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ABSTRACT

A nonlinear least squares procedure based on the Meiron method is de-
scribed for the evaluation of the convolutionally distorted decay curves con-
sisting of exponentials. Most of the special procedures are well known and
the selected ones proved to be the most effective. Some new procedures are
introduced to facilitate the evaluation work and literature data are analysed
as an example.

AHHOTALWMA

OnuceLiBaeTCsl HeMHEWHbIn MeToj HauMeHbWWX KBagpaToB, OCHOBbBawWWiics Ha Me-
ToAe MeiipoHa, chnyxawuii Ans OUEHKM KPUBBLIX 3aTyXaHWUsl, WCKaXeHHbIX CBepTKOW u
onpeaeneHHbIX 3KCMOHEHLMaNbHON CyMMOlVi. BOMbWMHCTBO CheuuanbHbLIX Npoueayp,
MCNO/Ib3YEeMbIX B MporpamMe, BbiGUPA/IUCb U3 XOPOWO W3BECTHLIX ,Hanbonee apheKTB-
HbX. BBeAEeHO HEeCKO/bKO HOBbIX Mpoueayp, obrerdawuux npoBefeHWe aHamsa u, B
KayecTBe MNpumepa, aHaM3MpyeTCcsl IKCMNepUMeHTa/bHbIi pe3ynbTaT, MPUBEAEHHbIN B
nuTepaTtype.

KIVONAT

A Meiron médszerre alapozott nem-linearis legkisebb négyzetek modszert
ismertetink exponencialis 6sszeggel értelmezett, konvoluciésan torzitott le-
csengési gorbék kiértékelésére. A programban alkalmazott specialis eljarasok
tobbségét a jol ismertek kozul valasztottuk ki a hatékonysag alapjan. Néhany
uj eljarast i1s bevezettink a kiértékeld munka megkdnnyitésére és példaként
az irodalomban ko6zolt kisérleti eredményt analizaltunk.



1. INTRODUCTION

Nowadays the parameters of convolutionally distorted multicomponent ex-
ponential decay curves can be evaluated [1] without difficulty, but even so
because many laboratories are working in this field it is thought that the
publication of these results might help to crystalize the best method. In
this paper we summarize our own experience and offer some new ideas to facili-
tate the evaluation work.

The instrument independent D(t) decay curve characteristic of materials
is assumed to be the sum of exponentials

D(t) = IAK ;expt-t/xk] (€))

Because all the components of the D(t) decay curves are convolutionally dis-
torted by the instrument function K(t) the kth convolute
t
Ck (® K(t) . Dk(t - t™)dt- )
(6]
and the experimental decay curve F(t) is simulated by the sum of the convolute
components CJr ®:

F(@) = C(D) = krjlck ® ®

The determination of the decay parameters Ak and xk is then a deconvolu-
tion procedure.

A rather large error comes from the usage of K(t) in Eg.-(@ if it is
supposed that it does not contain any noise.

The calculations were performed on a home-made microcomputer consisting
of a Z-80 microporcessor with a 16K ROM and 48K RAM memory. The software sys-
tem is based on CP/M BASIC using two MOM (Hungarian Optical Works) floppy
discs. We found that TRS-80 BASIC was the most effective and economic because
of its integer, single and double precision representation. A DZM-180 line
printer was utilized to represent the alphanumeric and HP-MOSELY Model 135 AM
X-Y Recorder the graphic information.



2. THE NON-LINEAR LEAST SQUARES GhLSQ) METHOD

Of the numerous known methods [1] for evaluating Eq.(2), the most ef-
fective and fastest procedure is the non-linear least squares method. The
basic equation is for the improvement of the i-th parameter in the (+Dth
iteration step

Xi+l = xi " ui (@)
where u”™ is an element of "correction vector" U. Using the Gauss-Newton ap-
proximation U can be defined as a scalar product

Usrestr V=0-1 .G (©)

where Q 1 and G are the inverse of the covariance matrix (Hessian) and the
gradient vector, respectively and "restr" means a special restriction pro-
cedure applied to V. The quadratic Hess matrix is generated as a scalar pro-
duct of the P matrix (Jacobian)

Q =ET =1 ®
where g contains the first order partial derivatives of the descriptive C(b)
function against the parameters
Pti = 3C(t)/3xzx , @)

thus the size of the g matrix is N x M, where N and M are the numbers of
measured data points and parameters, respectively and gT is the transpose of
g- The gradient vector is calculated as the scalar product of the transposed
Jacobian and the residual vector R

G
where o
R=C-F (©)

I
=
X

®

represent the difference of the calculated C and experimental F decay curves.

