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ABSTRACT

In order to establish more reliable thermal history calculations we
have examined how the melt flow influences the cooling process through con-
vective heat transport. On the basis of the laminar boundary layer theory
it has been shown that because of the continuous variation of viscosity
around the glass transition the thermal history calculated with the assump-
tion of infinite melt viscosity is very similar in a wide temperature region
to that of computed with the experimental viscosity-temperature relation. It
is illustrated for the FesONiso0Pl4Bes composition that this temperature region
includes the range where TTT diagrams predict significant crystallization
rates, pn the other hand because of their mathematical simplicity, calcula-
tions with infinite viscosity allow to take into account those important ex-
perimental boundary conditions which cannot be properly treated in models
including more detailed description of melt flow. In this way it is expected
that calculations with infinite melt viscosity can reliably predict thermal
history in the temperature region which is most important from the point of
view of glass formation.

AHHOTALNA

Ona o6ocHOBaHMS HafeXHbiX pacyeToB TepMUYecKoli NpeancTopun uccnenoBanochb
BNUSIHME MOTOKa pacniaBa Ha Mpouecc OxXNaxaeHusi. Ha OCHoBaHUM Teopun namuHapHO-
ro rpaHWYHOro csios 6bi10 NoKa3aHo, 4YTO BC/EACTBME HENPEepLBHO yBenuyuBalleincs
BA3KOCTU MpU CTEKIOBaHUM, Tepmuyeckas npegucTopusi, Mpu pacuyeTe KOTOPOi npea-
nonaranacb 6eCKoHeuHas BSA3KOCTb, B WWPOKOM TemrnepaTypHOM Avana3oHe MnoKa3biBaeT
6O/bllyl0 CXOXeCTb C pe3y/ibTaTamMy pacuyeToOB, BbLINMO/HEHHbLIX Ha OCHOBE 3KCMNepumMeH-

TaNbHOWN 3aBUCUMOCTU BA3KOCTUM - TemnepaTtypbol. Ha cnnaBe fe4nNi-40B14B6 WNIIOCTPU
pyeTcs, 4TO 3TOT AMana3oH BK/KW4YaeT B CEOGA U Te TemnepaTypbl, MNpM KOTOPLIX MO

anarpammam TTT BaxHa CKOPOCTb KpucTamm3auum. G ApPYroil CTOPOHb MpocToTa MmMaTe-
MaTUYECKMX pacyeToB, BbINMO/IHEHHbIX C GECKOHEYHOlM BA3KOCTbK, MNO3BO/MISET TaKxe yuu-
ThiBaTb U TakKMe BaXHble 3KCMNEpPUMEHTasIbHble FpaHUYHble YC/I0BUSI, KOTOpble He MOryT
ObITb y4dTeHb B Mogenu, 6osee nogpo6bHO paccmaTpuBawwenn NOTOK pacnnaBa. Takum 06—
pa3oM MOXHO OXuaaTb, UYTO pacuyeTbl, BLINOSIHEHHbIE C OECKOHEYHOW BA3KOCTb, 6yayT
HaJexXHO OnuchiBaTb MNPOLECC OX/aXAEHVUS B BaXHelWeM C TOYKM 3pPEHUs CTEK0BaHUs
TemnepaTypHOM Anana3oHe .

KIVONAT

A megbizhat6é termikus eléélet-szamitasok megalapozasahoz megvizsgaltuk,
hogyan befolyasolja az olvadékdramlas a hulés folyamatat. A laminaris hatér-
réteg elmélet alapjan kimutattuk, hogy az Uvegesedés soran folytonosan no-
vekv8 viszkozitas kovetkeztében a végtelen viszkozitas feltételezésével sza-
mitott termikus el6élet széles hémérséklettartomanyban igen hasonlé a kisér-
leti viszkozitds-h6mérséklet Osszefiggéssel szamolthoz. A Fe4oNi4oP14B6 o6t-
vozet esetével illusztraltuk, hogy ez a tartomany magaban foglalja azon hé6-
mérsékleteket is, melyeknél a TTT diagramok szerint a kristalyosodas sebes-
sége lényeges. Masrészt a végtelen viszkozitassal végzett szamolasok matema-
tikai egyszerisége miatt fFigyelembe vehetink olyan fontos kisérleti hatar-
feltételeket is, melyek nem kezelhetbek az olvadékaramlast részletesebben
targyalo modellekben. igy tehat azt varjuk, hogy a végtelen viszkozitassal
végzett szamitdsok megbizhatbéan Irjadk le a hulés folyamatat az Uvegképz6dés
szempontjabol legfontosabb hémérséklettartomanyban.



