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ABSTRACT

In order to establish more reliable thermal history calculations we 
have examined how the melt flow influences the cooling process through con­
vective heat transport. On the basis of the laminar boundary layer theory 
it has been shown that because of the continuous variation of viscosity 
around the glass transition the thermal history calculated with the assump­
tion of infinite melt viscosity is very similar in a wide temperature region 
to that of computed with the experimental viscosity-temperature relation. It 
is illustrated for the Fe40Ni4oPl4B6 composition that this temperature region 
includes the range where TTT diagrams predict significant crystallization 
rates, pn the other hand because of their mathematical simplicity, calcula­
tions with infinite viscosity allow to take into account those important ex­
perimental boundary conditions which cannot be properly treated in models 
including more detailed description of melt flow. In this way it is expected 
that calculations with infinite melt viscosity can reliably predict thermal 
history in the temperature region which is most important from the point of 
view of glass formation.

А Н Н О Т А Ц И Я

Для обоснования надежных расчетов термической предистории исследовалось 
влияние потока расплава на процесс охлаждения. На основании теории ламинарно­
го граничного слоя было показано, что вследствие непрерывно увеличивающейся 
вязкости при стекловании, термическая предистория, при расчете которой пред­
полагалась бесконечная вязкость, в широком температурном диапазоне показывает 
большую схожесть с результатами расчетов, выполненных на основе эксперимен­
тальной зависимости вязкости - температуры. На сплаве f’e4nN:i-40I>14B6 ИЛЛЮСТРИ_ руется, что этот диапазон включает в себя и те температуры, при которых по 
диаграммам ТТТ важна скорость кристаллизации. G другой стороны простота мате­
матических расчетов, выполненных с бесконечной вязкостью, позволяет также учи­
тывать и такие важные экспериментальные граничные условия, которые не могут 
быть учтены в модели, более подробно рассматривающей поток расплава. Таким об­
разом можно ожидать, что расчеты, выполненные с бесконечной вязкостью, будут 
надежно описывать процесс охлаждения в важнейшем с точки зрения стеклования 
температурном диапазоне.

KIVONAT

A megbízható termikus előélet-számitások megalapozásához megvizsgáltuk, 
hogyan befolyásolja az olvadékáramlás a hülés folyamatát. A lamináris határ­
réteg elmélet alapján kimutattuk, hogy az üvegesedés során folytonosan nö­
vekvő viszkozitás következtében a végtelen viszkozitás feltételezésével szá­
mított termikus előélet széles hőmérséklettartományban igen hasonló a kísér­
leti viszkozitás-hőmérséklet összefüggéssel számolthoz. A Fe4oNi4oPl4B6 öt­
vözet esetével illusztráltuk, hogy ez a tartomány magában foglalja azon hő­
mérsékleteket is, melyeknél a TTT diagramok szerint a kristályosodás sebes­
sége lényeges. Másrészt a végtelen viszkozitással végzett számolások matema­
tikai egyszerűsége miatt figyelembe vehetünk olyan fontos kísérleti határ- 
feltételeket is, melyek nem kezelhetőek az olvadékáramlást részletesebben 
tárgyaló modellekben. így tehát azt várjuk, hogy a végtelen viszkozitással 
végzett számítások megbízhatóan Írják le a hülés folyamatát az üvegképződés 
szempontjából legfontosabb hőmérséklettartományban.



1. INTR OD U C T I O N

A relatively new group of amorphous materials is that of the metallic 
glasses. These materials - combining the disordered atomic arrangement with 
the metallic-type electronic structure - proved to be interesting from both 
theoretical and practical viewpoints. Metallic glasses are produced from the 
melt applying quenching rates high enough to avoid the crystallization dur­
ing the solidification. Several methods have been developed to realize this 
purpose. Amorphous alloys are now available in quite different geometries 
(e.g. ribbon, surface layer, wire, powder, etc.) [1-4]. In the present paper 
we focuse our attention to the extensively investigated question how the 
metallic glass ribbon is formed in the continuous casting methods (i.e. in 
melt spinning, melt extraction and planar flow casting [5]). One of the most 
characteristic features of these methods is a melt pool produced in contact 
with a moving chill surface (substrate), as it is shown schematically in 
Fig. 1. The ribbon is formed from the (solidifying) melt layer dragged away 
by the substrate. According to the experiments glassy state is obtained 
below a given ribbon thickness (5 ) only. On one hand this critical ribbon
thickness depends upon the critical quenching rate which may vary between 
wide limits due to the differences in the crystallization kinetics of the 
alloys [6,7]. On the other hand 6 is also influenced by the parameters 
which determine the efficiency of heat transport. It is the aim of several 
recent investigations to find the most important control parameters of 
metallic glass ribbon formation [8-16]. It is a priori clear that heat 
transport is determined - at least partially - by the heat diffusivity of 
the alloy, the substrate and by the heat transfer coefficient characteristic 
to the alloy-substrate interface. Naturally the role of the convective heat 
flow has also to be examined. It is a very complicated task because it re­
quires the knowledge of the flow pattern inside the melt pool. The main 
difficulties arise from the fact that heat transport and melt flow interact 
through not only the convective heat flow but through the continuous tempera­
ture dependence of viscosity, characteristic to glass formation [17,18]. 
Several theoretical attempts have been published aimed at finding approxi­
mative flow patterns, but in the lack of direct experimental results* it is 
difficult to check the reliability of the thermal histories calculated in 
this way [12,14,15,20,24].