In general there is no problem in calculating the Jacobian, Hessian and
gradient vectors. However, we are not able to calculate the optimum value of
the "correction vector"™ defined by Eq.(®) because the elements of vector V
are usually greater than the required value. Therefore the direct application
of Eq-(@) usually leads to & bad correction. Fortunately, numerous methods
are known for the selection of a good value of the correction vector to solve
the fitting problem. Pitha and Norman-Jones [2] very carefully studied the
available NLSQ methods and they found the Marquardt procedure [4] to be the
best.

The correction vector V calculated by solving the linear equation system
(@ is independent of the experimental noise but is influenced by the relation
of the actual and fitting parameter set. The elements of vector V may, par-
ticularly at the beginning of the fitting procedure, be greater than those of
parameter set. Therefore to prevent this overshooting an appropriate restric-
tion of the correction vector is essential.
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In an unfavourable case the equation system becomes "ill-conditioned"”,
i.e. one or more elements of V have enormous values and the fitting problem
cannot be solved because the- hyperellipsoid in the m-dimensional space ex-
tremely eccentric and the gradient does not point to the centre. The ill-
conditioned state can be avoided by the damping of Hessian. In the literature
there are a number of methods for this restriction that are based on the in-
creasing of the diagonal elements of the Hessian.

V= [Q+ PS]"L =G (10)

where 8 is a diagonal matrix. In the Meiron [3] procedure, 8§ contains the
diagonal elements of Q. The scalar p is usually between 0 and 1 but may be
greater than 1. If it is zero Eq.(@) is valid for V; if it is equal to or
greater than 1 the diagonal elements of the Hessian will be dominant and the
effect of the off-diagonal elements in the value of the inverse matrix is not
significant. The hyperellipsoid is transformed by scalar p into an approximate
hypersphere. In this case the gradient points to the quasi-centre. In the
‘Marquardt method [4] which is an often used procedure, the diagonal elements
of the Hessian are reduced to 1 by using diagonal matrix y (H.~» * I/A™j~ and
the 8 matrix becomes a unity matrix J. In this case the complete equation for
the parameter improvement is

Xj+l = Xj 172 H 172 Q H_1/2 + pi=1) -1/2 Al

We do not use this procedure because the reduction of the Hessian into a
Marquardt matrix has no advantages if the word length used in the computation
is long enough to give reliable results at the end of elimination.

Another and simple way to restrict vector V is "truncation™. In this case
the extreme values of vector V are restricted to an arbitrarily chosen value
which may be between zero and a definite part of the elements to be restricted.
The truncation is a very effective tool in the initial part of the iterations
and helps us to form a good assessment for the parameter values.

3. SPECIAL PROCEDURES

When performing the fitting procedure it is required to give as input in-
formation the x° initial parameter vector. The elements of x° are assessed
and the actual x-1 parameter vector at the jth iteration is a better approxima-
tion of the xf fitting parameter set than x” 1.

There are a number of different procedures for a given task of the iter-
ative improvement of the parameter set. Later in this paper we shall indicate
the advantages of the selected procedure.



a) Convolution and Jacobian

Calculation of the convolution integral and the Jacobian is the most
time consuming process in the Tfitting procedure. Therefore the fastest
Grinwald-Steinberg formulae [5] were applied: The (t + I)th point of the con-
volution function for the kth component is calculated by the equation

Ckt+ 1D = (Ck@® + h . K@)exp[-E/TR] + h . K (@)
where Cq = 0; E is the dwell time of a channel and

h = 0.5 E Ak

where is the amplitude of the kth component, and C(t) is calculated by
Eq. B -

The partial derivatives can be calculated by the following equations
using the same quatities given in convolution expression (12) . The partial
derivation with respect to r\.:

kD - P r 5 o + - k)3expl- 13

and with respect to AN:

3¢k (® _ Ck® 14
A, . as

b) The 1step-length”

The relative values of the V vector elements defined by
B = Vj/Xi® (15)

are very important because they determine the changing rate of vector X- Our
experience can be summarized as follows:

- IFf the relative values are too small the convergence is also too

small and a number of iteration are required to solve the problem.