1. INTRODUCTION

A relatively new group of amorphous materials is that of the metallic
glasses. These materials - combining the disordered atomic arrangement with
the metallic-type electronic structure - proved to be interesting from both
theoretical and practical viewpoints. Metallic glasses are produced from the
melt applying quenching rates high enough to avoid the crystallization dur-
ing the solidification. Several methods have been developed to realize this
purpose. Amorphous alloys are now available in quite different geometries
(e.g. ribbon, surface layer, wire, powder, etc.) [1-4]. In the present paper
we focuse our attention to the extensively investigated question how the
metallic glass ribbon is formed in the continuous casting methods (i.e. in
melt spinning, melt extraction and planar flow casting [5]). One of the most
characteristic features of these methods is a melt pool produced in contact
with a moving chill surface (substrate), as it is shown schematically in
Fig. 1. The ribbon is formed from the (solidifying) melt layer dragged away
by the substrate. According to the experiments glassy state is obtained
below a given ribbon thickness (G ) only. On one hand this critical ribbon
thickness depends upon the critical quenching rate which may vary between
wide limits due to the differences in the crystallization kinetics of the
alloys [6,7]. On the other hand 6 is also influenced by the parameters
which determine the efficiency of heat transport. It is the aim of several
recent investigations to find the most important control parameters of
metallic glass ribbon formation [8-16]. It is a priori clear that heat
transport is determined - at least partially - by the heat diffusivity of
the alloy, the substrate and by the heat transfer coefficient characteristic
to the alloy-substrate interface. Naturally the role of the convective heat
flow has also to be examined. It is a very complicated task because it re-
quires the knowledge of the flow pattern inside the melt pool. The main
difficulties arise from the fact that heat transport and melt flow interact
through not only the convective heat flow but through the continuous tempera-
ture dependence of viscosity, characteristic to glass formation [17,18].
Several theoretical attempts have been published aimed at finding approxi-
mative flow patterns, but in the lack of direct experimental results* it is
difficult to check the reliability of the thermal histories calculated in
this way [12,14,15,20,24].

*Direct temperature distribution measurements are available for the melt
spinning of crystalline alloys only, which - because of the evolution of
latent heat - have limited relevance to amorphous ribbon formation [19].



The aim of the present paper is to find a mathematically simple ap-
proximation of melt flow, which - however - makes it possible to describe
heat transport properly. In order to realize this program it is to be ex-
amined how the different supposed melt flow patterns influence heat trans-
port. In this line first we classify the melt flow approximations, model
calculations are then presented to illustrate the differences they cause in
the heat transport. It is to be shown that as a consequence of the con-
tinuous variation of viscosity around the glass transition, the thermal
history calculated with the assumption of infinite melt viscosity is very
similar in a wide temperature region to that of computed with the experi-
mental viscosity-temperature relation. It is also illustrated that this
region includes the temperature range where the rate of crystallization is
significant. In order to avoid the mathematical troubles these computations
were performed under two somewhat unrealistic suppositions referring to heat
transport. It is however suggested that the above similarity of thermal
histories remains valid also under realistic conditions. On the other hand
the calculations with infinite viscosity are relatively simple, i.e. all the
important thermal boundary conditions can be taken into account. It is thus
suggested that the infinite viscosity approximation is an appropriate tool
for the determination of thermal history.

2. FLOW PATTERN APPROXIMATIONS

In this point we briefly survey the most important flow pattern ap-
proximations. The following main processes have to be taken into account in
a detailed thermal history calculation:

a) Heat flow in the melt pool (including both the conductive and the
convective modes of heat transport, the effect of the temperature
dependence of viscosity and the complicated boundary conditions),

b) Heat flow in the solidified region,

c) Heat transfer at the alloy-substrate interface,

d) Heat flow within the substrate.

These processes are closely cross-connected through the conservation of
energy, making the full realization of such a calculation unjustified in
terms of computation cost. Simplifications are needed. Since the most dif-
ficult problem is that of modelling the melt flow, a supposed simple flow
pattern may significantly reduce the complexity of the mathematical task.

On the other hand one may only hope that this modification does not signifi-
cantly disturb the calculated thermal history. This hope motivates the use
of the flow pattern approximations in thermal history calculations. There is
however another aspect of melt flow modelling: A detailed description of the
melt pool may facilitate the testing of the basic assumptions. Since sim-
plifications referring to either the melt flow or the heat transport may be



reflected in the melt pool length-ribbon thickness relation [8,14,15,25,26],
the comparison of the calculated and experimental relations may inform us
about the validity of the applied approximations.

2.1 Infinite viscosity approximations

Up to now the majority of the thermal history calculations [14,15,20,22]
is based on an approximation, which describes the heat transport by the one-
dimensional heat diffusion equation*:

T _  afr )
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(The meaning of all the symbols is listed in Notations.) We have to empha-
size, however, that this approximation means special restrictions referring
to the melt flow: It is easy to show that the application of the transforma-
tion, x:VOt yields a two-dimensional, steady state problem, which can also
be obtained from the boundary layer theory (BLT) of heat transport in fluids
[28] assuming infinite viscosity. Consequently this generally used approxima-
tion is physically equivalent to the supposition of infinite melt viscosity.
This kind of simplification has a great advantage: The melt region and the
solid phase may be treated uniformly, which significantly reduces the
mathematical troubles. On the other hand, because of the neglection of the
details of the melt flow, the length of the melt pool cannot be calculated
within the frame of this approximation.