*Direct temperature distribution measurements are available for the melt 
spinning of crystalline alloys only, which - because of the evolution of 
latent heat - have limited relevance to amorphous ribbon formation [19].
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The aim of the present paper is to find a mathematically simple ap­
proximation of melt flow, which - however - makes it possible to describe 
heat transport properly. In order to realize this program it is to be ex­
amined how the different supposed melt flow patterns influence heat trans­
port. In this line first we classify the melt flow approximations, model 
calculations are then presented to illustrate the differences they cause in 
the heat transport. It is to be shown that as a consequence of the con­
tinuous variation of viscosity around the glass transition, the thermal 
history calculated with the assumption of infinite melt viscosity is very 
similar in a wide temperature region to that of computed with the experi­
mental viscosity-temperature relation. It is also illustrated that this 
region includes the temperature range where the rate of crystallization is 
significant. In order to avoid the mathematical troubles these computations 
were performed under two somewhat unrealistic suppositions referring to heat 
transport. It is however suggested that the above similarity of thermal 
histories remains valid also under realistic conditions. On the other hand 
the calculations with infinite viscosity are relatively simple, i.e. all the 
important thermal boundary conditions can be taken into account. It is thus 
suggested that the infinite viscosity approximation is an appropriate tool 
for the determination of thermal history.

2. F L O W  PATTERN A P P R O X I M A T I O N S

In this point we briefly survey the most important flow pattern ap­
proximations. The following main processes have to be taken into account in 
a detailed thermal history calculation:

a) Heat flow in the melt pool (including both the conductive and the 
convective modes of heat transport, the effect of the temperature 
dependence of viscosity and the complicated boundary conditions),

b) Heat flow in the solidified region,
c) Heat transfer at the alloy-substrate interface,
d) Heat flow within the substrate.

These processes are closely cross-connected through the conservation of 
energy, making the full realization of such a calculation unjustified in 
terms of computation cost. Simplifications are needed. Since the most dif­
ficult problem is that of modelling the melt flow, a supposed simple flow 
pattern may significantly reduce the complexity of the mathematical task.
On the other hand one may only hope that this modification does not signifi­
cantly disturb the calculated thermal history. This hope motivates the use 
of the flow pattern approximations in thermal history calculations. There is 
however another aspect of melt flow modelling: A detailed description of the 
melt pool may facilitate the testing of the basic assumptions. Since sim­
plifications referring to either the melt flow or the heat transport may be
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reflected in the melt pool length-ribbon thickness relation [8,14,15,25,26], 
the comparison of the calculated and experimental relations may inform us 
about the validity of the applied approximations.

2.1 I n fi nite v i s c o s i t y  a p p r o x i m a t i o n s

Up to now the majority of the thermal history calculations [14,15,20,22] 
is based on an approximation, which describes the heat transport by the one­
dimensional heat diffusion equation*:

ЭТ _ afr
9t X - 2 9y (1 )

(The meaning of all the symbols is listed in Notations.) We have to empha­
size, however, that this approximation means special restrictions referring 
to the melt flow: It is easy to show that the application of the transforma­
tion, x=V t yields a two-dimensional, steady state problem, which can also оbe obtained from the boundary layer theory (BLT) of heat transport in fluids 
[28] assuming infinite viscosity. Consequently this generally used approxima­
tion is physically equivalent to the supposition of infinite melt viscosity. 
This kind of simplification has a great advantage: The melt region and the 
solid phase may be treated uniformly, which significantly reduces the 
mathematical troubles. On the other hand, because of the neglection of the 
details of the melt flow, the length of the melt pool cannot be calculated 
within the frame of this approximation.

