
Ж A S G . 5 h e

J, HARANGOZÓ
p t ECSEDI-TÓTH
P, TÖKE

NEW RESULTS ON
COMPUTER COMMUNICATION

11. PROTOCOL MODELS

‘Hungarian Academy of Sciences

CENTRAL
RESEARCH
INSTITUTE FOR
PHYSICS

BUDAPEST

KFKI-1983-98

NEW RESULTS ON COMPUTER COMMUNICATION
11. PROTOCOL MODELS

J. HARANGOZÓ, P. ECSEDI-TÓTH*, P. TÖKE* *
Department of Process Control, Technical University,

Budapest, Hungary
*Hungarian Academy of Sciences

Research Group for Automata Theory
Szeged, Hungary

**Department of Numerical Methods and Computer Science
Eötvös Loránd University, Budapest, Hungary

%

HU ISSN 0368 5330
ISBN 962 372 145 8

CONTENTS

J. Harangozó

STATE OF THE ART OF PROTOCOL DESIGN IN THE EARLY EIGHTIES. 5
P. Ecsedi-Tóth

TOWARDS A GENERAL THEORY OF PROTOCOLS. «
P. Tőke

ALGORITHM FOR INVESTIGATION OF FORMALLY DEFINED COMPUTER
NETWORK PROTOCOL CONFORMITY. 69

STATE OF THE ART OF PROTOCOL DESIGN
IN THE EARLY EIGHTIES

J. HARANGOZÓ
Department of Process Control, Technical University,

Budapest, Hungary

6

ABSTRACT
The paper analyses the process of design of computer network protocols,

introduces the most recently elaborated formal specification methods, evalu
ates their capabilities from the viewpoint of formal verification. It raises
some problems to be solved in the future.

АННОТАЦИЯ

В статье анализируется процесс проектирования протоколов ЭВМ, вводятся
новейшие формальные методы спецификации протоколов и дается их оценка с точ
ки зрения требований формальной спецификации. Приводится несколько проблем,
требующих решения.

KIVONAT
A cikk elemzi a számitógéphálózat-protokollok tervezési folyamatát, be

vezeti a legújabb formális protokollspecifikálási módszereket és értékeli
azokat a formális specifikáció kivánalmainak szempontjából. Felvet néhányat
a jövőben megoldandó problémák közül.

-Г

7 -

INT RO DU С ТI ON

Formal specification and verification of protocols, i.e. protocol
design by formal means, have seen significant development in recent years.
As a consequence of the wide ranging activity under the guidance of the In
ternational Standardization Organization (ISO) a reference model of informa
tion processing systems has been developed which is the basis for defining
and specifying the architecture of computer networks. This international co
operation has resulted in the following new results:
(1) formal means are increasingly used to define services and to specify

protocols
(2) new software supporting means have been developed to facilitate the

application of these methods of specification and definition
(3) encouraging expreiments are in progress to apply the

means of program verification in protocol verification
(4) a process has started which attempts to construct correct protocols

with mathematical logics.
If one examines the direction of developments in formal designing methods

two tendencies can be observed. One of them follows the old "classical" idea
according to which formal specification and verification have to be carried
out together to obtain a fully correct protocol satisfying every requirement.
The aim is understandable and clear but several obstacles stand in the way of
its realization, first of all from the viewpoint of verification. The complete
ly correct verification of a complex protocol is still an unsolved problem
though there are encouraging experiments in the verification of simple proto
cols .

The other new trend follows from taking the present realities into ac
count. The primary aim here being to reach better lucidity, readability in
the formal specification of protocols and their easy applicability during
implementation. The verification is carried out by not really strict mathemat
ical means but rather by simple logical consequences.

The research connected with the elaboration of the ISO reference model
has also influenced significantly research into local area networks. The

8

architectural and protocol principles, methods worked out for the general
computer networks can be used for the local area networks too.

DE SI GNI NG WI TH FORMAL MEANS

The multilevel hierarchical structure of the ISO reference model provides
the design of every level separately. Using the bottom-up construction method
the design of the architecture is carried out from the physical to the ap
plication level. The basic principle is that while using the services of the
lower levels the actual level performs its own data transmission tasks as
well as providing, services to the above level. The "black box" concept has
two consequences from the viewpoint of designing of the examined level:
Q) the services for the given level must be defined by the lower level with

out the knowledge of any element of the given level about the internal
structure or operation of the lower level

(2) the rules of interaction between the entities of the given level must be
specified, i.e. the protocols. To specify these protocols a knowledge of
the services provided by the respective level to the upper level is in
dispensable. These services are of determining character with regard to
the protocols of the given level. The interaction between the entities
of the given level is carried out to realize some functional task in
order to serve the entities of the upper level.
From the viewpoint of the architectural description of a given level it

is completely satisfactory to define the used services and to specify the
protocols, but this is not enough from the viewpoint of designing the respect
ive level because a knowledge of the requirements of this level is indispens
able since for this to be done the definition of services provided for the
upper level is required.

Thus protocol designing is the activity requiring knowledge of the whole
reference model including the overall definition of services used by the dif
ferent functional levels and that of the provided services, and the descrip
tion of entities of the functional levels, and that of the rules of interac
tion between them, i.e. the specification of the protocol of the given level.
To prepare a protocol that really satisfies the characteristics described in
the specification the ready plans have to be verified as a final phase of
designing. Consequently the process of protocol design consists of the follow
ing phases;
(1) Informal description of the required and provided services and the

protocol.
Either our ideas are written or not,the designer's first thoughts about
the system are informal. In order to understand the expectations and
requirements of the system to be designed a global concept has to be
developed that is independent of the formal means the designer intends
to use.

9

(2) Choice of formal means to be used for designing.
The designer chooses the formal means suitable for specifying, solving
and controlling the task. This is the most critical phase of protocol
design using formal means. It is necessary to choose or elaborate such
mathematical means that are simple and clear and that help the difini-
tion, specification and verification or testing as well as the implemen
tation. The simpler the means the less the likelihood of mistakes during
realization and the more probable it is that the implemented version of
the plans reflects the original ideas of the designer.

