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ABSTRACT
A system of equations is given for the distribution of the fluctuations 

of arbitrary thermodynamic state variables, by exploiting the Riemannian 
structure of the thermodynamic state space. These equations have been made 
compatible with the Second Principle of Thermodynamics, and for small fluc
tuations they reproduce the usual Gaussian law. We show a real stochastic 
process resulting in these equations.

АННОТАЦИЯ

С помощью Римановой структуры пространства термодинамических состояний 
пыподитси система уравнений для распределения флуктуаций любой термодинами
ческой величины. Полученные уравнения автоматически являются совместимыми со 
вторым началом термодинамики, и для маленьких флуктуаций они воспроизводят 
обычное гауссовское распределение. Показывается действительный стохастичес
кий процесс, приводящий к атим уравнениям.

KIVONAT
A termodinamikai állapottér Riemann-strukturáját felhasználva megadunk 

egy egyenletrendszert tetszőleges termodinamikai állapothatározó fluktuá
cióinak eloszlására. Az egyenletek konstrukciójuknál fogva tiszteletben 
tartják a Második Főtételt, és kis fluktuációkra visszaadják a szokásos 
Gauss-eloszlást. Mutatunk olyan valódi stochasztikus folyamatot, mely ezen egyenletekre vezet.



1. I N T R O D U C T I O N

Statistical mechanics'*“ yields a foundation of thermodynamics, 
which latter is obtained in the so-called thermodynamic limes, 
i.e. when the size of a given homogeneous equilibrium system goes 
to infinity. Then, of course, the fluctuations of the thermo
dynamic characteristics vanish.

When the system is macroscopic but finite, fluctuations
appear in it with some probability distribution, and there exist

2 3thermodynamic expressions for their first and second momenta ' . 
Thus, although the thermodynamic limit cannot yield all the in
formations about finite systems, one may expect thermodynamic 
formulation for the distribution of the fluctuations. In fact,
various distributions can be constructed with differ in higher2momenta; the first and simplest one was proposed by Einstein . 
Here we want to formulate an equation for these distributions, 
which are slightly more complicated, but possess certain advan
tageous properties.

2. E V O L U T I O N  E Q U A T I O N  F O R  T H E  E X T E N S I V E  F L U C T U A T I O N S

Consider a homogeneous equilibrium system of infinite 
volume. The thermodynamic state of this system is completely 
determined by the set of n independent extensive densities 
{x ,i 1,2,...,n}.

Take a subsystem of finite volume V. For it, the remainder 
of the infinite system is a reservoir. Denote the state of the 
reservoir by x^ and that of the finite subsystem by x 1 . Obvi
ously, x will fluctuate around x q with certain probability 
Pv (x|xQ)dnx.
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When the subsystem is infinite too there are no fluctua
tions, i.e.

p (xIx ) = 6 (n)(x-x ) . (2.1)I о О

We are looking for the function p v (x |x q). First we derive a
set of constraints for it from the Second Principle of Thermo- 

4dynamics . Obviously, the expectation values of x s must be in
dependent of V, thus equal to the reservoir value:

otherwise, after a fictitious separation of a great number of 
subsystems and rejoining them in a greater subsystem, this latter 
one would not be in macroscopic equilibrium with the reservoir. 
The Second Principle forbids this. Q

Now, there exists an approximative p (x|x ) for p (x|x ) if2 v о v о
the fluctuations are small :

PV(x|xo} 2u
n / 2 ----
) v/|g (x ) Iexp{- v n

2 Ii ,k=l
. . , i i, , к к. ,g ,, x ) (x -x ) (x —x ) } ^ik о о о

(2.3)
Here

gi k <x)
(x)

„ i. к ' Эх Эх
г,к 1,2, . . . ,п , (2.4)

and I g I denotes the determinant of g^^,-
There is no reason to beleive the form (2.3) if x is farQ

from x since g,, is taken at x thus the distribution pt7 is not о ^ik о
affected by the global properties of the state space.

Nevertheless the leading terms seem correct, thus let us
start with the Gaussian approximation of p^(x|xQ ). Introducing
a "time" variable x,x=l/V instead of V, the Gaussian distribu- 

G Gtion p J(x,x|xo ) = p v (x |x q ) fulfils a diffusion type evolution 
equation:

Э
Эх

G /p (x,x xo } =
ik. >g x )о

G. I P (t ,x |Xo)» i, 1c Эх Эх
(2.5)
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ikwhere g is the inverse matrix of g ^ ,  with the initial condi
tion

pG (0,x|x ) = (x-x ) . (2.6)
c о о

(Henceforth we adopt the Einstein convention: there is a summa
tion if an index occurs twice, above and below.)

As we mentioned above the evolution equation should contain 
the local structure of the thermodynamic state space even for x's 
which are far from the initial x q . In order to ensure this prop
erty we have to generalize the Gaussian equation (2.5).

i к j кWe should use g (x) instead of g (x q ) the ec3* (2.5) and
complete this expression with terms containing the derivatives of 
i кg . We have to get total divergence on the rhs and to satisfy 

the constraints (2.2) as well. The only possible choice is then

2
£  p(T,x|x ) =  —̂ 7- g ik (x) р(т,х I x ) . (2.7)О L О гчХп.К ОdX dX

This generalized evolution equation and the initial conti-
tion

p(Ofx|x ) = 6^n ^(x-x ) (2.8)1 о о

are suggested to describe the probability distribution of the 
thermodynamic fluctuations in a given subsystem of finite volume
V=1/t .