- IF the relative values are higher than 0.5 the parameter values

show big oscillations during the iteration. In such cases the equa-
tion system is predisposed to become ill-conditioned.

- In especially bad conditions VI may be greater than and as a con-
sequence becomes negative and the result is unreal.

We have found that the optimum convergence can be achieved if the rela-
tive value of the maximum V elements are not greater than 0.4. Thus value is
termed "step-length”™ in the further discussion. In each iteration cycle, only
vector V is accepted as correction vector U if the maximum relative value is
less than the step-length

nax <0-4 (16)



c) Improvement index

From the NLSQ procedure, better agreement is required between the ex-
perimental and calculated decay curves in each iteration cycle than in the
previous iteration. The most appropriate index (number) is the root mean
square (RMS), which can be calculated from the residual vector (see Eq.(9))

n ? 1/2
RMS = [( II RF)/n] an
t=1 ~

d) Damping parameter, p

The initial value of damping parameter p (denoted by pQ) was arbitrarily
chosen as 0.001 (e.g- in [1] on p.88). It was found better to use the sugges-
tions of Brown and Dennis [6] who calculated p in each iteration step from
the gradient length (GL) and the length of the diagonal vector of the Hessian

@

Po = GL/QL 18
where
oL = & cHsmy Y2 )
i=l 1
and
oL =(( P 0% )/m? (20)
i=l 11
In the NLSQ procedure the residual vector element is calculated by Eq. (19

and as a consequence the GL value is usually decreased in each iteration step.
Because QL is nearly constant the damping factor is also decreased with the
iteraEion and its value at the end of the Ffitting procedure approaches zero
(£ 10 7). In an advantageous case the Hessian becomes practically undamped.

The elements of vector V can be changed significantly during the fitting
procedure and they can oscillate, too. The values of the vector elements
have powerfully decreased by the end of the iteration. In a favourable case
they may be less than 10~ 4—_163 and they cause no significant changes in the
parameters.

If vector V cannot be accepted as the U vector because of the Unfilled
relation (16) we can use either the TRUNC or the procedure to improve the
RMS depending on the difference of the RMS values of the two last iterations,
viz. whether they were greater (TRUNC) or less (REFINE) than 0.1. The REFINE
procedure is used in such cases, too when the TRUNC procedure gives no
improvement. The following logical condition is applied:

0.1 < (RMS)jJ_Xx RVS < 0.1

| and 1 @D
BmaX > SL
ITRUNC [ 1 REFINE 1
n

4
®S),_< (IS 4



e) Truncation

At the beginning of the fitting procedure we are usually very far from
the fitted state. Some of the parameters are bad and therefore some of the
vector elements and the RMS values are too big. In such cases the RMS
value decreases if we use only the small calculated vector elements V1 and
big values are zeros in the U vector:

V+ < B < VW,
22)

I =
+

% U.y = 0

]

The TRUNC procedure is a very effective tool for decreasing the RMS
value and usually gives a refined parameter set.

f) REFINE procedure

When the rough procedure of the parameter restriction (TRUNC) is not
successful or the RMS change is less than 0.1 a finer method is necessary to
improve vector U. One way to achieve this is by using the REFINE procedure to
select a p value giving a smaller RMS value. Starting from the initial p cal-
culated by Eq.(8) a new p" 1is generated by

p* =10 .p )

following the proposal of Bevington (cited in [1] p.90). After that the
Hessian is reconstructed and the diagonal elements are multiplied by (@ + p%).
The new vector V is calculated by elimination and is investigated to see if I
it satisfies relation (@6). With the increasing of p the elements of V are
continuously decreased* (some elements can change their sign, too) and the
slope of change is different for each element (see Fig. l1a) . This is the
reason why we can find a good p to decrease the RMS. The increasing of p by
Eq.(@23) is repeated until relation (@6) is fulfilled. After that the convolu-
tion integral is calculated and the RMS is evaluated. If the RMS is greater
than the best value obtained in the previous iteration the whole procedure is
repeated from the step of increasing p. The maximum permitted value of is 1.
If the REFINE procedure cannot improve the RMS value the fitting procedure is
terminated.