(3) Formal definition of services, formal specification of protocols.
In this phase a formal image, an abstract description, a model of the
system to be designed is developed. It is the phase requiring the most
work, the most thorough grounding, the most ingenuity.
To construct the abstract description the ISO reference model serves as
a basis. During the creation of one level the description of the required
and proved services contains the information exchange between the model
its environment while the protocol specification contains the entities
of the level and the rules and the processes of information exchange
between them. The close link between the chosen formal means and the
constructed model becomes apparent in this phase. The capability of the
model as a result of the formal description is greatly determined by
the chosen means. A very clear model can be realized with the means
based on a state transition machine but the operation to be carried out
in certain states and the description of data structures connected with
them are net satisfactory. The latter problem can be solved for modelling
by using a programming language, at the same time the natural character
appreciated at modelling based on a state transition machine is lost. It
is for this reason that the correct choice of formal means or the elabora
tion of suitable means is of fundamental significance from the viewpoint
of the utility of the model.

(4) Checking of ready plans.
The last phase of designing is the checking of ready plans, i.e. to make
sure whether the thoughts, solution in the plans really reflect the
original ideas of the designer or whether the system really uses the
services determined in the definition and ensures the defined services
for it. The only solution that eliminates every fault is verification.
It is this method that is able to prove whether the designed protocol
really possesses the given characteristics included in the formal
specification. Full or partial verification in possible depending on
whether the examination is carried out for every feature in the specifi
cation, or whether for the control of only a few important or provable
ones. Several theoretical and practical difficulties can occur in connec
tion with verification that make the examination of the full system im
possible in the case of complicated protocols.

10

The other method controlling the ready plans is testing. This method is
suitable for finding the most common faults but a system f _>und to be
faultless after testing cannot be safely regarded as faultless. In spite
of this its practical significance is great as it is perhaps the control
means that can be used the easiest and the most efficiently.
In the following we introduce the most recently elaborated solutions

in the field of protocol design using formal means and it is these that are
expected to be used extensively in the future.

D E F I N I T I O N , S P E C I F I C A T I O N

1. Formal Definition Technique (FDT)

The working group of ISO TC97/SC16/WG1 founded an ad hoc subgroup to
work out some formal description means; this resulted in the subgroup publish
ing its elaboration of a specification language known as the Formal Defini
tion Technique (FDT) [IS081].

This is suitable for describing the protocols and services using an ex
tended finite state machine model (FSM) and the PASCAL programming language.

The system to be described contains modules (entities) connected to each
other. Each module is an extended finite state automaton. A module is in
permanent interaction with its environment. The extended finite state automa
ton differentiates between these so-called elementary events depending on
whether the initiative of the event is the environment (inputs) of the model
or the model itself (outputs). An elementary event (input) initiated by the
environment causes a state transition in the model whose consequence may be
another elementary event (output) initiated by the model.

Information exchange between two modules is realized by queuing, i.e.
the output information of one module gets into a waiting queue before it
would appear as the input information of the other module.

To fix the sequence of the elementary events the model has internal state
space that determines the possible state transitions of the model and thus
its connection with its environment at every moment. The designer has to give
the state space of all transitions and the set of possible transition. With
complicated protocols the definition of an automaton becomes difficult as the
number of internal states significantly increases. That is why a new defini
tion method using a programming language instead of the usual finite automa
ton was elaborated. The difinition of the state space of a model is carried
out by a set of variable. A possible state of this space can be characterized
by the values of these variables. For example:
IMR STATE:(IDLE,WAIT FOR CC,WAIT FOR T ACCEPT,DATA TRANSFER);

The definition of possible state transitions is carried out by the
specification of state transition types. Every state transition type is
characterized by an enabling condition (Boolean expression) and an operation.
The value of thus Boolean expression depends on the variable defining the
states of the module and the input elementary event. The operation is carried
out as a part of the state transition, it can change the value of the vari
ables and can specify the output of the elementary event.
The elements necessary to describe a state transition are:
(1) enabling condition:

- actual state (after FROM clause)
- input elementary event (after WHEW clause)
- further enabling condition (after P R O V I D E D clause)
- priority of a state transition (after P R I O R I T Y clause)

(2) operation belonging to a state transition:
- marking the next state (after TO clause)
- effect of operation, generation of output event

(block after B E G I N).
The finite automation of there states can be described in the following

way:
(♦TRANSITION*)
FROM A
WHEW AP.REQ1

P R O V I D E D Cl
TO В
B E G I N
ACTION1;
AP.IND1

END;
P R O V I D E D C2

B E G I N
ACTION2;
AP.IND2

END;
W H E N AP.REQ2

TO C
B E G I N
ACTION3;
AP.IND3

END;

The model itself is non-deterministic as in a given state (at a given
moment) during a given elementary input event several different state transi
tions are possible but only one transition is carried out. But this carrying
out is not determined by the specification of the model itself.

- 11 -

i 2

To describe the relation between a module and its environment j.t is
necessary to introduce the concept of "channel".The services provided by the
lower level can be used through access points. Every point corresponds to a
channel that without the description of entities can be perfectly character
ized by listing the primitives (elementary information units) flowing through
them. The language makes possible the introduction of data type I N T E R A C T I O N
that can be defined by the designer to describe the channel within which the
primitives flowing out and it can be listed together with its parameters .
For example:

I N T E R A C T I O N
TS _ACCESS_POINT(TS_USER,TS PROVIDER)
BV TS USER:
T_CONNECT REQ(...);
T_ACCEPT_REQ(...);
T_DISCONNECT_REQ(..);

BV TS PROVIDER:
T CONNECT_IND(..);
T_ACCEPT_IND(..);

etc.
The introduction of a new data type module makes possible the listing

of all the channels used by the module (ENTITY), i.e. it can give the units
(PRIMITIVES) of information exchange between the module and its environment
and the rules of its sequences. In addition, the global sequence restriction
(affecting every module that determine the sequence of information units
going through the different channels of the module can be given too (TRANSI
TIONS) . In the case of service specification it means that these restrictions
define the relation of the interaction at the end points of the connection
(output to input or vice versa). In the case of protocol specification the
restriction specify the sequence-in which the different data units can be
sent to the lower level.