Consider finally the case when we are not interested in the 
distribution of the n'th extensive xn , looking for the distribu
tion p (t ,x |x q) of x: (x\x^,. . . ,xn ■*■) :

p(r,x|xo) = p (T,xIx q )dxn (2.9)

If one integrate the eqs. (2.7,8) by dx11 it can be shown 
that p(x,x|xQ) obeys the same evolution equation as p (t ,x |x q ) 
does, with the substitutions: n -»• n-1, x -»■ x.
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3. E V O L U T I O N  E Q U A T I O N  F O R  T H E  F L U C T U A T I O N  O F  G E N E R A L  
V A R I A B L E S

In the previous Section an equation was found for the 
fluctuations of extensive densities, which 1) is of quite natural 
form, 2) fulfils the Second Principle of Thermodynamics, and 
3) yields the Gaussian approximation for large V.

Now, in many cases one is interested in the fluctuation of 
other quantities (as e.g. the intensives) . Of course, these quan
tities are functions of the extensive densities, so the fluctua
tion probabilities can be determined through pv (x|xQ ). Denote the 
extensive densities by x1 and a general complete set of other 
parameters by a:1 , then

x^ = cp* (ж) , i=l, 2 , . . . ,n . (3.1)

This is a coordinate transformation on the state space. 
Obviously the distribution of the new variables will be

P v U | V  = PV (xlXo }
Эф1 (a?) 
а к

(3.2)

Nevertheless, there is an other way too, namely to find an 
evolution equation directly for p (ac | a: ) , and one has to see if 
the two P y fs are the same.

We adopt the idea that the thermodynamic state space is a 
Riemannian metric space. The metric tensor in extensive coordi
nates is defined by eq. (2.4) D ' . In order to get a unique dis
tance in a coordinate transformation (3.1) g t, must change—j IK
according to the usual transformation law

9lkU) = g (x) 3rs
ЭфГ (д?) Эф5 (Я) (3.3)

Now, we need a covariant evolution equation for p (ж|а: ), 
because covariance automatically guarantees that the quantities 
change properly with the coordinate transformation, so then



5

Ру(д:|хо ) will be unique. Naturally, this covariant equation has
to possess the form (2.7) in extensive coordinates. Since the7Riemannian geometry has a proper covariant formalism, henceforth 
we adopt its method.

Note first that р^(ж|жо ) is not a scalar,since the covariant 
volume element is / 1 g Í dn.r. Thus the scalar quantity is p,

р(т,ж|ж ) = --- ----  р„(ж|ж ) . (3.4)о /г ",— гг V ' о/\д(х) I

Obviously the initial condition (2.8) is now

0(0,*1* ) = 1 S (n) ( x-x) . (3.5)
° /|g(*0)|

The form of eq. (2.7) shows that we need a diffusion type 
equation for p. We claim that the proper form is

тг~~ р(т,ж|ж ) = Др(т,ж|ж ) + V (hr (ж) p (т ,x I ж )) (3.6)d г о о г о

where V. stands for the covariant derivative, Д is the covariant 
1 7 iLaplacian , and h is a vector field guaranteeing constraints

(2 .2 ):

Ф (ж) p (t ,a: I ж ) /| g (ж) | d ^  = cp1 I (ж ) (3.7)

Here the bar in cp1 denotes that i is not a vectorial index but a 
name.

By differentiating this equation with respect to x, using 
eq. (3.6), and performing partial integrations, one gets

'
(Дф1J hr) p/| g I d ^ 0 . (3.8)

Since this equation must hold for any p, the result is

(3.9)
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According to eq. (3.1), cp'1 ' occurs in a coordinate transforma-
x I кtion, so Эср 1 /Эх must possess a regular matrix and the vector 

field h 1 is then uniquely determined by eq. (3.9).
Eqs. (3.6), (3.9) are covariant. In extensive coordinates

eq. (3.9) takes the form *»

h i эг (дгз/Тд|а5Ф 1) (3.10)

while eq. (3.6) can be written as

/I gI э (-=e 
3 /[i

(3.11)

p = /|g|p •

By combining eqs. (3.10) and (3.11) they reduce to eq. (2.7).
Thus eqs. (3.4-6), (3.9) are the covariant forms of the evolu
tion equation (2.6-7).

4. S T O C H A S T I C  F O U N D A T I O N  O F  T H E  E V O L U T I O N  E Q U A T I O N

In the previous two sections we proposed a new evolution 
equation which would govern the distribution of the thermo
dynamic fluctuations arising in finite equilibrium systems. An 
elegant form of covariant diffusion equation on the Riemann 
metricized state space was found.

Here we are going to show that this diffusion comes from a 
true stochastic process which is accomplished on the state space.

