
are usually greater than the required value. Therefore the direct application 
of Eq.(3) usually leads to á bad correction. Fortunately, numerous methods 
are known for the selection of a good value of the correction vector to solve 
the fitting problem. Pitha and Norman-Jones [2] very carefully studied the 
available NLSQ methods and they found the Marquardt procedure [4] to be the 
best.

The correction vector V calculated by solving the linear equation system 
(4) is independent of the experimental noise but is influenced by the relation 
of the actual and fitting parameter set. The elements of vector V may, par­
ticularly at the beginning of the fitting procedure, be greater than those of 
parameter set. Therefore to prevent this overshooting an appropriate restric­
tion of the correction vector is essential.
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In an unfavourable case the equation system becomes "ill-conditioned", 
i.e. one or more elements of V have enormous values and the fitting problem 
cannot be solved because the- hyperellipsoid in the m-dimensional space ex­
tremely eccentric and the gradient does not point to the centre. The ill- 
conditioned state can be avoided by the damping of Hessian. In the literature 
there are a number of methods for this restriction that are based on the in­
creasing of the diagonal elements of the Hessian.

V = [Q + PS]"1 • G (10)

where § is a diagonal matrix. In the Meiron [3] procedure, § contains the 
diagonal elements of Q. The scalar p is usually between О and 1 but may be 
greater than 1. If it is zero Eq.(4) is valid for V; if it is equal to or 
greater than 1 the diagonal elements of the Hessian will be dominant and the 
effect of the off-diagonal elements in the value of the inverse matrix is not 
significant. The hyperellipsoid is transformed by scalar p into an approximate 
hypersphere. In this case the gradient points to the quasi-centre. In the 
“Marquardt method [4] which is an often used procedure, the diagonal elements 
of the Hessian are reduced to 1 by using diagonal matrix у (H.^ * l/A^j^ and 
the § matrix becomes a unity matrix J. In this case the complete equation for 
the parameter improvement is

xj+1 = xj ,1/2 (H 1/2 Q H_1/2 + Pi“1) -1/2 (11)

We do not use this procedure because the reduction of the Hessian into a 
Marquardt matrix has no advantages if the word length used in the computation 
is long enough to give reliable results at the end of elimination.

Another and simple way to restrict vector V is "truncation". In this case 
the extreme values of vector V are restricted to an arbitrarily chosen value 
which may be between zero and a definite part of the elements to be restricted. 
The truncation is a very effective tool in the initial part of the iterations 
and helps us to form a good assessment for the parameter values.

3 . SPECIAL PROCEDURES

When performing the fitting procedure it is required to give as input in­
formation the x° initial parameter vector. The elements of x° are assessed 
and the actual x-1 parameter vector at the jth iteration is a better approxima­
tion of the xf fitting parameter set than x-’ 1.

There are a number of different procedures for a given task of the iter­
ative improvement of the parameter set. Later in this paper we shall indicate 
the advantages of the selected procedure.
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a) Convolution and Jacobian
Calculation of the convolution integral and the Jacobian is the most 

time consuming process in the fitting procedure. Therefore the fastest 
Grinwald-Steinberg formulae [5] were applied: The (t + l)th point of the con­
volution function for the kth component is calculated by the equation

Ck (t + 1) = (Ck (t) + h . К (t))exp[-Е/TR ] + h . К (12)
where Cq = О; E is the dwell time of a channel and

h = 0.5 E Ak
where is the amplitude of the kth component, and C(t) is calculated by 
Eq. (3) .

The partial derivatives can be calculated by the following equations 
using the same quatities given in convolution expression (12) . The partial 
derivation with respect to r̂ .:

3Ck (t+l) r ЭСк (t) , E ,„k , E,— --- - = l— g^-1- + ~2 (C (t) + h • K(t))}exp[- 4̂-] (13)

and with respect to A^:

3Ck (t) _ Ck (t) 
ЭА.к к

b) The 11 step-length"
The relative values of the V vector elements defined by

(14)

В = V j/Xĵ (15)

are very important because they determine the changing rate of vector X- Our 
experience can be summarized as follows:

- If the relative values are too small the convergence is also too 
small and a number of iteration are required to solve the problem.