2.2 C o n s t a n t  v i s c o s i t y  a p p r o x i m a t i o n s

Several attempts have been made recently to describe the melt flow more 
precisely. In most of them melt is characterized by a fixed (and finite) 
value of viscosity. Under such conditions the most detailed description of 
melt flow and heat transport is given by the BLT. Because of the mathematical 
difficulties, however, boundary layer calculations of this field are gener­
ally restricted to the modelling of melt flow only [14,15,30], while in the 
determination of the thermal history special heat transport conditions [31] 
or simplified boundary layer equations [23., 24] are used.

*The widely used Newtonian-type cooling is also a special case of this 
approximation when h « -g- (see e.g. [27]).
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2.3 T e m p e r a t u r e  d e p e n d e n t  v i s c o s i t y  a p p r o x i m a t i o n s

Since the drastical increase of melt viscosity during the glass forma­
tion may significantly influence the melt flow and convective heat transport, 
efforts have been done to take this effect also into account [31]. Such a 
detailed characterization of the melt is only meaningful, however, within 
the frame of BLT. On the other hand the application of BLT leads to restric­
tions of technical origins In order to avoid the mathematical complexity, 
special heat transport conditions have to be supposed. Hence the advantage 
of the detailed description of melt flow is countered by the inadequate 
description of heat transport. In spite of this fact this model provides a 
unique facility to compare the melt flow approximations under given though 
somewhat non-realistic conditions.

3. MODEL C A L C U L A T I O N S

Let us first give a short summary of the model our study is based on 
and examine its applicability to the description of the ribbon formation 
process. Second, in order to illustrate the physical consequences of the 
different melt flow approximations we present the results obtained using 
the viscosity-temperature relations distincted in the previous point.
Finally we drscuss the origin of the differences and outline the applica­
tion of the infinite viscosity approximation for realistic thermal history 
calculations.

3.1 The model

In our calculations we started from a construction which is similar to 
that of den Decker and Drevers [31]. The main difference is that heat trans­
port within the substrate is also taken into account. The basic features of 
the original model are the following;

- two-dimensional system,
- steady-state solution,
- ideal heat contact at the alloy-substrate interface,
- temperature independent properties (except viscosity),
- laminar BLT for the description of melt flow*,
- the melt and the solidified phase fill in the whole x,y>o quarter- 

plane .

*The laminarity of melt flow is a questionable assumption, since experimental 
results pro and contra are also available [14,32]. On theoretical basis, 
however, it is expected that because of the high value of viscosity in the 
vicinity of Tg there has to be an extended laminar sublayer preceding the 
solidification front.
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We contributed to the list with a simplification which refers to the 
substrates

- the substrate fills in the whole x>o, y<o quarter-plane.
Since our basic equations are derived in a way which is general in the 

practice of BLT we simply present them and refer to sources where the 
mathematical procedure is detailed [28,29,31]:

Equations:

Melt phase: vf'" + v'f" + *L f'"f = 0 (2.a)

*"l + fx 1L = 0 (2.b)

V = v c y (2. c)

Solid phase: T "s + 2EsT
1s = 0 (2. d)

Substrate: T"su + :SUT ’Su = 0 (2. e)

vx (x,y) = -f f  (El> (3)

. V XT 1/2vy (x,y) = \ (-^b) {f(£L)EL-f(EL)}, (4)

while f'jT'jV1 etc. are functions differentiated with respect to the 
parabolic coordinates.

The boundary conditions corresponding to the basic assumptions are:

f(ELo> = 2£Lo f•(ELo) = 2  f1(«) = 0 (5 . a ,b, c)

V ^ L O *  = Tg xL (°o) = 2 (5.d,e)

0ил KC!= —  x' (E_ ) ✓J- s So*S
(5. f)

TS (̂ So} = Tg TS (o) = TSu(o) TSu(~°°)=0 (5.g,h,i)

—  t ' (o) = ■ ✓x“ /xSu
(5.j)

where subscripts L,S,Su refer to the melt, the solid and the substrate,
T -T V 1/2

respectively; = 2 L '^-T~o ° and EL,S,Su = 2 are the
reduced temperature and the parabolic coordinate of the corresponding phase, 
f is a function related to the velocity distribution as follows;
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where £Lo'£So are the position of the solidification front expressed in
terms of the parabolic coordinates, while т = 2  gT. .9 # in this calculation

g о
the position of the solidification front is initially unknown. It is deter­
mined as follows: Starting from an approximate value of the mathematical 
problem of the melt phase may be separated from that of the remaining part, 
consequently the two sets of equations obtained in this way can be solved 
independently. The right position of the solidification front may be found 
iteratively on the basis of (5.f).