On approaching the fitted state the absolute value of the modifying vec-
tor elements is decreased thus the resolution of p calculated by Eq.(23) is
good enough to reach the fitted state (at the optimum direction of the gra-
dient vector is practically zero) with the required precision.

The REFINE procedure is suitable for searching the best value of p in
each iteration. However, the extreme refinement of p is not required because
this can lead to a local minimum. Therefore we accept the 1lst p value which

*Sometimes, mainly at the beginning of the fitting procedure the elements of
V can show a maximum curve with increasing of p (see Fig- 1) .



diminishes the previous RMS and the iteration step is finished. This method
has proved to be the most economic.

g) Initial parameters and number of components

The non-linear least squares method requires a knowledge of the assessed
initial parameter set symbolized by X° and the fitting procedure may be un-
successful if the elements of X° are '"very poor" (e.g. very far from the fitt-
ing values). For the analysis of the decay curves it was found to be useful
to take into consideration the following statements:

O) At first, all the curves are fitted for a single component;

(ii) The number of components is increased one by one;

(iil) The parameter set in the previous approximation is adopted

with little or no modification;
(iv) The value of the new parameters is assessed with the aid
of some rationalistic consideration.
Fitting for a single component. The procedure consists of two steps. Firstly
the parameters are calculated by the moment method and these are the inital
parameters for the NLSQ procedure
The moment method gives the T value by the Bay formula* [7]

T @

where M means the moment of the function given in the subscript and the order
of the moment is indicated by a superscript.

The amplitude parameter can be calculated by using the Isenberg-Dyson
formula [8]

A = Mo/tMe. @)

X and A are usually rough parameters because the functions - mainly the F(t) -

are truncated. In principle this can be improved by iterative "cutoff'”cor-

rection [8] but the procedure is faster if we use the rough parameters direcly.
The complete fit can be achieved by the NLSQ method in one or two itera-

tions.

Increasing the number of components. At the higher component approximation

an assessment would be performed by using the appropriate component version

of the moment method but this procedure is too complicated. The parameters

can be obtained by the application of the following rules and they are as good

as the moment parameters.

*The equivalent formula T==(MB/M&) —2(MK/M&) can also be used where ME and M&
are the second moments of the appropriate functions.



(i) For the amplitudes the general rule can be used
m
=.£. Ay ~ const

and from this

Ai = Sa/m (€0}

where m is the number of components.
(ii) At the two component fit x1 is less and T2 is greater than the T in the
single component fit. For example the assessed T-s are

~ t/2
@n
t2 ~ 1.5 *T

(iii) For higher components all the T-s obtained in the previous fit are ac-
cepted and only the new x is to be assessed. A practical formula for the
assessment of the nth x is

xn = @ + I/n)xn_1 (€2))

In particular cases there may also be better formulae for the assessment (e.g.
in the presence of a long time component).

h) Integrated intensity

The parameters of the exponentials are usually not sufficiently expressive
(descriptive or representative) because they do not demonstrated the weight of
the individual components in the formation of the decay phenomenon. For ex-
ample: A decay component characterized by T = 1 and A = 0.1 is only 1/3 of a
component with parameters T = 6 and A = 0.05. It is therefore very practical

to supply the 1 integrated intensity of the decay curve components
[ee}

Ik = Ak . exp[-t/Tk] * Ak < Tk €))
o}
IT we calculate this value in each iteration step we can see that the integral
comes nearer and nearer to a limiting value. In many cases the integrated in-
tensity is a more sensitive parameter of the fitting process than the RMS.

i) The expected RMS

It is known that the experimental decay curve F contains the information
defined by C in Eq.(@) with superimposed noise r on it. For all the elements
it is valid that

F(H = C(O + r(® GO



As the theory of photon counting has it, r(t) noise in the t-th channel is
proportional to the square root of the F(t) channel contant

r@® = /FTtT )

For the fitted curve, the total noise N is the sum of the channel noise

n
N= X r() (€2)
t=I1
The calculated decay curve C runs partly above partly below the experimental
decay curve F. For the assessment of the averaged experimental noise the fol-
lowing empirical formula has successfully been applied in the case of compo-
nent

Ny T (2.74~+ log m)n G

The calculated RMS is in good agreement with this assessed noise.