- If the relative values are higher than 0.5 the parameter values 
show big oscillations during the iteration. In such cases the equa­
tion system is predisposed to become ill-conditioned.

- In especially bad conditions \Л may be greater than and as a con­
sequence becomes negative and the result is unreal.

We have found that the optimum convergence can be achieved if the rela­
tive value of the maximum V elements are not greater than 0.4. Thus value is 
termed "step-length" in the further discussion. In each iteration cycle, only 
vector V is accepted as correction vector U if the maximum relative value is 
less than the step-length

<0.4 max — (16)
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c) Improvement index
From the NLSQ procedure, better agreement is required between the ex­

perimental and calculated decay curves in each iteration cycle than in the 
previous iteration. The most appropriate index (number) is the root mean 
square (RMS), which can be calculated from the residual vector (see Eq.(9))

n ? 1/2
RMS = [( I Rf)/n] (17)

t=l ^

d) Damping parameter, p
The initial value of damping parameter p (denoted by pQ) was arbitrarily 

chosen as 0.001 (e.g. in [1] on p.88). It was found better to use the sugges­
tions of Brown and Dennis [6] who calculated p in each iteration step from 
the gradient length (GL) and the length of the diagonal vector of the Hessian 
(QL)

Po = GL/QL (18)
where

m 2 1/2GL =(( £ G7)/m) / (19)
i=l 1

and
m 2 1/2QL = ( (  £ o f . )/m)' (20)
i=l 11

In the NLSQ procedure the residual vector element is calculated by Eq.(19)
and as a consequence the GL value is usually decreased in each iteration step.
Because QL is nearly constant the damping factor is also decreased with the
iteration and its value at the end of the fitting procedure approaches zero 

“8(£ 10 ). In an advantageous case the Hessian becomes practically undamped.
The elements of vector V can be changed significantly during the fitting

procedure and they can oscillate, too. The values of the vector elements
have powerfully decreased by the end of the iteration. In a favourable case

- 4 - 6they may be less than 10 - 10 and they cause no significant changes in the
parameters.

If vector V cannot be accepted as the U vector because of the Unfilled 
relation (16) we can use either the TRUNC or the procedure to improve the 
RMS depending on the difference of the RMS values of the two last iterations, 
viz. whether they were greater (TRUNC) or less (REFINE) than 0.1. The REFINE 
procedure is used in such cases, too when the TRUNC procedure gives no 
improvement. The following logical condition is applied:

0.1 <
i

I TRUNC [
4

(RMS)j_x 
and

(RMS)3< 0.1
1

Вmax > SL
I REFINE I 

л

(21)

(RMS) < (RMS) . j-1 3
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e) Truncation
At the beginning of the fitting procedure we are usually very far from 

the fitted state. Some of the parameters are bad and therefore some of the 
vector elements and the RMS values are too big. In such cases the RMS
value decreases if we use only the small calculated vector elements \Л and 
big values are zeros in the U vector:

V± < В < Vj,
1 + (22)

U. = V, u. = Оi i X

The TRUNC procedure is a very effective tool for decreasing the RMS 
value and usually gives a refined parameter set.

f) REFINE procedure

When the rough procedure of the parameter restriction (TRUNC) is not 
successful or the RMS change is less than 0.1 a finer method is necessary to 
improve vector U. One way to achieve this is by using the REFINE procedure to 
select a p value giving a smaller RMS value. Starting from the initial p cal­
culated by Eq.(18) a new p' is generated by

p' = 10 . p (23)
following the proposal of Bevington (cited in [1] p.90). After that the 
Hessian is reconstructed and the diagonal elements are multiplied by (1 + p').

i

The new vector V is calculated by elimination and is investigated to see if 
it satisfies relation (16). With the increasing of p the elements of V are 
continuously decreased* (some elements can change their sign, too) and the 
slope of change is different for each element (see Fig. la) . This is the 
reason why we can find a good p to decrease the RMS. The increasing of p by 
Eq.(23) is repeated until relation (16) is fulfilled. After that the convolu­
tion integral is calculated and the RMS is evaluated. If the RMS is greater 
than the best value obtained in the previous iteration the whole procedure is 
repeated from the step of increasing p. The maximum permitted value of is 1.
If the REFINE procedure cannot improve the RMS value the fitting procedure is 
terminated.