Consequently, the service and protocol specification is a PASCAL language
description that contains:
(1) the channel and the primitives belonging to them (IWUCRACTI0N)
(2) the specification of one or more modules with conventional declaration

elements (label, constant, type, variable, procedure, function) and
declaration elements necessary to describe the entity (major state
declaration, state set definition, initialization, transition).
A description of the Transport Protocol and the descriptions of the

Virtual File 'Server and Virtual File Access Protocol are to be found in
[LEV82] and [BOCH82A, BOCH82B, BOCH82C].

13

2 . f o r m a l S p e c i f i c a t i o n T e c h n i q u e (FST)

Within the framework of the development of the ISO reference model a
formal specification technique was elaborated in 3 981 utilizing the financial
support of the National Bureau of Standards (NBS) [BLU81].

The formal description is based on an FSM supplemented by variable where
the state transition of the automation is marked by program segments. The
description examines one level of the ISO reference model in its environment.
A given level is regarded as one lying between two neighbouring levels; in
addition, every level is surrounded by the operating system. The examined
level consists of modules (entities) that communicate with each other accord
ing to some protocol while using the services of the lower level, Every module
that can be considered as an automaton generally has three interfaces: one
towards the lower level, one towards the upper level and one towards the
oparating system. A well defined set of events can be mapped to every in
terface that corresponds to the set of service primitives. A state transition
of the automaton is carried out after the realization of an interface event
(input) and a fulfilment.of other internal conditions. During a state transi
tion the variables of the automaton get new values and the automaton can in
itiate interface events (output). The automaton has predetermined initial
and final states. Instead of the description with a state transition table
or diagram the representation of a state transition of an automaton is real
ized through substitution rules (production) using the relation between finite
state automata and regular languages. Its greatest advantage is that the de
scription is near to the computer and it can easily be processed.

To support formalism a partial subset of PASCAL language is used supple
mented by some special constructions. The description of a state transitioni
and that of semantic characteristics belonging to it are demonstrated by the
following example:

<DEST> <ORIGIN> [FROM A: SERVICE.REQUEST]
((P1>EXPR1) A N D (P2=EXPR2))

B E G I N
(*PROGRAM SEGMENT TO EXPRESS SEMANTICS
BELONGING TO STATE TRANSITION*)

VARI:=[ERŐ M A:P3j+l;
IF VAR2=[FROM A:P2] T H E N

[Г0 A: SERVICE.RESPONSE (Pl:=VARl)]
E N D ;

That is the automaton gets into theDEST state if it was in the ORIGIN
state and a service request primitive arrives from the interface marked a
the parameters Pl, P2 of which satisfy the relation in brackets (enabling
conditions). Under the effect of the a state transition, variable VARI takes
the value of primitive parameter P3 incremented by 1 - in this case it is an
indifferent parameter - and if the value of P2 is equal to the value of vari-

14

able VAR2 then an output interface event comes to interface a (SERVICE. RE
QUEST primitive) the parameter Pi of which takes the value of Variable VARI.

Besides the regular PASCAL declaration elements the formal specifica
tion contains special declaration elements: primitives, predicates, inter
faces and states declarations. Apart from this the specification contains a
description of the protocol data units of the bit level described by a linving
language.

The declaration of primitives is performed in the same way as the de
claration of F U N C T I O N and P R O C E D U R E in PASCAL, in order to describe the ef
fect of primitives an explanation in living language is to be attached to
the formal description.

The predicates are defined after the clause P R E D I C A T E as a procedure.
The body can contain only Boolean expressions. In its effect a P R E D I C A T E can
be regarded as a function that gives back its Boolean value but the P R E D I C A T E
does not allow side effects. The definition of service primitives contains
the name of the service primitives and the parameters attached to them.

The definition of a special data type M A C H I N E can also be found in every
specification that is in fact a record whose fields are local variables
belonging to the state transitions of the automaton.

3 . S p e c i f i c a t i o n L a n g u a g e

To specify distributed systems within computer networks a Specification
Language SPEX was developed [SCHWA81].

The basis of this language is a non-deterministic state transition model
of the system to be specified that has many special characteristics concerning
the specification.

A system can be regarded as the set of connected nodes that can be a
station or a transfer medium. The definition of a given level is created by
the interaction of nodes. The sample sequences in the interaction character
ize the type of node. In general, a system can consist of different nodes
of special behaviour. In order to characterize a system the behaviour of
every type of node is to be written (it will be the "NODE BEHAVIOUR" of
specification). Further on, the set of possible elements of every type of
node has to be given and the way in which they are connected (it will be the
"TOPOLOGY" part of the specification) and the characteristics of the interac
tions between them (this will be the "CHARACTERISTICS" part of the specifica
tion) .

A node is some kind of entity that has internal variables and externaliinterface variables. These variables may arbitrarily be complex data types.
The node reacts to definite events.If such an event takes place some state
variables and some interface variables change their values.

State variables can be reached only locally within the nodes. Interface
variables are divided into two parts in every node: the group that will be ex

15

ported to other systems and the one that will be used within the given system
for connection with other nodes. Moreover every interface has a direction too
marking whether the data flow into or out of the node.

The actual behaviour of the node is described by giving its reaction
to events determined in advance. A precondition belongs to every well-known
event that is in fact a predicate containing the state and interface vari
ables of the given node. As this precondition becomes true the event belong
ing to it takes place.