2.2 Constant viscosity approximations

Several attempts have been made recently to describe the melt flow more
precisely. In most of them melt is characterized by a fixed (and Finite)
value of viscosity. Under such conditions the most detailed description of
melt flow and heat transport is given by the BLT. Because of the mathematical
difficulties, however, boundary layer calculations of this field are gener-
ally restricted to the modelling of melt flow only [14,15,30], while in the
determination of the thermal history special heat transport conditions [31]
or simplified boundary layer equations [23.,24] are used.

*The widely used Newtonian-type cooling is also a special case of this
approximation when h « -g- (see e.g. [27])-



2.3 Temperature dependent viscosity approximations

Since the drastical increase of melt viscosity during the glass forma-
tion may significantly influence the melt flow and convective heat transport,
efforts have been done to take this effect also into account [31]. Such a
detailed characterization of the melt is only meaningful, however, within
the frame of BLT. On the other hand the application of BLT leads to restric-
tions of technical origins In order to avoid the mathematical complexity,
special heat transport conditions have to be supposed. Hence the advantage
of the detailed description of melt flow is countered by the inadequate
description of heat transport. In spite of this fact this model provides a
unique facility to compare the melt flow approximations under given though
somewhat non-realistic conditions.

3. MODEL CALCULATIONS

Let us first give a short summary of the model our study is based on
and examine its applicability to the description of the ribbon formation
process. Second, in order to illustrate the physical consequences of the
different melt flow approximations we present the results obtained using
the viscosity-temperature relations distincted in the previous point.
Finally we drscuss the origin of the differences and outline the applica-
tion of the infinite viscosity approximation for realistic thermal history
calculations.

3.1 The model

In our calculations we started from a construction which is similar to
that of den Decker and Drevers [31]. The main difference is that heat trans-
port within the substrate is also taken into account. The basic features of
the original model are the following;

- two-dimensional system,

- steady-state solution,

- ideal heat contact at the alloy-substrate interface,

- temperature independent properties (except viscosity),

- laminar BLT for the description of melt flow*,

- the melt and the solidified phase fill in the whole x,y>0 quarter-

plane .

*The laminarity of melt flow is a questionable assumption, since experimental
results pro and contra are also available [14,32]. On theoretical basis,
however, it is expected that because of the high value of viscosity in the
vicinity of Tg there has to be an extended laminar sublayer preceding the
solidification front.



We contributed to the list with a simplification which refers to the

substrates

- the substrate
Since our basic equations are derived

in the whole x>0, y<o quarter-plane.

in a way which

is general in the

practice of BLT we simply present them and refer to sources where the

mathematical procedure

Equations:

Melt phase:

Solid phase:

Substrate:

where subscripts

respectively;

is detailed [28,29,31]:
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L,S,Su refer to the melt,
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the solid and the substrate,

are the

reduced temperature and the parabolic coordinate of the corresponding phase,

f is a function related to

whille F"jT"jV1 etc.
parabolic coordinates.

the velocity distribution as follows;
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are functions differentiated with respect to the

The boundary conditions corresponding to the basic assumptions are:
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where £L0"£So are the position of the solidification front expressed in

terms of the parabolic coordinates, while T =2 ¢gT.9 # in this calculation
g o}
the position of the solidification front is initially unknown. It is deter-

mined as follows: Starting from an approximate value of the mathematical
problem of the melt phase may be separated from that of the remaining part,
consequently the two sets of equations obtained in this way can be solved
independently. The right position of the solidification front may be found
iteratively on the basis of (6.7).

In our work the solid phase and the substrate were treated analitically
(see Appendix 1), while numerical solutions based on the finite difference
method were derived for the melt phase. In principle the numerical treatment
of the melt region allows the solution of the problem for any type of viscos-
ity functions. The analytical treatment, however, has several advantages,
that is why we developed analytical solutions for the simplest (zero and in-
finite viscosity) cases (see Appendix 2).

Having determined the temperature and velocity distributions we are
able to calculate either the relation between the melt pool length and the
ribbon thickness or the thermal history. The relation between melt pool
length and ribbon thickness may be derived following the way proposed by den
Decker and Drevers. The method is visualized in Fig. 2. Stream lines are
given by the ¢(x,y) = const, relations, where o(x,y) = ( xXTX) I//2F (£T) is
the stream function [28,29]. Starting from (56.a-c) it can be shown that
stream lines are parallel to the y-axis for y«°. On the other hand they are
naturally parallel to the x-axis in the solid region. Being aware of these
facts melt pool length corresponding to a given ribbon thickness may be con-
structed as follows: Let us find the stream line which intersects the solidi-
fication front at height y = 6 , then remove the region above it (see Region
2 in Fig. 2). The remaining part represents the melt pool-ribbon-substrate
system. The length of the melt pool may be defined by the distance between
the y-axis and this stream line when y>=. Taking into account this defini-
tion, the volumetric flow balance, expression (4) and the fact that
lim f (ET)ET =0 it is easy to show that
> b