In our work the solid phase and the substrate were treated analitically 
(see Appendix 1), while numerical solutions based on the finite difference 
method were derived for the melt phase. In principle the numerical treatment 
of the melt region allows the solution of the problem for any type of viscos­
ity functions. The analytical treatment, however, has several advantages, 
that is why we developed analytical solutions for the simplest (zero and in­
finite viscosity) cases (see Appendix 2).

Having determined the temperature and velocity distributions we are 
able to calculate either the relation between the melt pool length and the 
ribbon thickness or the thermal history. The relation between melt pool 
length and ribbon thickness may be derived following the way proposed by den 
Decker and Drevers. The method is visualized in Fig. 2. Stream lines are 
given by the Ф(х,у) = const, relations, where Ф(х,у) = (V xT x) 1//2f (£T) is 
the stream function [28,29]. Starting from (5.a-c) it can be shown that 
stream lines are parallel to the у-axis for y-«°. On the other hand they are 
naturally parallel to the x-axis in the solid region. Being aware of these 
facts melt pool length corresponding to a given ribbon thickness may be con­
structed as follows: Let us find the stream line which intersects the solidi­
fication front at height у = 6 , then remove the region above it (see Region 
2 in Fig. 2). The remaining part represents the melt pool-ribbon-substrate 
system. The length of the melt pool may be defined by the distance between 
the у-axis and this stream line when y->-°°. Taking into account this defini­
tion, the volumetric flow balance, expression (4) and the fact that 
lim f' (ET)ET = 0  it is easy to show that
F -yea ^ L£L

6R = f(»)
Xl ä\1/2
“v (6)

where f(°°) = lim f(6L) is a proportionality factor, which depends on T^,

V v ̂  ,XL'XS'XSu"
Thermal history along stream lines can also be determined from the 

calculated temperature and velocity distributions. It can be shown that as a 
straightforward consequence of the supposed ideal heat contact and laminar

.-2melt flow the average quenching rate, T = T _ “ T QШ S is proportional to 6
m
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(see Appendix 3). The quenching rate values derived in this way are, 
however, to be accepted as a rough approximation only: The removal of 
Region 2 significantly changes the upper boundary condition of heat trans­
port in Region 3, i.e. the substrate has to extract heat from a layer of 
finite thickness instead of the original infinite region. Consequently a 
significant increase of cooling rate is expected. Naturally this accelera­
tion of cooling has to be manifested in melt pool shortening too, but it is 
not clear in what extent. The modifications required by this "thickness 
effect" cannot be easily incorporated to the present model.

Supposition of ideal heat contact at the alloy-substrate interface 
seems to be another serious shortcoming of the construction. Experimental 
results suggest that ideal heat contact may be an approximation of question­
able validity [12,19]. The existence of an interfacial heat resistance be­
tween the substrate and the alloy may significantly reduce heat extraction 
[27,33], its treatment is however complicated within the realistic fluid 
flow model.

3.2 T e s t i n g  of the model

Summarizing the problematic features of the model we have to emphasize 
that two unjustified simplifications are built in, which have opposite effect 
on either the melt pool length or the quenching rate. In order to check the 
applicability of these assumptions we compare the calculated melt pool 
length-ribbon thickness relation to its experimental counterpart. Alloys 
with composition Fe^Ni^P-^Bg and Fe30Pi3C 7 have been chosen as testing 
materials, while a copper substrate has been supposed. The relevant physical 
properties are given in Appendix 4.

A typical melt pool structure calculated for F e ^ N i ^ P ^ B g  under 
Vq = 30 m/s and 6R = 30 um is shown in Fig. 3. Because of the steady state 
solution the path of volume elements is given by the stream lines. In this 
way, first the volume elements move parallel to the у-axis and then penetrate 
into the shear layer (or momentum boundary layer, defined by 0.05 v0<vx<v0^' 
where the x component of their velocity increases up to VQ, while v^ tends 
to zero. Intersecting the solidification front the paths enter the solid 
region. It is worth mentioning that as a consequence of the continuous in­
crease of melt viscosity the solidification front is preceded by an extended 
quasi-solid layer defined by the 0.95 V <v <V relation.