The behaviour of the node is given by the new value of all its variables
taken after the fulfilment of all the possible events. All changes belonging
to an event take place simultaneously, at one time i.e. these events are
regarded as elementary (atomic) events.

The initial state is also necessary to be given to the whole description
of the behaviour of the node. It means that the initial value of the variables
is to be given while creating the system. All of them have to be specified
for the node types in the system.

The behaviour of the whole system is defined by all the valid sequences
of the events. Such a valid sequence where the system starts from the initial
state then enabled events follow each other can be of endless length. If it
is of finite lenght a not-enabled event causes the final state of the system.

After giving all the node types the connection mode of the nodes has
to be specified too. It can be done by the interface variables that serve
the connection with other nodes. They are in fact divided variables among
the affected nodes. The "TOPOLOGY" part thus defines the connection of the
interface variables of the nodes to the interface variables of other nodes.

The "CHARACTERISTICS" part of the specification deals with two character
istics of the protocol, viz. with "supposed" and "declared" characteristics.
The declared characteristics are to be proved by the one performing the spec
ification and it serves for the subsequent control of the accuracy of specifi
cation. On proving these characteristics it increases and proves the credit
of the specifying person and shows that the specification is based on under
standing of the system. Supposed characteristics are operations defined by
non-programming language-means, that are given by the output-input relations
between the arguments and the obtained values.

The specification of the Connection Establishment Protocol of the ARPA
network was carried out using the SPEX language in [SCHWA81]. Some elements
of SPEX were used in [KOV82].

Í*.. T e m p o r a l L o g i c s

Recently, the formal specification, and verification of computer pro
grams and protocols were attempted by mathematical logics - within this
temporal logics. The research started from the assumption that the modal
logics of Kripke is able to describe the events after one another and the

16

conditions of their happening. The protocols that can be regarded as a set
of sequential events can probably also be defined by this form of logics
[SCHWA81, HAIL80].

The logical expression of the requirements of the protocol (protocol
characteristics) are described in the form of axioms in the temporal logics.
The basic operators in these expressions are: operator "diamond" (possible)
and operator "box" (necessary). In addition, there are more complicated oper
ators built from these primitive operators (e.g. until, until-after, etc.) .
Predicates at, ingi etc. in the expressions mark the control points.

The description regards the protocol as a multiprocessor system running
on only one processor system and generates logical expressions of the expected
characteristics for this model. Thus the description has to specify the process
constituting the system, the input-output and control points of processes.

An experiment to describe a data link level protocol using temporal logics
can be seen in [TOTH82]

VERI FI CAT ION

Verification methods are usually related to specification methods. Regard
ing the development tendency a dual movement can be observed in this field:
one of these is the traditional specification in accordance with the known
principles and whose strict formal verification contains every detail; the
other one is the specification followed by partial formal or informal verifica
tion .

FDT and FST specification methods help the implementation on the protocol.
Because the basis of both methods is an extended final state automaton their
verification can be carried out by reachability analysis. However, extension
leads to several problem which is why no formal examination containing every
details has been elaborated for any of them. In one application of FDT
[BOCH82A], the simple logical consequence method or informal means are used
to prove the correctness of the protocol. With regard to FST it is known that
there exists no formal verification system.

The requirements of strict verification emerges during the application
of SPEX and temporal logics. SPEX has such means by using the AFFIRM system
worked out to prove the correctness of programs. AFFIRM is an experimental
system that makes possible the algebraic specification and verification on
the characteristics of data types defined by the user. The basis of the system
is a natural deduction theorem proving algorithm that proves in an interactive
way the characteristics of data types that are started in the form of predicate
calculi. PASCAL programs that contain the data type defined by the user can be
verified by the method of inductive substitution. AFFIRM is able to verify
short programs only. In accordance with this the protocol specification and
verification in SPEX was successful only for simple protocols.

17

Similar demands can be seen in temporal logical design too but the prac
tical applications of the method still requires further research work.

At the moment FDT and FST are the two methods that are nearest to reality
from the viewpoint of their practical realization. Their lucidity and their
easy reading significantly ease the preparation of the right specification
followed by the application of the specification in implementation. As the
practical examples show, they have been efficiently used to specify the Trans
port and Virtual File Transfer Protocol of an ISO reference model IBLU81,
BUR81, BOCH82A, BOCH82B, BOCH82C].

PROBLEMS

In spite of the undisputed development in protocol designing several
problems remain unsolved.

There is fundamental disagreement in the syntactic and semantic defini
tion of service and the functional capabilities of protocols. This means that
it is highly complicated to prepare protocols for both the designers and users
and to reach their identical interpretation.

The convertability of formal descriptions remains unsolved. It is diffi
cult to decide whether a specification is really the one we want and whether
it is equilvalent to the wirtten one. The evaluation of certain descriptions
is difficult, i.e. it is difficult to decide which of the several descriptions
of the same protocol is the better choice. It is difficult ot decide wherher
the different specifications really specify equivalent protocols.

These problems undoubtedly hamper important developments in applications
and the long-term utilization and will determine the direction of further re
search .

18

REFERENCES

IS081 A FDT Based on an Extended State Transition Model. ISOTC97/SC16/WGl
Working draft, Boston, Dec. 1981.

LEV82 Leveile, A., Bochmann, G.V.: Formal Specification of a Transport
Protocol. Working draft, 1982.

BOCH82A Bochmann, G.V., Henckel, L.P., Zeletin, R.: Formalized Specification
and Analysis of a Virtual File System. General Description. HMI
Report, No. HMI-B 367, Feb. 1982.

BOCH82B Bochmann, G.V.: Specification of a Virtual File Server. HMI Report,
No. HMI-B 367, Feb. 1982.

BOCH82C Bochmann, G.V.: Specification of a Virtual File Access Protocol.
HMI Report, No. HMI-B 367, Feb. 1982.

BLU81 Blumer, T.P., Tenney, R.L.: A Formal Specification Technique and
Implementation Method for Protocols. NBS Report, No. ICST/HLNP-81-15,
July. 1981.