X1a\1/2
6R = T(») oy (6)

where f(°**) = lim f(6L) is a proportionality factor, which depends on T,

V. v/~ XL*XSTXSu™
Thermal history along stream lines can also be determined from the
calculated temperature and velocity distributions. It can be shown that as a
straightforward consequence of the supposed ideal heat contact and laminar
Tyy“T —
melt flow the average quenching rate, T = wrs is proportional to 6 2
m



(see Appendix 3). The quenching rate values derived in this way are,
however, to be accepted as a rough approximation only: The removal of
Region 2 significantly changes the upper boundary condition of heat trans-
port in Region 3, i.e. the substrate has to extract heat from a layer of
finite thickness instead of the original infinite region. Consequently a
significant increase of cooling rate is expected. Naturally this accelera-
tion of cooling has to be manifested in melt pool shortening too, but it is
not clear in what extent. The modifications required by this "thickness
effect” cannot be easily incorporated to the present model.

Supposition of ideal heat contact at the alloy-substrate interface
seems to be another serious shortcoming of the construction. Experimental
results suggest that ideal heat contact may be an approximation of question-
able validity [12,19]. The existence of an interfacial heat resistance be-
tween the substrate and the alloy may significantly reduce heat extraction
[27,33], its treatment is however complicated within the realistic fluid
flow model.

3.2 Testing of the model

Summarizing the problematic features of the model we have to emphasize
that two unjustified simplifications are built in, which have opposite effect
on either the melt pool length or the quenching rate. In order to check the
applicability of these assumptions we compare the calculated melt pool
length-ribbon thickness relation to its experimental counterpart. Alloys
with composition Fe~Ni~P-~Bg and FesOPisc7 have been chosen as testing
materials, while a copper substrate has been supposed. The relevant physical
properties are given in Appendix 4.

A typical melt pool structure calculated for Fe~"Ni”~P”~Bg under
Vg = 30 m/s and 6R = 30 um is shown in Fig. 3. Because of the steady state
solution the path of volume elements is given by the stream lines. In this
way, TFirst the volume elements move parallel to the y-axis and then penetrate
into the shear layer (or momentum boundary Hlayer, defined by 0.05 vO<vx<vO"*
where the x component of their velocity increases up to VQ, while v~ tends
to zero. Intersecting the solidification front the paths enter the solid
region. It is worth mentioning that as a consequence of the continuous in-
crease of melt viscosity the solidification front is preceded by an extended
quasi-solid layer defined by the 0.95 V <v <V relation.

The results of melt pool length calculations are summarized in Tables
1, 2. It shows that the calculated melt pools are significantly shorter then
their experimental counterparts for both compositions studied. The sensitiv-
ity analysis of the solutions has shown that this deviation cannot be under-
stood on the basis of either the experimental error of the relevant physical
properties or the temperature dependence of those parameters which were fixed



in the calculations (Cp,K,p,T"). Thus the origin of the deviations must be
one of the assumptions the model is based on. Since viscosity is a monot-
onously decreasing function of temperature,the underestimation of melt pool
length must be the result of an overestimated heat extraction, i.e. the
supposition of ideal heat contact seems to be responsible for the deviations.

3.3 The effect of melt flow approximations on the thermal history

In this point we intend to show what kind of differences arise between
thermal histories calculated using different types of viscosity-temperature
relations distincted in 2. In order to realize this comparative analysis
computations were performed with viscosity functions v = o, v=vF (M),

v = VE(T) and v = O, where the F subscripts refer to the Fulcher-type tem-
perature dependence of viscosity, VF({) = vq exp characteristic to

supercooled melts. In these simulations vF (T?), Vp(T) and the other relevant
parameters were chosen to be identical to those of the Fe~Ni~QP~Bg alloy.
Thus we obtained a series in which the average value of viscosity, v is
changed systematically.

Melt pool structures calculated under such conditions are shown in

Fig. 4, while some characteristic parameters are given in Table 3. As it
could be expected on the basis of BLT, the thickness of the momentum boundary
layer is sensitive to the viscosity-temperature relation. As a consequence
the length of the melt pool is decreasing, while f(°*®) is increasing with in-
creasing v. At the same time a remarkable variation of the temperature dis-
tribution is indicated by the position of the Tm and Tg isotherq§. The
solidification length, £ - i.e. the x coordinate where the temperature of
the ribbon drops below T* even at the top surface - is also changed. Sum-
marizing these tendencies we may conclude that the variation of the viscos-
ity function influences the structure of the melt pool through two opposing
effects:

a) Mechanical effect: In accordance with the predictions of BLT, the
higher is the value of the average viscosity, the thicker is the
momentum boundary layer, consequently the shorter is the melt pool.

b) Thermal effect: The higher is v, the higher is the average value of
Vy s i.e. a more effective convection occures between the TM ang T
isotherms. As a straightforward consequence the solidification front
is lowered, i.e. the solidification length increases. Because of
this lowering of the base of the boundary layer the length of the
melt pool is also increased.