The results of melt pool length calculations are summarized in Tables 
1, 2. It shows that the calculated melt pools are significantly shorter then 
their experimental counterparts for both compositions studied. The sensitiv­
ity analysis of the solutions has shown that this deviation cannot be under­
stood on the basis of either the experimental error of the relevant physical 
properties or the temperature dependence of those parameters which were fixed
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in the calculations (Ср,к,р,Т^). Thus the origin of the deviations must be 
one of the assumptions the model is based on. Since viscosity is a monot­
onously decreasing function of temperature,the underestimation of melt pool 
length must be the result of an overestimated heat extraction, i.e. the 
supposition of ideal heat contact seems to be responsible for the deviations.

3.3 The eff e c t  of m e l t  flow a p p r o x i m a t i o n s  on the thermal history

In this point we intend to show what kind of differences arise between 
thermal histories calculated using different types of viscosity-temperature 
relations distincted in 2. In order to realize this comparative analysis 
computations were performed with viscosity functions v = o, v = v F (TM ),
v = v„(T) and v = 00, where the F subscripts refer to the Fulcher-type tem-£
perature dependence of viscosity, vF (T) = v q exp characteristic to
supercooled melts. In these simulations vF (T^), Vp(T) and the other relevant 
parameters were chosen to be identical to those of the Fe^Ni^QP^Bg alloy. 
Thus we obtained a series in which the average value of viscosity, v is 
changed systematically.

Melt pool structures calculated under such conditions are shown in 
Fig. 4, while some characteristic parameters are given in Table 3. As it 
could be expected on the basis of BLT, the thickness of the momentum boundary 
layer is sensitive to the viscosity-temperature relation. As a consequence 
the length of the melt pool is decreasing, while f(°°) is increasing with in­
creasing v. At the same time a remarkable variation of the temperature dis­
tribution is indicated by the position of the T and T isotherms. Them g I
solidification length, £ - i.e. the x coordinate where the temperature of
the ribbon drops below T^ even at the top surface - is also changed. Sum­
marizing these tendencies we may conclude that the variation of the viscos­
ity function influences the structure of the melt pool through two opposing 
effects:

a) Mechanical effect: In accordance with the predictions of BLT, the 
higher is the value of the average viscosity, the thicker is the 
momentum boundary layer, consequently the shorter is the melt pool.

b) Thermal effect: The higher is v, the higher is the average value of
v , i.e. a more effective convection occures between the T„ and T x M g
isotherms. As a straightforward consequence the solidification front 
is lowered, i.e. the solidification length increases. Because of 
this lowering of the base of the boundary layer the length of the 
melt pool is also increased.

The average quenching rates calculated along stream lines corresponding 
to 6 = 30 um are also given in Table 3. Despite the monotonous variation 
of the solidification length, T shows a maximum, suggesting that £q cannot 
be accepted as a parameter characteristic to thermal history when materials
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of significantly different viscosity functions are compared. The reason is 
obvious: Thermal history depends on not only the temperature distribution 
but also on the velocity field (i.e. on the shape of the stream line and on 
the distribution of the tangential velocity along it), while is determined 
by merely the position of the T^ front. Another interesting fact is the 
similarity of the T values calculated for v = °° and v = vF (T) which indicates 
the similarity of the corresponding cooling processes. T(t) curves describ­
ing the details of thermal history between T^ and T^ are presented in Fig. 5. 
The most remarkable consequence of these plots is that viscosity functions 
v = oo and v = v_(T) provide of almost identical cooling conditions in theГ
whole Tm>T>Tg temperature region. It has to be emphasized, however, that 
this similarity is soon deteriorated for T>Tm * It is easy to understand this 
behaviour on the basis of Fig. 4. From the position of the T ,T and T 
isotherms it is clear that temperature distributions are roughly similar in 
the v = 00 and v = v„(T) bases. On the other hand because of the presence ofГ
the quasi-solid layer the shape of the stream lines is almost identical be­
tween T^ and Tg, while significant differences can be seen at higher tempera­
tures. These differences are manifested in the time measured between the T„ 
and T^ isotherms moving along stream lines: At = °° for v = vF (T) and At<°° 
for v = °°. Thus above T^ quenching rate becomes much lower for v = vF (T) than 
for v = «>. This tendency is directly visualized in Fig. S, where the momen­
tary quenching rate is plotted versus the actual temperature. In this way we 
may conclude that as a consequence of the special viscosity-temperature rela­
tion of the supercooled glass forming alloys there appeares an extended 
"quasi-solid" layer above the solidification.front, which provides of cooling 
conditions similar to those of the v = °° case in a wide temperature region.

