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ABSTRACT
The Gibbs phenomenon in generalized Pádé approximation is discussed, and 

with the aid of some rational approximants the Gibbs constants are determined. 
In addition, the steepness of the rational approximants is calculated.

АННОТАЦИЯ

Исследуется явление Гиббса при обобщенной аппроксимации Падэ с помощью 
рациональных дробей. Определяется постоянная Гиббса и крутизна для разных 
аппроксимаций.

KIVONAT

Az általánosított Padé-közelitések Gibbs-jelenségét vizsgáljuk racionális 
törtek segítségével. Meghatározzuk a közelítések Gibbs állandóját és a mere­
dekségüket .



1. Introduction
If one approximates a discontinuous function by poly­

nomials /or Ъу Fourier series/ it leads to an unusual pro­
perty - the Gibbs phenomenon. The polynomials do not con­
verge to the function near the discontinuity. The maximal 
value of the error is called Gibbs constant. For example, 
it is well known that when we approximate the function 
sgn o o  in (- i f"M)by Fourier series the Gibbs constant is

~  J u t - 1  -■* .

Another important property of the approximation is the 
steepness. We call the value of the derivative of the 
approximant at the discontinuity the steepness. For the 
function sgn 00 the steepness is ii-(n-M) , for an n-term 
Fourier approximation. It is noted that both properties in 
a multidimensional generalization can appear in more diffi­
cult analytical feature /rapid behaviour of the trajectory 
in nonlinear system, strange attractors, etc./. It is 
desirable to obtain an approximation for which the Gibbs 
constant is as small as possible and the steepness is as 
high as possible.

Zygmund M  proved that one can decrease the Gibbs 
constant by Cesaro’s method of summing series, but as ex­
perimentally shown by Arfken D 0  this method halves the 
s teepne ss.

In this paper we consider some rational functions and 
we show that in our case the generalized Pádé approximants 
have Gibbs constants smaller than G and their steepness is 
higher than Cn.



The paper is arranged as follows. In section 2 we 
consider the generalized Pádé approximation in the sense 
of Cheney [з] ; in Section 3 we treat the same problem 
using the method of Clenshaw and Lord M -  We provide 
proofs of the results of the previous sections in Section 
k , and in Section 5 we present some calculations of the 
steepness following Cesaro’s method of summing series.

2. Approximants for sgn (X) by Cheney’s method
Here and further we apply a series representation for 

the function sgn (x) in the form

(x) - Т / н * Т 1 Ь 5 с л п > ) ,
1 f. \  j Q <, d h=0

/1/

where T ihH(x) is the Chebyshev polynomial and 
The rationals

c - .

31 pi Talc, W
R „ „ 0 0 =  -ТГ---- --— г  . V  /2/

■C*0

which satisfy the relation

»n

(|л > )  ~ 2 _  p* л /

are called the generalized Pádé approximants j_3j. The 0 -  
term in /3/ means a function for which the series in Т^(л) 
begins with the term i . n t 2  m  h 3  .
Next we shall list our main results. The solution of 
problem /3/ in explicit form is



3

л»
Y’ iu i  Him Г /  „  _  1

> 21-,х̂ ;

5 ( r ri/'rr, l»nfwif^yi' Ь л 2} Л/

Where the steepness A is

A ii_ n i  Пт<~А) r(nvi>H-2)
' b«nnS xx' шпГр(п^) r(r.frn»1)

For n=0 we can get the classic result. In this case the 
approximating polynomial is

R ü j V n W  ® Ао,л>*Л | . f / )
/6/

Its error function takes the highest maximum at the point 
у »  ~  I m ~ ? O o  . This value is the Gibbs constant

G - =  Ы г * 2) н
Differentiating by X  we get an equation for X  

■ f (  ■ 1  > - ь , 1 }  - Ь^уьЛ х  q

Its first zero is t/ = -2- . The previous series considered
in integral form gives the classical result.

Г -  h  I I I , *2
G  = n ,  - n r - - 1 - X

The steepness is

A Ot fY\ ~ ( VT"* t l)
/ 7/



к

Second, we consider the case m=0, the reciprocal poly­
nomial case. In this case the approximants are

Its error function takes its maximum at the point X= ТГ 
ri->oö. By elementary calculations one can prove that ( b > 
is the root of the equation

where J0 (x) is the Bessel function. From its first root 
we ge t

Therefore the Gihbs constant is

/9/

That is, in this case the Gibbs constant is approximate­
ly 5 °/>. The steepness is

'A 0,0 ‘ II .'lltl)’-
1 1)

= ^ ( n t i ) a n ;

where Q n $z \  for moderate and large values of A  . The 
most interesting case is r»= m .  The approximants are

•t? u y - A  у
^ » , r i W - ” v  r , ____ 1  (• « О ' A ° /
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who re Д  - 2.(£пН) Г^3п»д.>
Г(2пг^)

The error function takes its maximal value at the point
I n —> 0 0  • The constant is the root of the

equation
СО о

t l f í i  -  0r0 t't (%)(,. '
and its value rjT  -  0.95102087^ . . ., The Gibbs constant is 
given by the formula

G = Щ Ъ  \ и-o.mnmxL.... ш  , L i f )
/ и /

Semerd,jiev and Nedelchev 1 Я  performed a numerical ex­
periment for determining G, , enabling them to state that

, 1»1 ̂ does not exceed 2 °f>.
The steepness is

0  /\,n f JT d )

where for moderate and large values oft! ■

3. Approximations for sgn|V) by Clenshaw-Lord’s method
Again, from series representation /1/ we determine

the rationale S (x) n,m t /

S n . m W “  " I F
1  Sc liiW /12/

-C-Ö

by the method of Clenshaw and Lord W -  The coefficients 
r^ and s^ can be determined from the equality