The average quenching rates calculated along stream lines corresponding

to 6 = 30 um are also given in Table 3. Despite the monotonous variation
of the solidification length, T shows a maximum, suggesting that £q cannot
be accepted as a parameter characteristic to thermal history when materials



of significantly different viscosity functions are compared. The reason is
obvious: Thermal history depends on not only the temperature distribution

but also on the velocity field (i.e. on the shape of the stream line and on
the distribution of the tangential velocity along it), while is determined
by merely the position of the T front. Another interesting fact is the
similarity of the T values calculated for v = ® and v = vF () which indicates
the similarity of the corresponding cooling processes. T(t) curves describ-
ing the details of thermal history between T~ and T are presented in Fig. 5.
The most remarkable consequence of these plots is that viscosity functions

v = @mand v = VT(T) provide of almost identical cooling conditions in the
whole Tm>T>Tg temperature region. It has to be emphasized, however, that

this similarity is soon deteriorated for T>Tm* It is easy to understand this
behaviour on the basis of Fig. 4. From the position of the T ,T and T
isotherms it is clear that temperature distributions are roughly similar in
the v = ® and v::vP(T) bases. On the other hand because of the presence of
the quasi-solid layer the shape of the stream lines is almost identical be-
tween T~ and Tg, while significant differences can be seen at higher tempera-
tures. These differences are manifested in the time measured between the T,
and T~ isotherms moving along stream lines: At = < for v = vF (1) and At°°

for v = *°. Thus above T~ quenching rate becomes much lower for v = vF (T) than
for v = «. This tendency is directly visualized in Fig. S, where the momen-
tary quenching rate is plotted versus the actual temperature. In this way we
may conclude that as a consequence of the special viscosity-temperature rela-
tion of the supercooled glass forming alloys there appeares an extended
"quasi-solid" layer above the solidification.front, which provides of cooling
conditions similar to those of the v = ® case iIn a wide temperature region.

This similarity may have an important role in thermal history calcula-
tions: From the point of view of glass formation thermal history is interest-
ing in a limited temperature region only, where the rate of crystallization
is high enough to be taken into account on the time scale of the quenching
process. Consequently calculations which correctly describe cooling in this
region would be of practical importance. In the case of the Fe4QNi40P14B6
composition TTT diagrams predict significant transformation rates between
800 and 1000 K [34,35], which region is within the range where v = vF (1) and
v = w give similar thermal history. In this way our calculations justified
the use of the v = < approximation when simplifications listed in 3.1 are
valid. On the other hand it requires further discussions to understand what
kind of differences can be expected when the non-ideal heat contact and the
sudden change of boundary conditions at x = A are taken into account.

If the heat contact at the alloy-substrate interface is non-ideal (i.e.
the heat transfer coefficient is finite, h<°) heat extraction from the alloy
is hindered. It is easy to show that A04¢>and T[(x¢04>1% if h»o. Thus when
h=o0 there is no solidification and the melt can be characterized by a fixed
viscosity value, v = vp(TM)~” Under such conditions the length of the melt
pool is finite, determined by the



10

Vo /SR >

A= vEam) 1%e2- O

formula derived in Appendix 5. Consequently A/A o when h+o indicating that
the region where the stream lines of the v = @ and v = vr(T) cases are of
different shape becomes negligible. In other words: The penetration depth of
the thermal effect becomes far less than that of the momentum transport,
consequently = V in the whole region where heat transport takes place.

In this way we may expect that decreasing the value of h the similarity of

cooling processes corresponding to v = and v = vr(T) is more and more
pronounced.

The other modification the presented model has to be completed with is
the "thickness effect'”. Its influence on the examined similarity of thermal
histories cannot be predicted so easily as in the former case. On logical
ground, however arguments are found which support the applicability of the
v = @ approximation also under this condition:

Let us discuss the problem in the hypothetical case of ideal heat con-
tact. When Region 2 (see Fig. 2) is removed a new thermal boundary condition
has to be prescribed along the stream line corresponding to 6 . Since the
effect of heat radiation can be neglected, %% = o seems to be an adequate
assumption, where n stands for the normal of the boundary stream line. This
change in the boundary conditions may significantly influence heat transport
in the x ~ A region and may also modify the length of the melt pool. For x > A
henceforth heat is extracted from a thin layer the heat content of which can
fastly be exhausted, leading to a significant increase of the quenching rate.
We have to emphasize, however, that the new boundary condition is automati-
cally satisfied outside the thermal boundary layer, where T (X,y) =T . In
this way modifications of the temperature distribution are expected within
the thermal boundary layer only. On the other hand the penetration depth of
the thermal effects (6T) is small compared to the length of the melt pool
(it is easy to show that in the case of laminar flow and ideal heat contact