If a great number of points is used in the evaluation the sum of R el-
ements is near to zero.

E R(t) a 0 (€D))
t=1

J) The end of fitting

In general the "end-conditions" of the fitting procedure are determined
at the beginning of the iterations. These conditions may be the convergence
rate, the limiting value of the improvement index etc. We found that the con-
vergence tests are too arbitrary and they do not help us to indicate the true
end of the fitting procedure. Near to a local minimum, convergence may be very
slow (see Fig. 2) the parameters and the improvement index perhaps hardly
changing. Since this behaviour often leads to the conclusion that the fitting
is complete, we do not use this type of convergence tests in our program. The
procedure will be continued until there is no further improvement.

The only "end-condition™ we apply is if all the U./X. relative values are
less than 1.10_5 because in this case cannot modif& %he value of the par-
ameters nor the RMS.

K) Assessment of the parameter error

Parameter errors can correctly be determined only if we have numerous
parallel measurements and fitting parameter sets, and the standard deviation
(D) of the parameters is calculated. In general we have only a single pair
of the exciting and decay curve (or only one exciting curve for a number of
different decay curves) therefore we are able to give a rough assessement of
the calculated error of the parameters.

The idea of the "calculated parameter error"™ 1is based on the parabolic
behaviour of the RMS if we change in a stepwise manner a single parameter
in a discrete range using the fixed space of all the other parameters. In
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the true and in the local minimum the parabola is symmetric with the nominal
value of the parameter. The asymmetry will be the larger the further we are
from the (true or local) minimum. For illustration, Fig. 3 shows the error
parabola for the same parameter in the first and last iteration. The width of
the parabola is also not characteristic of the fitted state. In the case of
the error parabola is narrower in the first iteration than in the last one.
The opposite behaviour was found at t,.
The error matrix. In general the diagonal elements of the inverse Hessian are
used [10] to define the standard deviation* a” of the i-th parameter. The in-
prementation of the parameters by + increases the RMS by 1. This elegant
method gives adequate results only if the unmodified Hessian is used (p damp-
ing factor is zero) . In the unweighted case for T

0i = [( - n - po-ji1 7?2 (€9)

is valid (9] pp-142).

In practice, because p is significant the error matrix does not give
reliable results so we do not use it. A better assessment of the calculated
parameter errors can be achieved by using the actual Hessian or by the com-
putation of some discrete points of the error parabola.

The actual Hessian. In each iteration numerous Hess matrices are generated.

We use for the evaluation of parameter errors only the inverse of the last
Hessian giving an improvement in the RMS. A disadvantage OF both types of
Hessian is that the "error set" is not descriptive enough.

Discrete points of the "error parabola'. The calculation of the error parabola
is time consuming but the results are more informative than with the inverse
Hessian method. For the evaluation of the error parabola at least 3 points are
necessary: the RMS is known at the nominal value of the parameters from the
least squares iteration; for the selection of two other points, it is practi-
cal to use the central differences + [*. The suggested value for " is X*/1000.

The First item of information coming from the calculation is the A asym-
metry. This is defined by the quotient of the RMS belonging to O + O and
X.-4.):

RMS(X. + [1,)
A = RMS (x; - A4J <36)

A is equal to 1 if the parabola is completely symmetric (whith the given
precision of the computation). The parabola is accepted as symmetric if the
relation

0.999 < A < 1.001
is fulfilled.

*In the literature this easily understood designation is used which is more
appropriate for the evaluation of the parallel experimental data.
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The second item of information is similar to the ''standard deviation"
used for the error matrix. With this method the parameter difference is as-
sessed which causes a required increment 6 in the RMS (6 is input information
for the program usually X~/10000). This latter quantity is designated by
and calculated by linear interpolation with the formula

Ai~o + ©
o + ¥Yp/2 - yo

(37)

where y®, y» and yQ are the RMS values calculated by the increments +A®, -A"
and 0 respectively. Because of the linear approximation the errors are some-
what smaller than the calculated values.