5Originally, when Ruppeiner supplied thermodynamic state
space with Riemannian metric (2.4) he also outlined a stochastic
process. But he did not vary the volume of his system thus the
physical realization of his construction was not quite clear.

Consider a homogeneous closed equilibrium system Q(V,x) of
X 2 nvolume V and extensive densities x=(xx ,.. . ,xa ) . Now, at 

random, let us choose and separate a subsystem fl(V',x') in it:

£3 (V' ,x') CQ(V,x) , V'<V , (4.1)
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and denote the probability of finding x' at a given value by 
P(V',x7|v,x)dnx ' .

Obviously,

P (V,x7IV,x) = 6 (n) (x'-x) . (4.2)

Repeating the above procedure and choose a subsystem 
Q(V77,x77) in Q(V7,x7), we get the conditional distribution 
P (V' 7 ,x7 7 IV' ,x') for x " .  It can obviously be supposed that the 
final distribution of x 77, i.e.

P(V7 7 , x 7 7 I V 7,x7)P(V7,x7 |v,x)dnx 7 (4.3)

is not affected by the intermediate separation of Q(V7,x7). 
Therefore the probability (4.3) must be equal to the probability 
distribution of x 77 in a subsystem fi(V77,x77) which was directly 
choosen from fl(V,x):

P(V 7 7 ,x 7 7 I V 7,x7)P(V7,x7 |v,x)dnx 7 = P(V77,x77|V,x),

V 77^V7<V . (4.4)

Equations (4.2), (4.4) show that the process of continuously
diminishing the volume of a homogeneous equilibrium system can beg
considered as a continuous Markovian stochastic process . The 
role of stochastic variable is played by the state coordinate x 
of the actual system. The volume reduction must be adiabatic,
i.e. slower than the relaxation of the thermodynamic fluctua
tions .

Now let us suppose that this stochastic process is of finite 
variance and thus it is governed by the Fokker-Planck-Kolmogorov

g
differential equation .

In order to find the coefficients of the differential 
equation we have to calculate the following two limits:

- , i i, < x 7 -X -
V-V7

x 7l-x7 P(V7,x7IV,x)dnx 7lim
V'->V

lim
V'+V

(4.5)
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. ,i. iw  ,k 1 
lim - x  ) ( X  ' X -

v'-*-v v-v' lim
V ' -»-V

. ,1 x. , ,k к(x -x ) (x -x , |TT , ,n ,
------- v v 1------P(V',x' V,x)d x'

(4.6)

The expression (4.5) is obviously zero since the Second 
Principle requires that

<x Гi (4.7)

As for the expression (4.6), we should know the correlation 
of the extensive densities x' ’’ of the subsystem Q (V' ,x') cQ (V,x) . 
The problem is that in (4.6) V'+V and thus Q(V',x') cannot be a 
small subsystem of Q(V,x). But we can easily avoid this trap 
vising the complementary system Q(V,x) = Q(V,x)\Q(v',x') which is 
already a small subsystem. It is known that the correlation of 
the extensive densities x 1 in such a small subsystem is given as 
follows^'^:

<(x*-xS(xk-xk )> = - 3 g*"k (x) (4.8)
V

Jl кwhere g (x) is the inverse of the matrix g ^ ( x ) / see definition 
(2.4) .

Now using the balance equation

Vx + (V-V)x' = Vx (4.9)

we can eliminate x' from the expression (4.6) and we get instead:

lim — (xi-xi) (xk-xk)\ = - -4r gi k (x) . (4.10)
v+0 v s v“v; 7 v

This expression is the coefficient function in the Fokker- 
Planck-Kolmogorov equation:

9V T P(V',x'IV,x) = H -4 gl k (x')P(V',x'|v,x)) . (4.11)
9х,3-Эх'К V VZ
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In the variable x(x=l/V) the same equation is of the follow
ing form:

2
4 t P(t ',x '|t ,x ) = ---г--- T- (glk(x')P(T',x' |x,x) ) (4.12)
dT Э х # 1 Э х ,К

and the initial condition (4.2) will be as

P(x,x'|x,x) = 6^n ^(x'-x) . (4.13)

It is just the proper moment to note that the distribution 
Pv (x |x q ) defined in Section 2 corresponds obviously to the 
transition probability P(V,x|°°,xo) and thus p(x,x|xQ) of Section 
2 is equal to P(x,x|0,xo ) in variable x. Therefore equations 
(4.12), (4.13) yield the evolution equations (2.7), (2.8) which 
were introduced in a formal way in Section 2, and also the 
covariant form (3.6), (3.9) of the evolution equation gets its
stochastic foundations.

5. C O N C L U S I O N

We have proposed a covariant system of equations for the 
fluctuations of thermodynamic characteristics. For small fluc
tuations they reproduce the usual Gaussian distribution, and 
from practical viewpoint the difference is small compared to any 
other possible distribution too. Nevertheless, because of the 
covariance our equations can be directly used in arbitrary 
variables. In addition, the Second Principle of Thermodynamics 
automatically holds too. The equations presented here are the 
simplest possible ones possessing these theoretically important 
properties.
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