ﬂ% ~ Pé_llz. where Pe = %ﬂf is the Péclet number, iIn our case Pe z 104, re-

suiting in that 6T<A), which indicates that within the momentum boundary
layer the thermal conduction in direction x isoverrun by the thermal convec-
tion. This fact implies that the effect of thenew boundary condition at x=A
cannot penetrate deep into the melt pool._The presented model is thus expected
to be able to predict the temperature distribution within themelt pool, when
ideal heat contact is supposed. As in the caseof v = ” and v = vj(T) viscos-
ity functions our calculations predict similar temperature distributions even
in those regions where the velocity fields are significantly different it is
somewhat justified to expect that the same variation of the thermal boundary
conditions will modify temperature distributions analogously for x ~ A, where
the velocity distributions are necessarily more similar.
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Summarizing the consequences of the above argumentation we may expect
that v = @ calculations which take into account the "thickness effect” and
non-ideal heat contact may be regarded as reliable models of thermal history
in the region of significant crystallization rates. Calculations of this
type will be presented in the near future [36].-

4. SUMMARY

The influence of melt flow on heat transport and thermal history has
been studied within the frame of boundary layer theory. It has been shown
that:

1. Since the complexity of the model does not make it possible to in-
corporate the "thickness effect” and the non-ideal heat contact between the
alloy and the substrate, the full treatment of melt flow proposed by den
Decker and Drevers cannot correctly predict either the length of the melt
pool or the thermal history.

2. Because of the special viscosity-temperature relation of glass form-
ing alloys, there exists an extended temperature region where calculations
with the v = < assumption and with the experimental viscosity function give
very similar cooling processes. This temperature region contains also the
range where TTT diagrams prescribe the highest crystallization rates.

3. On theoretical ground v = » calculations completed with non-ideal
heat transfer and "thickness effect" are expected to be able to reliably
predict thermal history.

ACKNOWLEDGEMENT

We are very grateful to Dr. T. Kemény for the valuable discussions and
the critical reading of the manuscript.



12

REFERENCES

[1]

21
[3]

[4]

5]

[6]

(el

[©]
[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]
[18]
[19]
[20]
[21]
[22]

[23]
[24]
[25]

H. Jones, Rapid Solidification Processing, ed. R. Mehrabian (Claitor"s
Publishing Division, 1978) p. 28 and

H. Jones, in "Treatise on Materials Science and Technology', Vol. 20,
ed. H. Herman (Academic Press, New York, 1981) p. 1

H.S. Chen, H.J. Leamy, C.E. Miller, Ann. Rev. Mater. Sei., 10/1980/363

Rapidly Quenched Metals IV., eds. T. Masumoto and K. Suzuki (The Japan
Institute of Metals, 1982)

Proc. Symp. on Continuous Casting of Small Cross Sections, eds. Y.V.
Murty and F.R. Mollard (AIME, Warrendale, Pa, 1981)

Melt spinning, e.g.: H.H. Liebermann, C.D. Graham, IEEE, Trans, on
Magn., 12/1976/921,

melt extraction, e.g.: R.E. Maringer, C.E. Mobley and E.W. Collins,
Rapidly Quenched Metals, eds. N.J. Grant and B.C. Giessen (MIT Press,
Boston, 1975) p. 29,

planar flow casting, e.g.: M.C. Narasimhan, US Patent No 3862658 (1975)
M. Hagivara, A. Inoue, T. Masumoto, Sei. Rep. RITU A29/1981/351

H.A. Davies, Rapidly Quenched Metals I11l., ed. B. Cantor, (The Metals
Society, 1978) Vol. 1, p. 1

H. Hillmann, H.R. Hilzinger, ibid., Vol. 1, p. 22

H.H. Liebermann, Mater. Sei. Eng., 43/1980/203

S. Takayama, T. Oi, J. Appl. Phys., 50/1979/4962

S.C. Huang, H.C. Fiedler, in [4], p- 127

S.C. Huang, H.C. Fiedler, Mater. Sei. Eng., 51/1981/39

D. Pavuna, J. Mater. Sei., 16/1981/2419

J.H. Vincent, H.A. Davies, J.G. Herbertson, in [4], p. 103

J.H. Vincent, J.G. Herbertson, H.A. Davies, in [3], Vol. 1, p. 77

M. Matsuura, M. Kikuchi, M. Yagi, K. Suzuki, Japn. J. Appl. Phys.,
19/1980/1781

H. Vogel, Phys. Z., 22/1921/645

G.S. Fulcher, J. Ann. Ceram. Soc., 6/1925/339

D.H. Warrington, H.A. Davies, N. Shohoji, in [3], Vol. 1, p, 69
L. Katgerman, Script. Metall., 14/1980/861

L. Katgerman, P.J. van den Brink, in [3], Vol. 1, p. 61

S. Kavesh, "Metallic Glasses', eds. J.J. Gilman and H.J. Leamy,
(ASM, 1976) p. 36

T.R. Anthony, H.E. Cline, J. Appl. Phys., 49/1978/829
T.R. Anthony, H.E. Cline, J. Appl. Phys., 50/1979/239