1) Input data

For the NLSQ evaluation it is sufficient if the number of measured points
is between 50 and 100. In the case of both the boxcar averager and TCSPC
(time correlated single photon counting) methods are able to measure only the
optimum number of data. If the number of data points is too big (256-1024 ac-
cording to the field size of the multichannel analyser applied) it is practi-
cal to reduce it to an optimum. This can be achieved by the application of a
"'smoothing" procedure as follows:
(i) We define the reduction factor Kr

No of points containing information
Kr = ———— oo (€9))

No of required points
For the calculation of the numerator it is necessary to consider both the
decay and excitation curves, too. For example if the number of measured points
is IK and we want to use 50 points for the evaluation and no information above
700 and below 60 points then Kr = (1024 - 60 - 324)/50 = 640/50 ~ 13.
(i) The window length is the nearest higher odd integer of Kr; in this case:
13.
(iii) The degree D of the orthogonal polynomial is

D = INT(K /3) [€S)

For the data reduction the SELECT procedure is used which is based on our
orthogonal polynomial routine [10].

4. REPRESENTATION OF THE RESULTS

The representation of the results is very important in the evaluation
work because the decision of the continuing or finishing of the fitting is
based on it. In general the fitting procedure can be represented by

- numerical values of the parameters;

- tabulation

- graphical representation of the experimental and calculated data.
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Numerical parameters. At the end of each iteration the pairs of decay par-
ameters, the RMS value, the integrated intensities of the components and the
sum of these are obtained and pointed by line printer.

Tabulation of the results. At the end of fitting the input and calculated

data can be tabulated. A practical table can be built from the sequential num-
ber of the data points, excitation K and decay F curves as input arrays, the
calculated decay curve C, the residual vector R and the relative deviation
vector where the elements are

1/2
Z® = RM/ICM ] - “0)

Graphical representation. This is the most impressive method for the represen-

tation. A useful way is to make 3 plots;
O] Input (excitation and decay) and calculated decay curves; (see Fig. 4
(i) Residual vectors in the different approximations of increasing number

of components;
(iii) Autocorrelation function introduced by Grinwald and Steinberg [5] using

the formula:

n/2
ACE™) =1 'tfl R() *R(M) . “@D
where t° runs from 1 to n/2 and T = t + t~.
Curves given by (@) can be plotted by the fitting program. For plots
(i) and (iii) , a separated P LOTTING program was written. Another plotting
program is also used for the presentation of better resolved calculated curves

using an X-Y recorder as a peripheral.

5. INVESTIGATION OF EXPERIMENTAL DATA

We shall demonstrate our NLSQ program on the only published analysis of
the experimental data of Demas and Crosby [11]. Since the publication of the
latter paper, measurement techniques and their evaluation have developed con-
siderably, but even so, it was the paper of Demas and Crosby that directed
our attention to the investigation of the time jitter and the accuracy of the
measurements which are so important nowadays, too. The decay times are in our
example in the ys region although it is known that the most interesting prob-
lems are in the ns and the sub-ns region. For the present work, it was not
the time range but rather the distortion caused by convolution that was con-

sidered important.
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a) Fitting

The noise is assessed by Eq.(32). Ny, = 10.

Single component fit. The results of the moment method without refine-
ment are: T = 4.285; A = 0.2779; RMS = 34.1019. The elements of the calculat-
ed decay curve are given in the 4th column of Table 1. The residual vector
and the correlation function are in Fig. 6 and Fig. 6, respectively. After 3

iterations the NLSQ fitting parameters are:

Parameter Values Error Asymmetry Int.int
T 5.073 2.45 - 10-5 -9999
1.222
A «24087? 9.75 = 10-7 1
RMS 7.5749¢g

Two-component fit. The initial parameters were determined bv Eq. (27) . The
values are: = 2.5 ps; T2 = 7.5 ps; A = A2 = 0.12. This means that the
participation is 25 and 75 per cent in the total integrated intensity for the
1st and 2nd components, respectively. The program could solve the task in 26
iterations giving the following results:

&

Parameter Values Error Asymmetry Int.int (in %)
1.026 3.37 « 10"3 -9999
T1
) _s 3.32
Al 3.964-10 8.96 = 10 1
- 5.269 2.47 = 107° .9999
-7 96.68
.2246 8.76 - 10 -9999
A2
RMS 6.740555

The values of the calculated decay curve are in the 5th column of Table 1;
the residual vector and the autocorrelation function are plotted in Figs. Sa
and Fig. 6a, respectively. The variation of all the parameters during the fitt-
ing procedure can be seen in Fig. 2.