On approaching the fitted state the absolute value of the modifying vec­
tor elements is decreased thus the resolution of p calculated by Eq.(23) is 
good enough to reach the fitted state (at the optimum direction of the gra­
dient vector is practically zero) with the required precision.

The REFINE procedure is suitable for searching the best value of p in 
each iteration. However, the extreme refinement of p is not required because 
this can lead to a local minimum. Therefore we accept the 1st p value which

*Sometimes, mainly at the beginning of the fitting procedure the elements of 
V can show a maximum curve with increasing of p (see Fig. 1) .
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diminishes the previous RMS and the iteration step is finished. This method 
has proved to be the most economic.

g) Initial parameters and number of components
The non-linear least squares method requires a knowledge of the assessed 

initial parameter set symbolized by X° and the fitting procedure may be un­
successful if the elements of X° are "very poor" (e.g. very far from the fitt­
ing values). For the analysis of the decay curves it was found to be useful 
to take into consideration the following statements:

(i) At first, all the curves are fitted for a single component;
(ii) The number of components is increased one by one;
(iii) The parameter set in the previous approximation is adopted 

with little or no modification;
(iv) The value of the new parameters is assessed with the aid 

of some rationalistic consideration.
Fitting for a single component. The procedure consists of two steps. Firstly 
the parameters are calculated by the moment method and these are the inital 
parameters for the NLSQ procedure

The moment method gives the т value by the Bay formula* [7]

T (24)

where M means the moment of the function given in the subscript and the order 
of the moment is indicated by a superscript.

The amplitude parameter can be calculated by using the Isenberg-Dyson 
formula [8]

A = M°/tM°. (25)
X and A are usually rough parameters because the functions - mainly the F(t) - 
are truncated. In principle this can be improved by iterative "cutoff"^cor­
rection [8] but the procedure is faster if we use the rough parameters direcly.

The complete fit can be achieved by the NLSQ method in one or two itera­
tions.
Increasing the number of components. At the higher component approximation 
an assessment would be performed by using the appropriate component version 
of the moment method but this procedure is too complicated. The parameters 
can be obtained by the application of the following rules and they are as good 
as the moment parameters.

2 1 2  1 2 1*The equivalent formula т = (MP/MF) - (MK/MR) can also be used where MF and MR
are the second moments of the appropriate functions.
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(i) For the amplitudes the general rule can be used
m

= £ A. ~ const a i=i l

and from this

Ai = Sa/m (26)

where m is the number of components.
(ii) At the two component fit x1 is less and т2 is greater than the т in the 
single component fit. For example the assessed т-s are

~ t /2

t2 ~ 1.5 * T (27)

(iii) For higher components all the т-s obtained in the previous fit are ac­
cepted and only the new x is to be assessed. A practical formula for the 
assessment of the nth x is

xn = (1 + l/n)xn_1 (28)

In particular cases there may also be better formulae for the assessment (e.g. 
in the presence of a long time component).

h) Integrated intensity
The parameters of the exponentials are usually not sufficiently expressive 

(descriptive or representative) because they do not demonstrated the weight of 
the individual components in the formation of the decay phenomenon. For ex­
ample: A decay component characterized by т = 1 and A = 0.1 is only 1/3 of a 
component with parameters т = 6 and A = 0.05. It is therefore very practical 
to supply the I integrated intensity of the decay curve components

CO
■

Ik = Ak . exp[-t/Tk ] * Ak • Tk (29)
о

If we calculate this value in each iteration step we can see that the integral 
comes nearer and nearer to a limiting value. In many cases the integrated in­
tensity is a more sensitive parameter of the fitting process than the RMS.