This similarity may have an important role in thermal history calcula­
tions: From the point of view of glass formation thermal history is interest­
ing in a limited temperature region only, where the rate of crystallization 
is high enough to be taken into account on the time scale of the quenching 
process. Consequently calculations which correctly describe cooling in this 
region would be of practical importance. In the case of the Fe4QNi40 P14B6 
composition TTT diagrams predict significant transformation rates between 
800 and 1000 К [34,35], which region is within the range where v = vF (T) and 
v = oo give similar thermal history. In this way our calculations justified 
the use of the v = °° approximation when simplifications listed in 3.1 are 
valid. On the other hand it requires further discussions to understand what 
kind of differences can be expected when the non-ideal heat contact and the 
sudden change of boundary conditions at x = A are taken into account.

If the heat contact at the alloy-substrate interface is non-ideal (i.e.
the heat transfer coefficient is finite, h<°°) heat extraction from the alloy
is hindered. It is easy to show that A -*■<*> and TT (x,y)->-T„ if h-»-o. Thus whenо L M
h=o there is no solidification and the melt can be characterized by a fixed 
viscosity value, v = vp(TM)’ Under such conditions the length of the melt 
pool is finite, determined by the
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A* = v snо / R >
VF (TM ) 1*62' (7)

formula derived in Appendix 5. Consequently A/A о when h+o indicating that 
the region where the stream lines of the v = 00 and v = v_(T) cases are ofГ
different shape becomes negligible. In other words: The penetration depth of 
the thermal effect becomes far less than that of the momentum transport, 
consequently = V in the whole region where heat transport takes place.
In this way we may expect that decreasing the value of h the similarity of 
cooling processes corresponding to v = “ and v = v_(T) is more and moreГ
pronounced.

The other modification the presented model has to be completed with is 
the "thickness effect". Its influence on the examined similarity of thermal 
histories cannot be predicted so easily as in the former case. On logical 
ground, however arguments are found which support the applicability of the 
v = oo approximation also under this condition:

Let us discuss the problem in the hypothetical case of ideal heat con­
tact. When Region 2 (see Fig. 2) is removed a new thermal boundary condition
has to be prescribed along the stream line corresponding to 6 . Since the

9 Teffect of heat radiation can be neglected, -г— = о seems to be an adequateonassumption, where n stands for the normal of the boundary stream line. This 
change in the boundary conditions may significantly influence heat transport 
in the x ~ A region and may also modify the length of the melt pool. For x > A 
henceforth heat is extracted from a thin layer the heat content of which can 
fastly be exhausted, leading to a significant increase of the quenching rate. 
We have to emphasize, however, that the new boundary condition is automati­
cally satisfied outside the thermal boundary layer, where T (x,y) = T . In 
this way modifications of the temperature distribution are expected within 
the thermal boundary layer only. On the other hand the penetration depth of 
the thermal effects (6T) is small compared to the length of the melt pool 
(it is easy to show that in the case of laminar flow and ideal heat contact
®T -1/2 V  4n ~ Рё , where Pe = --- is the Péclet number, in our case Pe z 10 , re-A ' XL
suiting in that 6T<< A), which indicates that within the momentum boundary 
layer the thermal conduction in direction x is overrun by the thermal convec­
tion. This fact implies that the effect of the new boundary condition at x = A
cannot penetrate deep into the melt pool.The presented model is thus expected 
to be able to predict the temperature distribution within the melt pool, when
ideal heat contact is supposed. As in the case of v = ” and v = v_(T) viscos-Г
ity functions our calculations predict similar temperature distributions even 
in those regions where the velocity fields are significantly different it is 
somewhat justified to expect that the same variation of the thermal boundary 
conditions will modify temperature distributions analogously for x ~ A, where 
the velocity distributions are necessarily more similar.
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Summarizing the consequences of the above argumentation we may expect 
that v = 00 calculations which take into account the "thickness effect" and 
non-ideal heat contact may be regarded as reliable models of thermal history 
in the region of significant crystallization rates. Calculations of this 
type will be presented in the near future [36].

4. SUMMARY

The influence of melt flow on heat transport and thermal history has 
been studied within the frame of boundary layer theory. It has been shown 
that:

1. Since the complexity of the model does not make it possible to in­
corporate the "thickness effect" and the non-ideal heat contact between the 
alloy and the substrate, the full treatment of melt flow proposed by den 
Decker and Drevers cannot correctly predict either the length of the melt 
pool or the thermal history.

2. Because of the special viscosity-temperature relation of glass form­
ing alloys, there exists an extended temperature region where calculations 
with the v = °° assumption and with the experimental viscosity function give 
very similar cooling processes. This temperature region contains also the 
range where TTT diagrams prescribe the highest crystallization rates.