SCHWA81 Schwabe, D.: Formal Specification and Verification of a Connection-
Establishment Protocol. USR Report, No. ISR/RR-81-91, Apr. 1981.

KOV82 Kovács, L.: Formal Specification and Verification of Computer
Network Protocols. Doctoral dissertation, Dept, of Process Control,
Technical University, Budapest, 1982 (in Hungarian)

BUR81 Burrus, J. et al.: Specification of the Transport Protocol. NBS
Report, No. ICST/HLNP-81-1, 1981.

HALL80 Hailpern, B., Owicki, S.: Verifying Network Protocols Using
Temporal Logics. NBS Trends and Application Symp. May 29, 1980,
pp. 18-28

TOTH82 Toth, P.: Protocol Verification Using Temporal Logics.
(in preparation)

TOWARDS A GENERAL THEORY
OF PROTOCOLS

P. ECSEDI-TÓTH
Hungarian Academy of Sciences

Research Group for Automata Theory
Szeged, Hungary

20

ABSTRACT

The author shows that a computer communication protocol can be modelled
- i.a. - by an appropriate mathematical logical language. The modal logic,
as appropriate basis of model is introduced.

A H H n T д 11И Я

Авторы показывают, что протоколы сети ЭВМ представляют собой серию пред
ложений, излагаемых на соответствующем языке математической логики. Вводится
модальная логика, как соответствующая математическая логика, которая может
быть основой такой языковой модели.

i
KIVONAT

A szerző megmutatja, hogy a számitógéphálózat protokollok megfelelő
matematikai logikai nyelven fogalmazott mondatok sorozataként tekinthetők.
Bevezeti a modális logikát, mint megfelelő matematikai logikát, amely egy ilyen
nyelvi modell alapja lehet.

21

CHAPTER I. LOGICAL APPROACH - AN INTRODUCTION

1. TRADITIONAL VERSUS LOGICAL CONCEPTS OF PROTOCOLS

According to the standard definition, a protocol is a set of rules
goverining the communication between components in a distributed computer
network; these rules ensure reliable transmission through unreliable channels.
This definition, however, tells nothing about what a protocol is from a
mathematical point of view; i.e. about the mathematical model of a protocol.
Knowing only the traditional definition, it is impossible for one to choose
any well-defined mathematical objects which are the models of protocols.
To promote the possibility of choice, additional assumptions must be made.
One of these assumptions, undoubtedly valid for any protocol, is that the
rules have to be compiled in a language. Usually three types of languages
are chosen: natural languages (e.g. spoken English [39,40], canputer languages
(e.g. PL/I [7,8][14], concurrent PASCAL [5], FAPL [64], etc.) and mathematical ones.
The use of natural languages arises because of their relatively easy comp
rehensibility and partly because of the lack of more adequate tools. With
regard to computer languages, these are recognized as being fairly well-known,
and their use considerably supports implemantation. Nevertheless, these two
types of languages are not mathematical objects on their own and their exact
semantics can be given (if this is indeed possible) in a completely implicit
way (i.e. by using other mathematical languages), hence they are inadequate
for defining protocols from a semantic point of view. It this remains for
one to cofose a mathematical language, notwithstanding that not all mathe
matical languages suffice.

A finer analysis on which to base this choice is the following argument.
The main reason for searching for an exact mathematical concept of a protocol
is not merely to learn its semantics (i.e. its specification), but it is
also to know the essential properties of the protocol at issue not given
explicitly in the specification; for instance, whether its behaviour is de
fined in all possible (correct or incorrect) situations. In particular, one
wishes to derive certain properties from other ones; i.e. the language chosen
must provide appropriate tools, e.g. a formal inference system, to deal
with such derivations. A formal mathematical language augmented with an

22

inference system is called a logic (cf. Section II). Hence our main assump
tion is:

A protocol is a set of sentences in an appropriate mathematical
logical language.

Beyond the fact that this assumption is important for developing a
coherent theory of protocols, it is in line with the traditional concept
(see Chapter II); the new definition is nothing but a more formal and more
exact reformulation of the old one.

2. OVERVIEW OF THE GENERAL STRUCTURE OF LOGICS

To clarify the very notion of a logic we survey here some of the funda
mental concepts of a logic in general (and in particular of two-valued logics)
- with which most verificators are presumed to be familiar. The aim of this
section is to fix the terminology used in the rest of the paper.

By a logic, we mean a pair (L,C) where L is a logical language (i.e. a
formal language with semantics) and C is an inference system, the calculus
of the logic.

The finer structure of language L can be given as a quadruplet L=(F,M,
I,T), where F is a set, the set of formulae; M is a class, the class of
models; T is an algebra, the algebra of truth-values; and I is the inter
pretation, i.e. I is a mapping from FxM into T. (Note that M is not a set
but a proper class, thus I is not a function in the set-theoretical
sense.) Actually, the members of class M are exactly what we wish to describe
and study by the formal tools of logic; they can be defined directly by
using set-theoretical means (cf. Chapter II. for some particular definitions)
The members of F are generated by a formal grammar from a set of symbols
fixed in advance. This set of symbols must contain some signs which identify
the things in the members of M (these signs are usually named "non-logical
symbols"), moreover some additional signs, too (the "logical symbols"). In
fact, formulae serve as assertions about the models in M. The interpretation
I establishes a connection between models and formulae by telling to what
degree of truth a particular formula is valid in a certain model. The algebra
T of truth-values is generally a kind of lattice (for details, see [22]).
In most situations T is a two-membered Boolean algebra; and the logics obta
ined by this choice of T are called two-valued logics. Here we shall restrict
ourselves to two-valued logics. (Although the usage of many-valued logics
would result in a finer analysis of protocols, the theory would be more
complex and less comprehensible.) Since two-membered Boolean algebra is
unique (up to isomorphism) we shall not introduce it explicitly in our nota
tions; i.e. we shall write L=(F,M,I) understanding that the set of truth-
-values contains the elements TRUE and FALSE, only, enriched by the well-
-kncwn logical operations: Л (and), V (or), 1 (not), -»■ (if. . . then. . .) , etc.