The calculated decay curves and their components are shown in Fig.. 7 as
an X-Y plot.

Three-component fit. The input and T2 were practically the same as the best
values in the two-component analysis. Equation (28) was used to assess
The initial values of the amplitudes were taken as 0.1, assessed by Eq.(26).

The "error'" means an average RMS-difference belonging to the + 0.0001 in-
crement of each parameter value.
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After 11 iterations the results of the fitting were:

Parameter Values Errors Asymmetry Int.int
H 1.020 3.15 < 10-3 1
i 3.30
Al 3.967-10-2 9.45 = i0-5 1
TP 5.269q 9.15 < 10”5 -9999
i ) 49.60
A2 .1166g 1.68 = 10~6 -9999
t. 5.266, 1.66 < i0-4 -9999
47.10
A3 -1080g 1.82 -« 10~6 -9999
RMS 6.74055¢g

The values of the calculated decay curve are practically the same as the

elements of column 5 in Table 1.

The results of the complete fitting can be summarized as follows:

O) The 2-component fit is betterthan the single component one;

(ii) The 3-component fit isreally the same as the 2-component fit
because the parameters of component 1 are equal in both fittings.
In practice, T2and Xgand Ag + Ag and Ig+ Ig are equal to Xg, Ag
and Ig in the 2-component fit.

(iii) The experimental decay curve consists of two components.

(iv) From Figs S and 6, it can be stated that the elements of vector R
are not random numbers, thus the measured curves must contain
systematic errors, too.

~ It can also be supposed that the curve shape changes during the
measurements.

b) The time shift

In the case of the two-component fit we saw that the participation of
the 1st component in the total integrated intensity is rather low. On the
basis of molecular theory we could expect that the decay curve consists of
only a single component because all the molecules are the same in the system
and the molecules have in general a single delocalized electronic system. It
is possible therefore assume that the low intensity 1st component can be as-
signed to the measurement error. An error of this kind may come from the time
shift because the decay and excitation curves are measured separately in time.

If it is supposed that the form of the curves is not distorted we are
able to search for the optimum in the relative position of the curve pair by
shifting one of them (e.g. the excitation curve), where the RMS gives a mini-
mum for the single component Fit.
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We investigated the Demas-Crosby®s curves for time shift and, as can be
seen in Fig. 8, at a shift of -139 ns a minimum RMS was found for the single
component fit. The parameter values are near to the results of the two-com-

ponent fit:
Parameter Values Errors Asymmetry Int.int (in%)
T 5.2434 2.2487 10" 4 1
A 0.2340 8.0858 < 10-6 1 100

RMS = 6.748548

The good agreement suggests that the small component in the two-component
fit probably comes from a time shift of the measuring instrument. The fact
that the unshifted two-component fit is slightly better refer to the instabil-
ity of the shape of curves under the measurements.

For checking purposes, the shifted curve pair was fitted for two compo-
nents, as well. The results are:

Parameters Values Int _int (in %)
T1 5.24437
Al 0.10762
T2 5.24217
A2 0.12641

RMS = 6.748548

These parameters are in good agreement with the single component fit.-
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Symbols:
function;

curve.

I X (1)

1 0

2 15
3 41
4 128
5 281

6 393
7 595

8 691
9 835
10 890
11 954
12 999
13 992
14 990
15 964
16 913
17 873
18 812
19 744
20 672
21 606
22 533
23 472
24 412
25 362
26 319
27 270
28 236
29 206
30 172
31 143
32 122
33 103
34 88
35 73
36 64
37 54
38 47
39 39
40 34

RESULTS OF DECAY

D (1)

24
65
138
222
322
438
549
665
760
840
911
955
980
998
1000
981
963
929
892
849
793
745
682
628
574
521
464
415
X 367
330
292
257
223
196
168
145
121
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Table 1

C

0
1
7

25.