(X )  — S  ̂GO — Iг»1+2гпг.з(х^ /13/
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Our résült Is

(x) —  ~  ( т и ) ['М4)-Х
Í  (~n

/ i V

First we consider the reciprocal polynomial approximants
/ш=0/

V X n v Q X _____________
/15/

Its error function takes the maximal value at the point 
x = j : t n o o  where cf is the root of the equation,

and &  = 0.940770564 ...»Its Gibbs constant is
G x 0 = 0.082417272 ... , /16/

The steepness is •
The case W=*T\ presents powerful approximants. Here

S, / Л  u .  ,  Jk(-nr ” 4 i n, } í i n * 2 ; í i h i  , ,
« W - S N M * • ¥V , 4 i ~Г Т7 'Г 7 о - /17/

Л ( Г ° ' I/4*1' ‘‘i* г» ' Ъ  x ✓

The error function takes its maximal value at the point 
X -  Tyi ) П —>00 . The value of 77 is the root of the equa­
tion

= - 0  /

its first root is í j  = I.OI454 1594 ... . The Gibbs constant
is

o h  f  (■ ‘L i i i V )  
zS, c ÜL L i_ x
jI X()í i’b'í j'l'1)

- 1  =  о.<М)9:йИ*е..
/18/



»

The steepness is 4-fy> + t y f i r )  r  f )  • This is the highest
value in all cases.

-  7 -

;l . Proofs
First wo will prove formula /4/. Let us consider a 

more generalized series expansion for sgn (x)like /1 / :

Next, multiplying it hy numbers ( " k  «0, О
then summing these equations, we get

We want to determine the coefficients in such a manner 
that the following equations are satisfied

q  é - H h b — = tmt-i I vn t2y... m  to .

In this case the numerator polynomial will he

JC Í r  ^  Í T

To solve the previous equations let us suppose for a mo­
ment that

„  _  ( ~ ” ) ь
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Consider now the sum

S is a Salsiitz type hypergeometrie sum and therefore it

It is not difficult to see that all products differ from

in+1 to m+n then 1+m-j runs from 0 to -n+1 by -1. There­
fore S=0 for all j /j=m+l, ... m+n/. We have thus proved 
the form of the denominator polynomial. To get the ex­
plicit form of the numerator polynomial we apply the value 
of S for j«0,l, ..., m:

is summable by factorial functions. Really

zero except the first one. Further, when t runs from

Taking the power form of the Chebyshev polynomial

we ge t

3 гу- ч ^ и,̂ /Ь); 
2/



. гLet us transform Z to the power form in X

where

VvJ Z -  j« (_п^п-9Дп)+2+^(Ifnf9j { ^ H ) j

The sum W is an hypergeometric function which one
can sum by theorem of Dougall L v L

P(; n ' _
r ( 2U a )  Г(-^ -гл)Г(^:tn+ ю ) ("n+m)\

By elementary calculations we get the required result

7 _ k. üL r(nt-mf2) X“ Г-т);/-ntn^); 2i
<h \fjT mi  f P ( n f x * . ( 4( 97^0*

Proof of the form of Gibbs constants for the cases 
m=0 and m=n one can be obtained by elementary analysis. 
Here we omit the details. The proof of the results of 
Section 3 is analogous with the previous one.

5. Cesaro’s method of summing series for sgn ̂  and the 
stee pne ss

It is well known that if we have a series
IM

Z- av
V=c '
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its Cesaro’s sum is defined by the formula

51 .
V=o (rn-o0i/

Here (X is a positive parameter. It is well-known that if 
c4~'1 , C n is Fejér’s arithmetic mean and in this case
the Gibbs phenomenon does not occur. /The case ex —  0 
gives the original series./

Next we will prove that if С*ч>(Х0= 0. ̂ 3855123*33,** > 
then, again, the Gibbs phenomenon does not occur.

Consider again the series /l/, thus

By short, elementary calculation we get

Г * (J\ —  ^ у у  f-n)i Ц
jf if« 4 ^

$Its error function has the maximum at the point X- jy / О 
The maximum is

Oc

z <5 Г  14«. £ ;

1  l1 / У  f f d i s t  |4_ f

- 1  =

■5

f
By determining the value 5 we get the equation
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or in integral form

\ (Л-tf СеоЫ-сМ̂ О,
**0

The solutions <X and S of the equation &*<S) 
and of the previous equation are

#  = о Д 3 9 5 ? Ш 9 3 , . < ;
S  = 2.025782.Q  92.,.. «

N o t e . Gronwall L8!  also determined the values oC and S , 
but the stated precision of his results are incorrect.
The steepness in Cesaro’s method is ÍL 4 . For &  — Ú. 

the steepness is a- . It is halved corresponding to
o<.~ 0 . Thus, we have proved that Cesaro’s method of
summing series decreases the Gibbs constant, but it also 
decreases the steepness.

Conclusions
As a means of summarizing our results, we have listed 

in Table 1 the Gibbs constants and their steepness corres­
ponding to the methods used.

Fourier
series

Cheney’s method Method of Clenshaw and Lord
Cesaro’ s 

sum
reciprocal
polynomial rational re ciprocal 

polynomial rational

18 °/o 5.1 0.8 % 8.2 °i° k . 9  °/o 18#«G£. 0%

W n
2 - r \ ■ i g » * f " h i

Ц n  
Я

Table 1.
Gibbs constant and the steepness
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