23

In this particular case, the interpretation I can be considered simply as
a relation between F and M: I C FxM. If (<p,A)CI, then, allowing some tempo
rary ambiguity in terminology (eliminated later, see Ch.III.), Ф is said
to be true in A, otherwise it is false in A (cpGF, ACM); in other words, I
tells if some formula ф states a true or false fact about A. We shall use
the more common symbol N instead of I writing it in an the infix way: А £=Ф
stands for (cp,A)GI. The set of all formulae which are true in every model
will be called the set of universally true formulae, denoted by U.

Calculus C of the logic is a formula-manipulating algorithm in charac
ter and can be defined in several different ways. The so called enumerating
calculi are given in the standard recursion theoretical way; they are de
signed to enumerate some or all elements in the set of universally true
formulae. If a calculus C enumerates nothing other than elements of U, then
it is called correct. If C is able to enumerate the whole set U, then it is
called complete. According to these definitions, a logic is correct (or
sound), and complete if its calculus is such. A more commonly used type of
calculus is defined by distinguishing some (usually not all) universally
true formulae, the set of axions, and some formula-transformation rules, the
so called inference rules. This kind of definition of calculus presupposes
that we are able to decide whether or not an inference rule is applicable
to a particular formula. If each inference rule possesses the property that
the result of the transformation is universally true provided its input is
such then the calculus is called correct. If the whole set U can be generat
ed by applying the inference rules arbitrarily but only finitely many times
to axioms and to the formulae obtained in previous steps then we say that
the calculus is complete. Similar definitions apply to logics.

It should be mentioned that correctness of calculi is very important:
if a calculus is not correct then it is totally unsuitable for any purpose.
On the other hand, although highly desirable, completeness of calculi is
not essential: if a calculus is not complete then certain (true) assertions
cannot be proved. This situation is obviously not the best but can be
inproved by using other, more appropriate (correct) calculi.

Some particular calculi and their properties are treated in Chapter IV.

3. LOGICAL CONCEPT OF A PROTOCOL

Let L=<F,M, t= > be a (two-valued) mathematical logical language and let
(L,C) be a logic over L. Then, by our main assumption (in Section 1) a
protocol P is a subset of F: PCF. The class M of models is restricted by
protocol P: only those elements of M are considered in which every element
of P is true.

Mp = {A I ACM and A^P}
where A (=P stands for (VpCP) (А -j=cp) .

24

A complete specification of protocol P is then achieved: P contains
the formulae corresponding to the set of rules (in the traditional sense)
and defines the semantics (i.e. the possible realizations) of P in an
explicit and abstract way. Different properties of protocol P, such as
freedom from deadlocks (liveness) and partial correctness (safety) can be
expressed again by formulae of L, i.e. a property ф of P is an element of F.
The verification of ф means that one deduces Ф from P using the inference
system C of the logic.

To our knowledge, no papers dealing with the verification of protocols
have even mentioned the role played by the inference system of the under
lying logic; in fact, they all use implicitly only one inference rule: the
rule of mathematical induction. It will be explained below that this lonely
rule, albeit it is one of the most important rules, cannot serve as a satis
factory tool for protocol verification nor for understanding the very nature
of protocols. In closing this section, we wish to emphasize the main point
of our approach literally, too:

The only adequate tool for the specification and verification
of protocols (as well as of any other involved dynamic pheno
mena/ is logic; i.e. the use of a mathematical logical
language endowed with an inference system.

4. LINKS WITH OTHER APPROACHES

To fill the gap between the traditional inexact definition of a
protocol and the mathematical accuracy required for its verification, rese
archers admit different mathematical objects as models of it. The aims of
this section are
(i) to analyse these choices from a logical point of view,
(ii) to investigate whether they can, at least in principle, be inserted

into the overall picture outlined above.
Usually, the following objects are accepted as models of protocols:

finite state machines (or more precisely, composition of a few Mealy-type
automata [6,17-18,61,71], graphs (such as Petri-nets [52], timed Petri-nets
[52], evaluation graphs [55], UCLA-graphs [55,73-74] etc.), computer prog
rams [5,9-12,34], formal languages [33,35-37,63,68-69], and so on.

All of these concepts are well-suited to the logical approach. For
example, if elements of M, i.e. the models, are automata or graphs, then
the definition of a particular protocol means simply, that we give a concrete
element in M (i.e. one particular automaton or graph) and idenfiy the
protocol at hand with this element. Notice, however, that this identifica
tion is not legitimate from a strict mathematical point of view. There can
be other elements in M which are equivalent to the one chosen - as far as
the properties of the protocol in question are concerned - but which differ

25

in other respects; these equivalent elements of M are realizations of the
same protocol, and ignorance of them can cause essential errors. This under
sired phenomenon is occasioned by the fact that, except some very simple
examples, protocols can be dexcribed by infinite tools, only. (Recall that
a simple function, such as addition over natural numbers, is an infinite
object.) From the verificational point of view, however, an automaton or a
graph must be finite. Choosing a concrete finite or infinite element of M
and identifying the protocol at issue with it is inadequate because if the
chosen element is finite, then essential features of the protocol remain
unmodelled while if it is infinite, then the verification cannot (by direct
checking of the possibilities) be carried out.

To overcome this difficulty, one must identify the protocol not with
one single model but the class of all equivalent models and treat this in
finite class by other finitary tools, provided by logics. (Exactly the
same situation occurred in the theory of verification of sequential programs:
the choice of a single model to represent all possible runs of a program
resulted in properties of incompleteness [1-4][29-30][58].)