i) The expected RMS
It is known that the experimental decay curve F contains the information 

defined by C in Eq.(3) with superimposed noise r on it. For all the elements 
it is valid that

F(t) = C(t) + r(t) (30)
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As the theory of photon counting has it, r(t) noise in the t-th channel is 
proportional to the square root of the F(t) channel contant

r (t) = /FTtT (31)

For the fitted curve, the total noise N is the sum of the channel noise
n

N = X r (t) (32)
t=l

The calculated decay curve C runs partly above partly below the experimental 
decay curve F. For the assessment of the averaged experimental noise the fol­
lowing empirical formula has successfully been applied in the case of compo­
nent

N = — - - ... (33)m (2.74 + log m)n
The calculated RMS is in good agreement with this assessed noise.

If a great number of points is used in the evaluation the sum of R el­
ements is near to zero.

n
E R(t) a 0 (34)
t=l

j) The end of fitting
In general the "end-conditions" of the fitting procedure are determined 

at the beginning of the iterations. These conditions may be the convergence 
rate, the limiting value of the improvement index etc. We found that the con­
vergence tests are too arbitrary and they do not help us to indicate the true 
end of the fitting procedure. Near to a local minimum, convergence may be very 
slow (see Fig. 2) the parameters and the improvement index perhaps hardly 
changing. Since this behaviour often leads to the conclusion that the fitting 
is complete, we do not use this type of convergence tests in our program. The 
procedure will be continued until there is no further improvement.

The only "end-condition" we apply is if all the U./X. relative values are
-5 1 1less than 1.10 because in this case cannot modify the value of the par­

ameters nor the RMS.

k) Assessment of the parameter error
Parameter errors can correctly be determined only if we have numerous 

parallel measurements and fitting parameter sets, and the standard deviation 
(SD) of the parameters is calculated. In general we have only a single pair 
of the exciting and decay curve (or only one exciting curve for a number of 
different decay curves) therefore we are able to give a rough assessement of 
the calculated error of the parameters.

The idea of the "calculated parameter error" is based on the parabolic 
behaviour of the RMS if we change in a stepwise manner a single parameter 
in a discrete range using the fixed space of all the other parameters. In
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the true and in the local minimum the parabola is symmetric with the nominal 
value of the parameter. The asymmetry will be the larger the further we are 
from the (true or local) minimum. For illustration, Fig. 3 shows the error 
parabola for the same parameter in the first and last iteration. The width of 
the parabola is also not characteristic of the fitted state. In the case of 

the error parabola is narrower in the first iteration than in the last one. 
The opposite behaviour was found at t,.
The error matrix. In general the diagonal elements of the inverse Hessian are 
used [10] to define the standard deviation* a  ̂of the i-th parameter. The in­
prementation of the parameters by + increases the RMS by 1. This elegant 
method gives adequate results only if the unmodified Hessian is used (p damp­
ing factor is zero) . In the unweighted case for т^

-1 X/ 2oi = [ (n - m - DQ-jJ] (35)

is valid ([9] pp.142).
In practice, because p is significant the error matrix does not give 

reliable results so we do not use it. A better assessment of the calculated 
parameter errors can be achieved by using the actual Hessian or by the com­
putation of some discrete points of the error parabola.
The actual Hessian. In each iteration numerous Hess matrices are generated.
We use for the evaluation of parameter errors only the inverse of the last 
Hessian giving an improvement in the RMS. A disadvantage ©f both types of 
Hessian is that the "error set" is not descriptive enough.
Discrete points of the "error parabola". The calculation of the error parabola 
is time consuming but the results are more informative than with the inverse 
Hessian method. For the evaluation of the error parabola at least 3 points are 
necessary: the RMS is known at the nominal value of the parameters from the 
least squares iteration; for the selection of two other points, it is practi­
cal to use the central differences + Д^. The suggested value for Д^ is X^/1000.