3. On theoretical ground v = » calculations completed with non-ideal 
heat transfer and "thickness effect" are expected to be able to reliably 
predict thermal history.
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NOTA TIONS

T - temperature
Тм - initial temperature of the melt
Tm - melting temperature
Tg - temperature of the glass transition
T_ - temperature parameter of the Fulcher-formulaГ
TQ - initial temperature of the substrate
г - reduced temperature
t - time
At - time period measured between the T„ and T isotherms along streamM m

lines
tm -tm - time period measured between the T and T isotherms along stream T T m g
m ^ lines 

T - quenching rate
T - average quenching rate
h - heat transfer coefficient at the alloy-substrate interface

КX - heat diffusivity defined by x = ^r~ > where
к - heat conductivity p
P - density
Cp - specific heat
x - coordinate parallel to the surface of the substrate measured in

the direction of moving
у - coordinate perpendicular to the surface of the substrate
£ - parabolic coordinate

- position of the solidification front 
A - melt pool length
a* - limiting value of melt pool length corresponding to h+o
A - solidification length
6 - ribbon thicknessi\
6RC - critical ribbon thickness
6T - penetration depth of thermal effect
vx , Vy - components of the velocity vector
Vq - surface velocity of the substrate
Ф - stream function
v - kinematic viscosity
v - average viscosity

* 2 2 -terf x - —  e dt 
о

Рё - Péclet number
Subscripts L,S,Su refer to the melt, the solid phase and the substrate 
respectively.
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Table 1
Comparison of the calculated melt pool length-ribbon thickness 

relation with experiments [8] in case of Fe^Ni^QP^Bg

VQ (m/s) 6R (um) l (mm) exp *calc(mm)

15 55 5.3 2.26
30 31 3.7 1.44
60 18 2.7 0.97

Comparison
length-

of the calculated and experimental [14] 
ribbon thickness relations in case of Fe

Table 2 
melt pool 
80P13C7

VQ (m/s) 6R (urn) l (mm) exp *calc(mm)

20 37 3.5 0.72
30 26 3.1 0.57
40 20 3.0 0. 42

Table 3
The effect of viscosity function on the parameters characteristic 

to the melt pool structure and thermal history

v(T) Í (mm) f (°°) £ (mm) о T(106 K/s)

v = о 5.81 0.94 5.81 0.36
V = vF (TM) 4.43 1.08 6.78 0.58
V = Vp (T) 1.34 1.95 13.6 1.00
V = 00 о 00 16.3 0.85

T, 1, values corresponding to 6R = 30 vim and V = о 30 m/s are
presented.
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A P P E N D I X  1
Anal y t i c a l  t r e a t m e n t  of heat t r a n s p o r t  in the solid phase

and the subs t r a t e

Solutions of the form

TS^S* AS + BS erf

TSu(gSu) ASu + BSu erf (ESu}

and (Al)

(A2)

were fitted to boundary conditions (5g-j). The temperature distributions 
obtained in this way are

; < S s ’ - - Ь

t„(1+B erf (Eg))
B « f <Es o > and (A3)

та (1 + erf (ggu)) 
TSu (̂ Su* ” 1 + В erf (ESq) (A4)

where В = KSu , *S
KS »XSU

A P P E N D I X  2
Anal y t i c a l  t r e a t m e n t  of the melt phase in cases of i n f i n i t e

and zero visc o s i t y

It is easy to show that in the v-*» limit v = V within the whole 
. X о

x,y>o region (i.e. the thickness of the momentum boundary layer is infinite). 
In accordance with this fact:

f’^b) = W h r h J

f^ L } - 2EL
and for EL>ELo (A5a,b)

where 0(x) is the Heavyside-function. Inserting (A5b) into (2b) heat trans­
port equation of the form

t "l + 26lt 'l - 0 <A6)

is obtained. Its solution which satisfies boundary conditions (5d,e) is the 
following:
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т -2 erf (Е_) + 2-т erf Е, )т (Е ) = -2________L2_______ 3_______к.
L L 1 " erf (gLo)

(A7)

The assumption v = о results in zero thickness of the momentum boundary 
layer which means that = о above the solidification front. Its math­
ematical formulation is:

£ ' ( E l ) - 2[l-e(EL -Eb o >]

f(E.) - 2E L Lo
and  ̂ f°r V ^ L o (A8a,b)

leading to
t "l + 2£l o t ’l = 0 • (A9)

The solution found by the integration of (A9) was fitted to (5d,e) yielding

V 6L> - 2-<2- V  • IA10)