Other approaches that identify protocols with sets of sentences over
a computer language or a formal language (in the sense of Chomsky) are again
well-sented to the logical approach. In these cases, a protocol is a subset
of the set of formulae of the underlying language. They do not bother with
realizations (i.e. with elements of M), hence the difficulties mentioned
above are avoided: nevertheless, a complete semantic specification of a
protocol is missing if realizations (models in the sense of logic) are not
involved.

Summing up, all known methods for specifying and verifying protocols
realize only a part of the specification provided by the logical approach.

At the same time, however, logics have a finitary tool, the inference
system, by which the infinitary logical specification of a protocol can
appropriately be handled (provided that the logic is complete and correct).
As we have already mentioned, inference systems are implicit in the litera
ture on protocol verification. Of course, if one verifies something arbit
rarily, then one uses an inference system even if it is hidelen in arguments.
In fact, one inference rule, the rule of mathematical induction, can be
abstracted from the literature. This rule is applied in the form that if
some properties are true in all initial situations and they are inherited
by transitions of situations then these properties are true in all situations.
By this lonely rule, however, only invariance properties can be proved;
others, such as some eventuality ones, so vital for the correc functioning
of protocols, cannot. At the same time, careless use of this rule can lead
to difficulties, namely incompleteness.

26

5. CHOICE OF THE UNDERLYING LOGIC

The problem of finding the appropriate language and the logic which
are expressive enough for formalizing protocols and their properties but are
still tractable as a mathematical object is of secondary importance from
the protocol implementer's and user's point of view. Even so, it is still a
challenging theoretical task. Actually, any logic reducible in the sense
of Lindström to the classical first order logic will do; such logic differ
"only" in the way of use and cost of application. This study investigates
in detail the impacts of several possible choices of language L. In fact,
besides the traditional first order logic, we shall deal with different
kinds of dynamic logics, modal and temporal logics and logics of actions.
These logics share many features when employed to specify and verify proto
cols but they differ also in some important respects. The similarities and
differences are analysed in Chapter II.

6. ADDITIONAL PRINCIPLES ON THE NATURE OF PROTOCOLS

Protocols, in comparison with simple (i.e. sequential) programs, may
exhibit extremely involved behaviour. Central to the discussions on protocols
are the concept of a state and that of an action. We recall here the basic
notions and explain informally some of their properties relevant to obtain
ing a concise theory of protocols. (For more about actions see [20-21], [72].) Tö
justify the terminology, we mention that a state can be imagined as one
particular variant of the "world" to be described and an action may result
in a change of states. In any state, several actions can be performed;
these are called "enabled" or "permitted" relative to the state. Some of
the enabled actions may be parallely executable or mutually interdependent
or exclusive; also there can be obligatory or prohibited actions enabled
relative to a particular state. Performances of actions may cause side-effects
in several distinct states, they may last for more than one instant of time,
and this time of execution may vary depending on actions and states.

The overall picture is then rather complex and gives rise to many
intricate problems; some of these will be touched on while others, not of
principal interest to the theory of protocols, will be completely neglected.

Bearing in mind the aim of this paper we can make some essential assump*-
tions which will have considerable effects on the tractability of the whole
theory. Let us start by assuming that the Law of Excluded Miracle is valid.
That is, we shall always suppose that any change in states is caused by
some actions from the set of actions given in advance. This law seems to
be counterintuitive for modelling complex dynamic phenomena such as complex
programs which communicate with each other through unreliable channels
since physical or logical errors can cause "miracles". At a more general
level, however, the possible errors can also be considered as actions, hence

27

admitting the Law is legitimate and helps to keep the theory extensive.
Similar approaches were adopted in [15] and [37] .

Another important assumption is the validity of the Law of Relative
Permanency■ By this we mean that the universe of discourse is relatively
permanent which, in turn, means that no action may cause birth or death of
individuals in this universe.

Finally, we shall assume that acting agents are hidden; that is, perfor
mances of actions are controlled from "outside" by some acting agents such
as human beings, computers or other. One of the simplest ways of realizing
this assumption is to suppose that all actions permitted relative to some
state are triggered at the moment they become enabled. This will be supposed
throughout the paper unless the contrary is explitly expressed.

7. RAMIFICATIONS WITHIN THE LOGICAL APPROACH

If one adopts the logical approach for protocol specification and
verification, further refinements can be made depending on what aspects
of the functioning of protocols are considered the most important for modell
ing. If one looks at a protocol layer as a black box which gives replies to
effects arriving from upper layers (i.e. from the user of its own side) or
from lower layers (i.e. from the opposite stations) then one describes the
functioning of that layer from a component-oriented point of view. Admitting
this kind of description, we do not deal with such questions as what happens
in the communication channels, i.e. how many messages are on route, etc.
(cf. Fig. 1-1).

Another possible standpoint is when one concentrates on the communica
tion itself neglecting what happens in the different components. This way
of reasoning will be called communication-oriented description (cf. Fig. 1-2).

Both kinds of reasoning have several advantages and drawbacks and, in
general, they represent an "ideal" or "purely theoretical" method. Real
protocols can adequately be described only by some merging of the two
approaches.

In this paper both kinds of descriptions as well as their mergings
will be investigated. It is mentioned, in closing, that these two kinds of
descriptions are distinguishable in the literature on protocol verification:
e.g. Danthine and Bremer [17], Merlin [52], Bochman [7],[9] and others adopt the
component-oriented description of protocols; Harangozó [35-37], Teng and Liu [68-69],
Hoare [43] and Ecsedi-Tóth [L9] describe protocols in a communication-oriented
way.

28

Fig. 1-1

Component-oriented description

Fig. 1-2

Communication-oriented description

t

29

CHAPTER II. MODELS OF PROTOCOLS

The concept of models plays a central role in developing logics since
they represent the mathematical counterpart of the phenomena to be studied.
Here we introduce two different kinds of models. We are mainly concerned
with nonclassical models; classical ones will be used as auxiliary tools.