The first item of information coming from the calculation is the A asym­
metry. This is defined by the quotient of the RMS belonging to (X̂  + Д^) and 
(Х.-Д.):

RMS(X. + Д,)
A = RMS (x; - Д J  <36)

A is equal to 1 if the parabola is completely symmetric (whith the given 
precision of the computation). The parabola is accepted as symmetric if the 
relation

is fulfilled.
0.999 < A < 1.001

*In the literature this easily understood designation is used which is more 
appropriate for the evaluation of the parallel experimental data.
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The second item of information is similar to the "standard deviation" 
used for the error matrix. With this method the parameter difference is as­
sessed which causes a required increment 6 in the RMS (6 is input information 
for the program usually X^/10000). This latter quantity is designated by 
and calculated by linear interpolation with the formula

pi =
Ai^o + 6)

(У! + Ур/2 - yo
(37)

where y^, y^ and yQ are the RMS values calculated by the increments +A^, -A^
and 0 respectively. Because of the linear approximation the errors are some­
what smaller than the calculated values.

1) Input data
For the NLSQ evaluation it is sufficient if the number of measured points 

is between 50 and lOO. In the case of both the boxcar averager and TCSPC 
(time correlated single photon counting) methods are able to measure only the 
optimum number of data. If the number of data points is too big (256-1024 ac­
cording to the field size of the multichannel analyser applied) it is practi­
cal to reduce it to an optimum. This can be achieved by the application of a 
"smoothing" procedure as follows:
(i) We define the reduction factor Kr

No of points containing information
Kr = -----------------------------------  (38)

No of required points
For the calculation of the numerator it is necessary to consider both the 
decay and excitation curves, too. For example if the number of measured points 
is IK and we want to use 50 points for the evaluation and no information above 
700 and below 60 points then Kr = (1024 - 60 - 324)/50 = 640/50 ~ 13.
(ii) The window length is the nearest higher odd integer of Kr; in this case: 
13.
(iii) The degree D of the orthogonal polynomial is

D = INT(К /3) (39)
For the data reduction the SELECT procedure is used which is based on our 
orthogonal polynomial routine [10].

4. REPRESENTATION OF THE RESULTS

The representation of the results is very important in the evaluation 
work because the decision of the continuing or finishing of the fitting is 
based on it. In general the fitting procedure can be represented by

- numerical values of the parameters;
- tabulation
- graphical representation of the experimental and calculated data.



12

Numerical parameters. At the end of each iteration the pairs of decay par­
ameters, the RMS value, the integrated intensities of the components and the 
sum of these are obtained and pointed by line printer.
Tabulation of the results. At the end of fitting the input and calculated 
data can be tabulated. A practical table can be built from the sequential num­
ber of the data points, excitation К and decay F curves as input arrays, the 
calculated decay curve C, the residual vector R and the relative deviation 
vector where the elements are

1/2
Z (t) = R(t)/[C(t) ] . (40)

Graphical representation. This is the most impressive method for the represen­
tation. A useful way is to make 3 plots;
(i) Input (excitation and decay) and calculated decay curves; (see Fig. 4)
(ii) Residual vectors in the different approximations of increasing number 

of components;
(iii) Autocorrelation function introduced by Grinwald and Steinberg [5] using 

the formula:

I n/2
A(t') = i £ R(t) * R(T) . (41)

t=l
where t' runs from 1 to n/2 and T = t + t'.
Curves given by (i) can be plotted by the fitting program. For plots 

(ii) and (iii) , a separated P'LOTTING program was written. Another plotting 
program is also used for the presentation of better resolved calculated curves 
using an X-Y recorder as a peripheral.

5. INVESTIGATION OF EXPERIMENTAL DATA

We shall demonstrate our NLSQ program on the only published analysis of 
the experimental data of Demas and Crosby [11]. Since the publication of the 
latter paper, measurement techniques and their evaluation have developed con­
siderably, but even so, it was the paper of Demas and Crosby that directed 
our attention to the investigation of the time jitter and the accuracy of the 
measurements which are so important nowadays, too. The decay times are in our 
example in the ys region although it is known that the most interesting prob­
lems are in the ns and the sub-ns region. For the present work, it was not 
the time range but rather the distortion caused by convolution that was con­
sidered important.
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a) Fitting
The noise is assessed by Eq.(32). N = 10.cl
Single component fit. The results of the moment method without refine­

ment are: т = 4.285; A = 0.2779; RMS = 34.1019. The elements of the calculat­
ed decay curve are given in the 4th column of Table 1. The residual vector
and the correlation function are in Fig. 6 and Fig. 6, respectively. After 3 
iterations the NLSQ fitting parameters are:

Parameter Values +Error Asymmetry Int.int
T

A
5.073
•2408?

