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ABSTRACT

The Gibbs phenomenon in generalized Padé approximation is discussed, and
with the aid of some rational approximants the Gibbs constants are determined.
In addition, the steepness of the rational approximants is calculated.

AHHOTALMKA

Wccnepyetca saBneHne mb66ca npu 0606WEHHOW annpokcumauum Magsa c noMouwbl
pauvoHanbHbIX Apobeili. OnpepensieTcss NoCTosiHHast [M66ca U KpyTU3Ha ANS pa3HbiX
annpoKcumaynii .

KIVONAT

Az altaléanositott Padé-kozelitések Gibbs-jelenségét vizsgaljuk racionalis
tortek segitségével. Meghatarozzuk a kozelitések Gibbs allandéjat és a mere-
dekségiket .



1. Introduction

IT one approximates a discontinuous Tfunction by poly-
nomials /or by Fourier series/ it leads to an unusual pro-
perty - the Gibbs phenomenon. The polynomials do not con-
verge to the Tfunction near the discontinuity. The maximal
value of the error is called Gibbs constant. For example,
it is well known that when we approximate the function

sgn oo in (-if'M)by Fourier series the Gibbs constant is
~ Jut -1 -

Another iImportant property of the approximation is the
steepness. We call the value of the derivative of the
approximant at the discontinuity the steepness. For the
function sgn CX) the steepness is ii-(n-M) , For an n-term
Fourier approximation. It is noted that both properties in
a multidimensional generalization can appear in more diffi-

cult analytical feature /rapid behaviour of the trajectory

in nonlinear system, strange attractors, etc./. It 1is
desirable to obtain an approximation for which the Gibbs
constant is as small as possible and the steepness 1is as
high as possible.

Zygmund M proved that one can decrease the Gibbs

constant by Cesaro’s method of summing series, but as ex-
perimentally shown by Arfken DO this method halves the

steepne ss.

In this paper we consider some rational Tfunctions and
we show that in our case the generalized Padé approximants
have Gibbs constants smaller than G and their steepness is

higher than Cn.



The paper 1is arranged as fTollows. 1In section 2 we
consider the generalized Padé approximation in the sense
of Cheney [3] ; in Section 3 we treat the same problem
using the method of Clenshaw and Lord M - We provide
proofs of the results of the previous sections in Section
k, and in Section 5 we present some calculations of the

steepness TfTollowing Cesaro’s method of summing series.

2. Approximants for sgn (X) by Cheney’s method

Here and further we apply a series representation for

the function sgn (x) in the form

- T/ w*¥T1b 5 ¢ 10 ), 71/
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where T ihH&) is the Chebyshev polynomial and © - -

The rationals

3l @EkcW
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which satisfy the relation

N
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are called the generalized Padé approximants j 3j. The 0-

term in /3/ means a function for which the series in TM()

begins with the term i.nt2 m h3 .
Next we shall list our main results. The solution of

problem /3/ in explicit form is
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Where the steepness A is

A i ni H‘E;@rmm)
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For n=0 we can get the classic result. 1In this case the

approximating polynomial is

/67
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Its error function takes the highest maximum at the point

y » ~ Im~?00 . This value is the Gibbs constant

G-= bl r*2 H
Differentiating by X we get an equation for X
af (m1 >-b,1} - b ybllx q

Its Tirst zero is /= 2 . The previous series considered

in integral form gives the classical result.

The steepness is

/*MW\~ cw;t!)
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Second, we consider the case m=0, the reciprocal poly-

nomial case. In this case the approximants are

Its error function takes its maximum at the point X=TI
ri—=>00. By elementary calculations one can prove that (b>

is the root of the equation

where JO(X) is the Bessel function. From its first root
we get

Therefore the Gihbs constant 1is

/797

That is, in this case the Gibbs constant is approximate-

ly 5 °»> The steepness is

m WD - Acntidan
1 1)

where Qn$z\ for moderate and large values of A . The

most iInteresting case iIs r»=m. The approximants are

Ay L, riW-"y r 1 (= «0

' At
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The error Tfunction takes its maximal value at the point

In->00 « The constant is the root of the
equation
(6(0] o
ot ="' - P
and its value T - 0.95102087~ ..., The Gibbs constant is

given by the formula

G — ”_l .b \ M—O.mnmXL---- /n/
LUl L if)

Semerd, jiev and Nedelchev 14 performed a numerical ex-

periment for determining G, , enabling them to state that

, 1»1
N does not exceed 2 °b.