J.H. Vincent, J.G. Herbertson, H.A. Davies, J. Mater, Sei. Letters,
2/1983/88



[26]

[27]
[28]

[29]
[30]

[31]

[32]
331
[34]
[35]
[36]
371
[38]

L. Gréanasy,
KFK1-1982-32

13

T. Kemény, Central Research Institute for Physics Report,

R.C. Ruhl, Mater, Sei. Eng.“, 1/1967/313

L.D. Landau,
(1959)

H. Schlichting,

P.H. Shingu,
p- 57

P. den Decke

Technology (Kultura,

P.G. Zielinski,

P.H. Shingu,

E.M. Lifshitz, "Fluid Mechanics"™, Pergamon Press, New York

"Boundary Layer Theory", 6th Edition, McGraw Hill (1966)

K. Kobayashi, R. Suzuki, K. Takeshita, in [3], Vol. 1,

r, A. Drevers, Proc. Conf. on Metallic Glasses: Science and

1981) Vol. 1. p. 181
D.G. Ast, Script. Metall., 17/1983/291

R. Ozaki, Metall. Trans., 6A/1975/33

P.M. Anderson, A.E. Lord, J. Non-Cryst. Solids, 37/1980/219

D.G. Morris,

L. Granasy and Gy.

M.G. Scott,

J A . Adams,
McGraw Hill

Acta Metall., 29/1981/1213

Mészaros, under preparation

P. Ramachandrarao, Mater. Sei. Eng., 29/1977/137

D.F. Rogers,
(1963)

"Computer Aided Heat Transfer Analysis",



14

NOTATIONS
T - temperature
T™ - initial temperature of the melt
Tm -melting temperature
Tg - temperature of the glass transition
TF - temperature parameter of the Fulcher-formula
TQ - initial temperature of the substrate
r - reduced temperature
t - time
At - time period measured between the TM an% T isotherms along stream
lines
ty —t$ - time period measured between the Tm ang T isotherms along stream
m n lines
T - quenching rate
T - average quenching rate
h - heat transfer coefficient at the alloy-substrate interface
X - heat diffusivity defined by X = A¥~ > where
K - heat conductivity p
P -density
Cp -specific heat
X - coordinate parallel to the surface of the substrate measured in
the direction of moving
y - coordinate perpendicular to the surface of the substrate
£ - parabolic coordinate
- position of the solidification front
A -melt pool length
a* - limiting value of melt pool length corresponding to h+o
A -solidification length
6“ - ribbon thickness
6RC -critical ribbon thickness
6T - penetration depth of thermal effect
vx , Vy - components of the velocity vector
Vg -surface velocity of the substrate
0] - stream function

- kinematic viscosity

\Y; - average viscosity
* 2

erf x -2 et at
o}

pe - Péclet number

Subscripts L,S,Su refer to the melt, the solid phase and the substrate
respectively.
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Table 1

Comparison of the calculated melt pool length-ribbon thickness
relation with experiments [8] in case of Fe~Ni~QP”"Bg

VQ (Ws) 6R (um) mm)

Iexp( *calc(m)
15 55 5.3 2.26
30 31 3.7 1.44
60 18 2.7 0.97
Table 2

Comparison of the calculated and experimental [14] melt pool
length-ribbon thickness relations in case of Fe80P13C7

VQ (/s) 6R (M) mm)

Iexp( *calc(m)
20 37 3.5 0.72
30 26 3.1 0.57
40 20 3.0 0. 42
Table 3

The effect of viscosity function on the parameters characteristic
to the melt pool structure and thermal history

v(D) I (m) ™) £, (m) T(106 K/s)
vV =o0 5.81 0.94 5.81 0.36
vV = vk (TM) 4.43 1.08 6.78 0.58
V = Vp (M 1.34 1.95 13.6 1.00
V=0 ) ® 16.3 0.85
T, 1, values corresponding to 6R = 30 vim and VO = 30 m/s are

presented.
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APPENDIX 1

Analytical treatment of heat transport in the solid phase
and the substrate

Solutions of the form

TSAS*  AS + BS erf and @D
TSu(gSu) ASu + BSu erf (ESu} )

were FTitted to boundary conditions (56g-j)-. The temperature distributions
obtained in this way are

t,,(1+B erf (EQ))

and (G
pesen - -2 B o« f <Eso>
Ta(@ + erf (ggu))
A 7 (CD)
TSu(®Su 1+ B erf (ESq)
where B = KSu , *$
KS »XSU

APPENDIX 2

Analytical treatment of the melt phase in cases of infinite
and zero viscosity

It is easy to show that in the v-*» limit Vy = V0 within the whole
X,y>0 region (i.e. the thickness of the momentum boundary layer is infinite).
In accordance with this fact:

f’"b) =WhrhlJ
and for EL>ELo (A5a,b)

fALY - 2EL

where 0(x) 1is the Heavyside-function. Inserting (A5b) into (2b) heat trans-
port equation of the form

t'l + 261t"1 - 0 <AB)

is obtained. Its solution which satisfies boundary conditions (6d,e) is the
following:



17

-2 f (E + 2- f E,
T E)-= P ¢ I2) T3 °r K? (%)
L L 1" erf (gLo)

The assumption v = o results in zero thickness of the momentum boundary
layer which means that = 0 above the solidification front. Its math-
ematical formulation is:

£ (E1) - 2[1-e(EL-Ebo>]

and . fr VALo (A8a,b)

f(E) - 2,

leading to

t"1 + 2f1ot’l = 0 = A9

The solution found by the integration of (A9) was fitted to (&d,e) yielding

V 6> - 2-<2-V - 1A10)

APPENDIX 3

Determination of the relation between the average quenching rate
and the thickness of the ribbon

Since the stream line corresponding to 6R is given by the implicite
equation

Vo r (Y O 1/2FE) 1))

it is easy to show that the x coordinate of the points where the T and Ta
isotherms inter%?ct Epe stream line are of the form Xm =cC and X = c

_ _ m R g gR
denoting Voy1i [f(E)] with c. On the other hand
T -T -T )V
m o q Ty g) (112)
t? —t? Xm“Xg
mg
and
-1 d ' f d
Xg Xy VX Xayddx = 2R K 1(E(x))dx (A13)
m m

where the integration with respect to x has to be performed along the stream
line. On the basis of (AIl) E can be expressed in terms of X:
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A4

where F is the inverse function of f. Inserting (Al4) into (A13) and

introducing £ = x6_2

R as a new variable

v )
v = . fit I I ‘ A15
2(C 4"y . dc (A15)
m

is obtained, indicating that v is independent of 6R. In this way

Oﬁ_Tg)V 1
((:m—cg)6R V *

APPENDIX 4

Casting conditions and the physical properties of the alloys
and the substrate used in modelling

a) Casting conditions

TQ = 293 K, while = 1323 K for Fe4ONi4QP14B6 and TM = 1300 K for
FeSHP39C} Having determined the numerical value of f(°*°) the Vo dependengg
of melt pool length can be treated analytically according to (6), while T
is independent of Vg when 6R is fixed.

h) Physical properties

Heat conductivity, specific heat and density were taken to be identical
for the two alloys and for the solid and melt phases:

<L = Kg = 21 W/mK, cpL = CpS =540 J/kgK, PL = pg = 7400 kg/m3.
The differences of the viscosity function, melting point and T were taken
into account:

FedONi4QP14B6 parameters taken from [34,35]:
2
v(T) = 6.6x10"9 exp (Qvgyg—) ~ [/

Tm = 1173 K, Tg = 750 K,

where the value of is a result of an extrapolation for high quenching
rates (107 K/s).
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Fe80P13C7 Parameters taken from [7,37]:
_ 2
v(T) = §}f8 S exp (?9%965 ?

Tm = 1260 K, Tg = 850 K,

where is estimated from the heating rate dependence of the crystalliza-
tion temperature.

In all the calculations a copper substrate characterized by the follow-
ing properties was used:

KSu = 380 W/mK, cpSu = 420 J/kgK, pSu = 8900 kg/m3

APPENDIX 5

Derivation of Egq. (7)

When constant viscosity is supposed the velocity field in the momentum
boundary layer is described by the special form of the Fauikner-Skan equa-
tion [38] known as Blasius equation:

£ +FF" =0 (A16)

where F relates to the velocity distribution according to formulae (3,4)
after replacing xL by v. The boundary conditions corresponding to our problem
are:

f©O) =0 f10) = 2 ) =0 (AL7)

The relation between the melt pool length and the ribbon thickness can be
derived analogously to (6):

6R = F(0) (») 1/2 (A18)
(0]

where the value of f(*°) is numerically determined by Shingu et al. [30].
Expressing i from (A18) we obtain Eq. (7).
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Fig. 1. Schematic drawing of the melt pool appearing in
different continuous casting methods:

a) melt spinning,
b) planar flow casting,
a) melt extraction.
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Fig. 2. Construction of the melt pool according to the
method of den Decker and Drevers

Fig. 3. The structure of the melt pool calculated for VQ = 30 m/s and
R = 30 ym in case 05 Fe4UN|40 1¢Be



Fig. 4. Melt pool structures calculated, for V - 30 m/s and 8p - 30 pm using different viscosity functions
a v=0, b)) v=NSN{M), c)v=yvw{D, dv=«
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Fig. b. Cooling curves calculated for different viscosity functions
"along stream lines corresponding to = 30 \im (Mg = 30 n/s).

@ v-0 m v=%w ), o v=vp{lD3 e: v =

Fig. 6. Momentary quenching rate vs. actual temperature calculated
along stream lines correspondig to 6" = 30 Ppm

@ v=o0, m; v-vp{IM)3 0: v= {13 == v =2
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