2.45 • 10-5 
9.75 • 10-7

.9999
1

1
.222

RMS 7.5749g

Two-component fit. The initial parameters were determined bv Eq. (27) . The 
values are: = 2.5 ps; T2 = 7.5 ps; A^ = A2 = 0.12. This means that the 
participation is 25 and 75 per cent in the total integrated intensity for the
1st and 2nd components, respectively. The program could solve the task in 26 
iterations giving the following results:

Parameter Values 4*Error Asymmetry Int.int (in %)

T1 1.026
-2

3.37 • IO'3 
-s

. 9999
3.32

A1 3.964-10 8.96 • 10
-5

1

T2 5.269 2.47 • 10
-7

. 9999
96.68

A2
RMS

.2246
6.740555

8.76 - 10 . 9999

The values of the calculated decay curve are in the 5th column of Table 1; 
the residual vector and the autocorrelation function are plotted in Figs. Sa 
and Fig. 6a, respectively. The variation of all the parameters during the fitt­
ing procedure can be seen in Fig. 2.

The calculated decay curves and their components are shown in Fig.. 7 as 
an X-Y plot.
Three-component fit. The input and T2 were practically the same as the best
values in the two-component analysis. Equation (28) was used to assess
The initial values of the amplitudes were taken as 0.1, assessed by Eq.(26).

The "error" means an average RMS-difference belonging to the + 0.0001 in­
crement of each parameter value.
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After 11 iterations the results of the fitting were:

Parameter Values Errors Asymmetry Int.int

T-, 1.020 3.15 • 10-3 11
A1 3.967-10-2 9.45 • io-5 1

3.30

T? 5.269q 9.15 • IO"5 . 9999£.

A2 .1166g 1.68 • io~6 .9999
49.60

t. 5.266, 1.66 • io-4 . 9999

A3 .l080g 1.82 • 10~6 . 9999
4 7.10

RMS 6.74055g

The values of the calculated decay curve are practically the same as the 
elements of column 5 in Table 1.

The results of the complete fitting can be summarized as follows:
(i) The 2-component fit is better than the single component one;
(ii) The 3-component fit is really the same as the 2-component fit

because the parameters of component 1 are equal in both fittings.
In practice, T2 and Xg and Ag + Ag and Ig + Ig are equal to Xg, Ag
and Ig in the 2-component fit.

(iii) The experimental decay curve consists of two components.
(iv) From Figs S and 6, it can be stated that the elements of vector R 

are not random numbers, thus the measured curves must contain 
systematic errors, too.

(v) It can also be supposed that the curve shape changes during the 
measurements.

b) The time shift
In the case of the two-component fit we saw that the participation of 

the 1st component in the total integrated intensity is rather low. On the 
basis of molecular theory we could expect that the decay curve consists of 
only a single component because all the molecules are the same in the system 
and the molecules have in general a single delocalized electronic system. It 
is possible therefore assume that the low intensity 1st component can be as­
signed to the measurement error. An error of this kind may come from the time 
shift because the decay and excitation curves are measured separately in time.

If it is supposed that the form of the curves is not distorted we are 
able to search for the optimum in the relative position of the curve pair by 
shifting one of them (e.g. the excitation curve), where the RMS gives a mini­
mum for the single component fit.
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We investigated the Demas-Crosby's curves for time shift and, as can be 
seen in Fig. 8, at a shift of -139 ns a minimum RMS was found for the single 
component fit. The parameter values are near to the results of the two-com­
ponent fit:

Parameter Values Errors Asymmetry Int.int (in%)

T 5.2434 2.2487 ’ Ю ' 4 1

A 0.2340 8.0858 • 10-6 1 100
RMS = 6.748548

The good agreement suggests that the small component in the two-component 
fit probably comes from a time shift of the measuring instrument. The fact 
that the unshifted two-component fit is slightly better refer to the instabil­
ity of the shape of curves under the measurements.