67

130.
217.
320.
432.
544.
650.
748.
832.
901.
953.
988.
1007.
1011.

1000

975.
940.
896.
845.
790.
733.
676.
619.
563.
511.
460.
412.
367.
326.
288.
254.
223.
196.
172.
150.
131.

D () = Experimental decay curve;

(1 [1]

8065
90437
96
8148
8
919
988
454
84
267
579
91
22
98
588
14
08
09
665
545
39
57
583
48
469
505
792
072
722
526
555
265
677.
524
914
686
498
981
921

CURVE FITTING

C

0
1
8
27
71

135.
224.
327.
439.
550.
654.
751.
834.
901.
952.
986.
1004.
1007.
996.
971.
936.
893.
842.
788.

732

676.

619

564.
512.
462.
415.
370.
329.
292.
257.
227.
200.
175.
154.
135.

(1) [2]

.98215
.42942
.5359
.3022
632
498
927
461
818
94
937
577
429
927
352

65

355
848
942
126
869
555
.234
061
778
762
705
836
008
387
38

01

974
448
225
995
37

181

I = Number of experimental and calculated points.

COIX]

c(1)[31

0
1.
8.
27.
71.
135.
224.
327.
439.
550.
654.
751.
834.
901.
952.
986.
1004.
1007.
996
971.
936.
893.
842.
788.
732.
676.
619.
564.
512.
462.
415.
370.
329.
292.
257.
227.
200.
175.
154.
135.

98249

4301
5379
3059

634
501
927
46

815
937
935
575
429
929
355
21

65

.36

853
948
131
873
559
237
063
779
762
704
834
005
383
376
005
969
442
22

989
364
176

MO

= Calculated experimental

Instrument

Numbers in [ ] mean the component number used to the fitting



"Fig-1. Change of the vector elements versus damping parameter p. Abscissa scale is in log p. Dashed horizon
tal lines mean the fitting values. The ordinates are in relative values defined by Eq. (15). Arrows snow
the selected p value using Eq. (08).
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Fig. 2. Change of parameters versus the iteration steps for a two-component
fit



Fig.

RMS-FIRST

20

Error parabolas in the two-component fit at the first and last
iteration. a/ for and b/ for ™. /1 means the difference of

the parameter value from the nominal value

in the given

iteration
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Fig.4. Result of the two-component fit in line printer representation.
Symbols: x excitation function; a calculated decay curve;
+ experimental decay curve.



Fig. 5. Residual vector for the single /----/ and the two—/— / component fits
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No of points

Fig.6. The autocorrelation functions for the single (—— ) and the two-
(----) component fits.



Fig.

X-X plot of the convoluted two components and the calculated

24

decay curve

a:
b:
c:
d:

experimental excitation function

calculated decay curve at the two component fit
first component of the calculated decay curve
second component of the calculated decay curve
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T
-50 shift in ns

Fig- 8. RMS values depending on the shift of the excitation function.



FIGURE

Fig.l.

Fig-8.
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CAPTIONS

Change of the vector elements versus damping parameter p.

Abscissa scale is in log p. Dashed horizontal lines mean the fitting
values. The ordinates are in relative values by Eg. (15). Arrows show
the selected p value using Eq. (18).

Change of parameters versus the iteration steps for a two-component
fit.
Error parabolas of @ and T2 () in the two-component fit at the

first and last iterations (A means the difference from the nominal
values of and in the given iteration).

Result of the two-component fit in line printer representation.
Symbols: k excitation function; % calculated decay curve; + experi-
mental decay curve.

Residual vector for the single (---) and the two- (----) component
fits.
The autocorrelation functions for the single (—— ) and the two-

(---) component fits.

X - Y plots of the excitation and calculated decay curves for the
two-component fit with the component functions.

a: experimental excitation function

b: calculated decay curve at the two-component fit
c: First component of the calculated decay curve
d: second component of the calculated decay curve

RMS values depending on the shift of the excitation function.
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