The steepness is

0 A,n T d)

where for moderate and large values oft! =

3. Approximations for sgn]V) by Clenshaw-Lord’s method

Again, from series representation /1/ we determine

the rationale Sn’mgx}

S n mw*“ "IF == /127
1w
G0
by the method of Clenshaw and Lord W - The coefficients

r* and s can be determined from the equality

(X) — S A(I)— l»1+2'nr.3(x’\ /13/



Our résult Is

(x) = = (Tu)[M)-X . 7y
(|

First we consider the reciprocal polynomial approximants
/w=0/

VXnvQX

/15/

Its error function takes the maximal value at the point

X =j: tnoo where cf is the root of the equation,

and & = 0.940770564 ...»1ts Gibbs constant is
Gx 0 = 0.082417272 ... , /16/
The steepness is -

The case w=*T\ presents powerful approximants. Here

/N u. , JK(-nr 7”4 in}iin*2; i ih i , ,
W-SNM*¥V 4 14T 'T-o0 - /17

ner = 1/74*%1" “i* ™» "b

The error TfTunction takes 1its maximal value at the point

X- Tyi )N->00 . The value of 77 is the root of the equa-

tion

=-0 /
its Ffirst root is ij = 1.014541594 ... . The Gibbs constant
is

0 fmL @ .0,0V)
Z§,C UtLL} -1 = o.<M)9:iil*e..

1 Xf b1 JI1) /187



The steepness 1is 4-fp+tyfir) r f)

value in all cases.

d. Proofs

»

e This is the highest

First wo will prove formula /4/. Let us consider a

more deneralized series expansion for sgn (xX)like /1/:

Next, multiplying it hy numbers

then summing these equations,

("k «0, 0

we get

We want to determine the coefficients iIn such a manner

that the following equations are satisfied

g é-Hhb-—

=t Int2y... n to .

In this case the numerator polynomial will he

To solve the previous

ment that

—
—

equations

let us suppose for a mo-



Consider now the sum

S is a Salsiitz type hypergeometrie sum and therefore it

is summable by factorial functions. Really

It is not difficult to see that all products differ from
zero except the Ffirst one. Further, when t runs from
intl to m+n then 1+m-j runs from O to -n+l by -1. There-
fore S=0 for all j /j=m+l, ... m+n/. We have thus proved
the form of the denominator polynomial. To get the ex-
plicit form of the numerator polynomial we apply the value

of S for j«O0,l, ..., m:

Taking the power form of the Chebyshev polynomial

we get

3 ry-u”~un/b);
74



.r
Let us transform Z to the power form in X

where
\xd Z - J<«  (Cn™Mn=-94n)+2+”M(1Fnf9j {~H)]
The sum W is an hypergeometric function which one

can sum by theorem of Dougall LvL

F)r(;( Aa) M(-*-m)l(“:tnti ; i"n+m)\

By elementary calculations we get the required result

7 kil r(rt—niZ) X“ID)/ -ntn’Y; 7

< \§Tmi f P X * . (4(9770*

Proof of the form of Gibbs constants for the cases
m=0 and m=n one can be obtained by elementary analysis.
Here we omit the details. The proof of the results of

Section 3 is analogous with the previous one.
5. Cesaro’s method of summing series for sgn” and the
stee pne ss
It is well known that if we have a series

Z— av

V_



10

its Cesaro’s sum is defined by the formula

V=0 (rn-o0i/

Here (X 1s a positive parameter. It is well-known that if
a1 | Cn is Fejér’s arithmetic mean and in this case
the Gibbs phenomenon does not occur. /The case ex — 0
gives the original series./

Next we will prove that if C*y>(X0= 0. ~3855123*33,** >
then, again, the Gibbs phenomenon does not occur.

Consider again the series /1/, thus

By short, elementary calculation we get

r*=@\- " yy i it

jf i1 f«

Its error function has the maximum at the point X- J$y/0

The maximum is
Oc

5T 14¢, Z < -1 o=

1 117 Yy ffdist K T

By determining the value 5 we get the equation
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or in integral form

\ ¢+tf Cecb-dW o,

The solutions <X and S of the equation &*<S)
and of the previous equation are
#
S

Note. Gronwall L8! also determined the values oC and S

o/1395?2W93, .<;
2.025782.Q 92.,.. «

but the stated precision of his results are incorrect.

The steepness in Cesaro’s method is IL 4 . For & - U.
the steepness is a- . It is halved corresponding to
0<.~0 . Thus, we have proved that Cesaro’s method of

summing series decreases the Gibbs constant, but it also

decreases the steepness.

Conclusions

As a means of summarizing our results, we have listed
in Table 1 the Gibbs constants and their steepness corres-

ponding to the methods used.

Cheney’s method Method of Clenshaw and Lord

Fourler reC|pr0?al rational reC|pro?al rational Cesaro’s

series polynomial polynomial sum

18 o 5.1 0.8 % 8.2 k.9 <o 18#«GE. 0%
LL n

2-r\ S *
] "
W n 1 g» f h i q
Table 1.

Gibbs constant and the steepness
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