For checking purposes, the shifted curve pair was fitted for two compo­
nents, as well. The results are:

_____Parameters____ ______Values__________ Int .int (in %)

T1 5.24437

A1 0.10762

T2 5.24217

A2 0.12641
RMS = 6.748548

These parameters are in good agreement with the single component fit.-
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T a b l e  1 .

RESULTS OF DECAY CURVE F IT T IN G

I X ( I ) D ( I ) C ( I )  [ 1 ] С ( I )  [ 2 ] С ( I ) [ 3 1

1 0 0 0 0 0

2 15 0 1 . 8 0 6 5 1 . 9 8 2 1 5 1 . 9 8 2 4 9

3 41 4 7 . 9 0 4 3 7 8 . 4 2 9 4 2 8 . 4 3 0 1
4 128 24 2 5 . 9 6 2 7 . 5 3 5 9 2 7 . 5 3 7 9

5 281 65 6 7 . 8 1 4 8 7 1 . 3 0 2 2 7 1 . 3 0 5 9

6 393 138 1 3 0 . 8 1 3 5 . 6 3 2 1 3 5 . 6 3 4

7 595 222 2 1 7 . 9 1 9 2 2 4 . 4 9 8 2 2 4 . 5 0 1
8 691 322 3 2 0 . 9 8 8 3 2 7 . 9 2 7 3 2 7 . 9 2 7
9 835 438 4 3 2 . 4 5 4 4 3 9 . 4 6 1 4 3 9 . 4 6

1 0 890 549 5 4 4 . 8 4 5 5 0 . 8 1 8 5 5 0 . 8 1 5

11 954 665 6 5 0 . 2 6 7 6 5 4 .9 4 6 5 4 . 9 3 7
12 999 7 6 0 7 4 8 . 5 7 9 7 5 1 . 9 3 7 7 5 1 . 9 3 5

13 992 8 4 0 8 3 2 . 9 1 8 3 4 . 5 7 7 8 3 4 . 5 7 5
14 9 9 0 911 9 0 1 . 2 2 9 0 1 . 4 2 9 9 0 1 . 4 2 9
15 964 955 9 5 3 . 9 8 9 5 2 . 9 2 7 9 5 2 . 9 2 9

16 913 980 9 8 8 . 5 8 8 9 8 6 . 3 5 2 9 8 6 . 3 5 5

17 873 998 1 0 0 7 . 1 4 1 0 0 4 .2 1 0 0 4 .2 1

18 812 1 00 0 1 0 1 1 .0 8 1 0 0 7 .6 5 1 0 0 7 . 6 5

19 744 981 1 0 0 0 . 0 9 9 9 6 . 3 5 5 9 9 6 . 3 6

20 672 963 9 7 5 . 6 6 5 9 7 1 . 8 4 8 9 7 1 . 8 5 3
21 6Ó6 929 9 4 0 . 5 4 5 9 3 6 . 9 4 2 9 3 6 . 9 4 8

22 533 892 8 9 6 . 3 9 8 9 3 . 1 2 6 8 9 3 . 1 3 1
23 472 849 8 4 5 . 5 7 8 4 2 . 8 6 9 8 4 2 . 8 7 3
24 412 793 7 9 0 . 5 8 3 7 8 8 . 5 5 5 7 8 8 . 5 5 9

25 362 745 7 3 3 . 4 8 7 3 2 . 2 3 4 7 3 2 . 2 3 7
26 319 682 6 7 6 . 4 6 9 6 7 6 . 0 6 1 6 7 6 . 0 6 3