APPENDIX 3
D e t e r m i n a t i o n  of the r e l a t i o n  bet w e e n  the average q u e n c h i n g  rate 

and the thic kness of the ribbon

Since the stream line corresponding to 6 is given by the impliciteR
equation

VО R (V у x)1/2f(E ) О L L (All)

it is easy to show that the x coordinate of the points where the T and Ta
isotherms intersect the stream line are of the form x = c and x = с

- 1 - 2  m m R g g Rdenoting V у [f( E ) ] with c. On the other handО 1j
T -T m q (T -T )V m g
t_. —tm X “XTm Tg m g

(A12)

and

. 1
x -x g m

V
v (x,y)dx = -- ---r-x 'x 2 (x -x )g m

f 1 ( E ( x ) ) d x
m m

(A13)

where the integration with respect to x has to be performed along the stream 
line. On the basis of (All) E can be expressed in terms of x:
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(A14)

where f is the inverse function of f. Inserting (A14) into (A13) and -2introducing £ = x6 as a new variable R

V
V = 2(C “ C )g m

f i t ■Щ dC (A15)
m

is obtained, indicating that v is independent of 6R . In this way

(T -T )v m g
(c -c_)6„ m g R

1
V  *

A P P E N D I X  4
Casting c o n d i t i o n s  and the physical p r o p e r t i e s  of the alloys 

and the subs trate used in m o d e l l i n g

a) Casting c o n d i t i o n s
TQ = 293 K, while = 1323 К for Fe40Ni4QP14B6 and TM = 1300 К for

Fe0_P10C T  Having determined the numerical value of f(°°) the V dependence oU J.J / О e
of melt pool length can be treated analytically according to (6), while T 
is independent of Vq when 6R is fixed.

b) Physical p r o p e r t i e s
Heat conductivity, specific heat and density were taken to be identical 

for the two alloys and for the solid and melt phases:
<L = Kg = 21 W/mK, cpL = CpS =540 J/kgK, PL = pg = 7400 kg/m3.

The differences of the viscosity function, melting point and T were taken 
into account: .

Fe40Ni4QP14B6 parameters taken from [34,35]:
2

v(T) = б.бхЮ"9 exp (jvgyg--) ^  /

T = 1173 К, T = 750 K, m g
where the value of is a result of an extrapolation for high quenching 
rates (107 K/s).
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Fe80P13C7 Parameters taken from [7,37]:
2-> in‘5 ,4600 . mv(T) = 3x10 exp (;̂ ГбТб> T

T = 1260 К, T = 850 K, m g

where is estimated from the heating rate dependence of the crystalliza­
tion temperature.

In all the calculations a copper substrate characterized by the follow­
ing properties was used:

KSu = 380 W/mK, cpSu = 420 J/kgK, pSu = 8900 kg/m3 .

A P P E N D I X  5
D e r i v a t i o n  of Eq. (7)

When constant viscosity is supposed the velocity field in the momentum 
boundary layer is described by the special form of the Fauikner-Skan equa­
tion [38] known as Blasius equation:

f "  +ff" = О (A16)

where f relates to the velocity distribution according to formulae (3,4) 
after replacing xL by v. The boundary conditions corresponding to our problem 
are:

f(0) = 0  f 1(0) = 2 f'(°°) = О (A17)

The relation between the melt pool length and the ribbon thickness can be 
derived analogously to (6):

6R = f(-) (^) 1/2 (A18)
о

where the value of f(°°) is numerically determined by Shingu et al. [30]. 
Expressing i from (A18) we obtain Eq. (7).
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Fig. 1. Schematic drawing of the melt pool appearing in 
different continuous casting methods:

a) melt spinning,
b) planar flow casting, 
a) melt extraction.
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Fig. 2. Construction of the melt pool according to the 
method of den Decker and Drevers

Fig. 3. The structure of the melt pool calculated for VQ = 30 m/s and
= 30 ym in case of Fe .„Ni . ,„B ,R J 40 40 14 6



Fig. 4. Melt pool structures calculated, for V̂  - 30 m/s and 8p - 30 pm using different viscosity functions
a) v = 0, b) v = \>F {TM ), c) v = vp {T), d) v = «.
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Fig. Ь. Cooling curves calculated for different viscosity functions 
'along stream lines corresponding to = 30 \im ( Vq = 30 m/s).

(a: v — Oj ■; v = \>р (Т ), о: v = vp {T)3 • : v = °°)

Fig. 6. Momentary quenching rate vs. actual temperature calculated 
along stream lines correspondig to 6^ = 30 ]xm.
(a: v = o, ■; v - vp {TM )3 о: v = \>p {T)3 •: v = <*>)
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