27 2 70 628 6 1 9 . 5 0 5 6 1 9 . 7 7 8 6 1 9 . 7 7 9

28 236 574 5 6 3 . 7 9 2 5 6 4 . 7 6 2 5 6 4 . 7 6 2

29 206 521 5 1 1 . 0 7 2 5 1 2 . 7 0 5 5 1 2 . 7 0 4

30 172 464 4 6 0 . 7 2 2 4 6 2 . 8 3 6 4 6 2 . 8 3 4

31 143 415 4 1 2 . 5 2 6 4 1 5 . 0 0 8 4 1 5 . 0 0 5

32 122 x 367 3 6 7 . 5 5 5 3 7 0 . 3 8 7 3 7 0 . 3 8 3

33 103 330 3 2 6 . 2 6 5 3 2 9 . 3 8 3 2 9 . 3 7 6
34 88 292 2 8 8 . 6 7 7 . 2 9 2 . 0 1 2 9 2 . 0 0 5

35 73 257 2 5 4 . 5 2 4 2 5 7 . 9 7 4 2 5 7 . 9 6 9

36 64 223 2 2 3 . 9 1 4 2 2 7 . 4 4 8 2 2 7 . 4 4 2

37 54 196 1 9 6 . 6 8 6 2 0 0 . 2 2 5 2 0 0 . 2 2

38 47 168 1 7 2 . 4 9 8 1 7 5 . 9 9 5 1 7 5 . 9 8 9

39 39 145 1 5 0 . 9 8 1 1 5 4 . 3 7 1 5 4 . 3 6 4

40 34 121 1 3 1 . 9 2 1 1 3 5 . 1 8 1 1 3 5 . 1 7 6

Symbols: I = Number of experimental and calculated points. X(I) = Instrument 
function; D (I) = Experimental decay curve; C(I)[X] = Calculated experimental 
curve. Numbers in [ ] mean the component number used to the fitting
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'Fig.l. Change of the vector elements versus damping parameter p. Abscissa scale is in log p. Dashed horizon 
tal lines mean the fitting values. The ordinates are in relative values defined by Eq. (15). Arrows snow 
the selected p value using Eq. (18).
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Fig. 2. Change of parameters versus the iteration steps for a two-component 
fit
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Fig. 3. Error parabolas in the two-component fit at the first and last 
iteration. a/ for and b/ for т̂ . Л means the difference of 
the parameter value from the nominal value in the given iteration
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Fig.4. Result of the two-component fit in line printer representation. 
Symbols: x excitation function; ;a* calculated decay curve;
+ experimental decay curve.
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Fig. 5. Residual vector for the single /----/ and the two—/-- / component fits
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No of points

Fig.6. The autocorrelation functions for the single (--- ) and the two-
(----) component fits.



24

t

Fig. 7. X-X plot of the convoluted two components and the calculated 
decay curve

a: experimental excitation function 
b: calculated decay curve at the two component fit 
c: first component of the calculated decay curve 
d: second component of the calculated decay curve
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--T“
-50 shift in ns

Fig. 8. RMS values depending on the shift of the excitation function.
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FIGURE CAPTIONS

Fig.l. Change of the vector elements versus damping parameter p.
Abscissa scale is in log p. Dashed horizontal lines mean the fitting 
values. The ordinates are in relative values by Eg. (15). Arrows show 
the selected p value using Eq. (18).

Fig.2. Change of parameters versus the iteration steps for a two-component 
fit.

Fig.3. Error parabolas of (a) and T2 (b) in the two-component fit at the 
first and last iterations (A means the difference from the nominal 
values of and in the given iteration).

Fig.4. Result of the two-component fit in line printer representation.
Symbols: к excitation function; -%£ calculated decay curve; + experi­
mental decay curve.

Fig.5. Residual vector for the single (----) and the two- (----) component
fits.

Fig.6. The autocorrelation functions for the single (--- ) and the two-
(----) component fits.

Fig.7. X - Y plots of the excitation and calculated decay curves for the 
two-component fit with the component functions.
a: experimental excitation function 
b: calculated decay curve at the two-component fit 
c: first component of the calculated decay curve 
d: second component of the calculated decay curve

Fig.8. RMS values depending on the shift of the excitation function.
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