1. CLASSICAL AND NONCLASSICAL MODELS

Our meaning of a classical model is a nonempty set, the universe of the
model, with some distinguished elements (constants) in it and with functions
and relations defined on the universe. No assumption is made on the number
of constants, functions and relations (there may be none or infinitely many
of them) but we tacitly assume that each function or relation can have only
a finite number of arguments. Almost all objects investigated in mathematics
are classical models. For example, every group, ring, Boolean algebra, uni
versal algebra (and thus, in particular, every Mealy-type automaton, graph),
vector space, metric space, topological space, projective geometry and so
on, will give an instance of classical models. The classical model consist
ing of the set (0,1,... } with 0 1 as constant and with the well-known
functions and relations: +, ., — , etc. usually plays an important role in
applications of logic.

For modelling dynamic phenomena which evolve in time, classical
models can be used but with considerable difficulty because they lack the
intuitive counterparts of time moments and the flow of time. Fortunately,
in more general types of models, all important aspects of time considera
tions can be modelled in a natural way. These models are known as nonclassi
cal models. Generally speaking, a nonclassical model can be constructed
from a classical one by substituting the individual elements in the universe
of the latter by other classical models, i.e. a nonclassical model is a
classical one the individuals of which have an "inner structure", cf. Fig.
II-l and Fig. II-2.

- 30 -

classical models
(i.e. individuals
with inner struc
ture)

Fig. II-2
Part of a nonclassical model

31

The full power of this concept is not be used in this paper; instead we
introduce a particular case, the notion of Kripke models, which is much
more tractable, possesses a well-developed theory and still has power enough
for our aims.

By a Kripke model we mean a pair (Q,R), where Q is a set of classical
models such that all classical models in Q have the same uninverse (cf. Ch.I,6)
and R is a binary relation Q, that is, RCQxQ. Sometimes we shall use distin
guished elements in Q but no functions or relations except R are defined on
Q is this paper. Members of Q are called states and R is denoted as the
accessibility relation. One can imagine that states are "snapshots" on the
phenomenon in question whereas R describes the "flow of time". Several
additional assumptions can be made on the accessibility relation R; thus,
several different Kripke models can be used. Some examples are: "R is ref
lexive", "R is transitive" or both (i.e. "R is a preordering"); "R is dicho
tomous, (i.e. for all qlfq2GQ, either (q^,q)GR or (q^q^íGR); "R is discrete".
It is believed that the examples given in the next three sections illustrate
well the usefulness of Kripke models in specifying and verifying protocols.

2. EXAMPLES: AUTOMATA AND PETRI-NETS

To motivate the definitions above and to give a feeling of the
connection between the concept of Kripke models and that of other kinds of
mathematical objects used for modelling dynamic phenomena (including models
for protocols), we shall reformulate here in terms of classical and Kripke
models two well-known examples: automata and Petri-nets. Other examples are
given in the following two sections.

By the standard definition (cf. []), a Mealy-type automaton is a
quintuple

A = (A , X , Y , 6 , X)

where A,X, and Y are nonempty sets; 6: AxX+A and A: AxX-*-Y. Elements of A,X
and Y are usually named (internal) states, inputs and outputs, respectively.
6 is called a "transition function", A is the "output function". If the sets
A,X,Y and hence the function 6 and A too, are finite, then is a finite
automaton (also called a Finite State Machine, FSM).

To each Mealy-type automaton , a classical model can be constructed
as follows. Let the universe of the classical model be A and consider the
elements of XxY as (partial) unary functions on A defined by 6 and A in the
following way: (x,y)(a)=o' iff 6(a,x)=a' and A(a,x)=y. What we obtain is
clearly a classical model (an algebra), the so called "transition diagram"
of A . A Kripke model for A can be constructed by considering the elements
of X as actions: each xGX can be looked at as a function x:AxY -+ AxY defined
by x(a,y)= (aJz) iff 6(a,x)=a' and A(a,x)=z. We set Q=AxY and R=X. Then
clearly (Q,R) is a Kripke model which represents A . Another more trivial

32

Fig. II-2
A = Q t— '°2 'G 3 }
X -= {X1,x2)
Y - (У1 - y 2)

6 0 Л a~ о ->1 2 3
X1 °3 °3 ° 2
x„ о ,2 2 2 1

A °1 °2 a 3
X1 r—1

J>4 y l У 2
X2 yl У2 y2

Fig. II-4

33

Kripke model can be obtained from the classical one constructed above by
taking that classical model as the single element of Q and putting R=0 .
These three models are illustrated by Figs. 11-2,3,4 below .
Note that several other automaton models of protocols can be described in
the same way. Examples are: variable structure automaton interlocutor
link-machine. Each of these concepts is a slight generalization of a Mealy-
type automaton and hence it is quite easy to construct both classical and
Kripke models which represent them.

Another possibility of modelling a protocol is by Petri-nets. By a
(weighted) Petri-net an ordered quadruplet (IP, 7T,a,ß) is meant, where (P, ~TT
are nonempty sets, the set of places and that of transitions, respectively,

a is the "forward incidence function":* a: IP x X ы; ß is the "backward
incidence function", ß: IP x X ->■ to; where to = {0,1,...} is the set of weights.
For all xETT and ттЕР, we define the following sets:

T ’ = {itEP I ß (тт ,t) / 0}
’T = (тт61Р|а(тг,т) ^ 0}
тт* = {хЕТГ| а (tt ,x) 71 0)
* тт = {т£ТГ| ß (tt ,t) ^ 0}

A marking m of the Petri-net is a mapping m: IPto. The set of markings
will be denoted by M . A transition xETT is enabled for a marking m iff

(VttE ' x) (cc(tt, x) - m(ir)) .

Let M be the set of markings for which the transition т is enabled; similarly
Л* denotes the set of transitions enabled for m. By the firing of the m
transition T we shall mean a function fт: defined as follows:

Let us suppose that fT (nK)=nK. Then,

ПК (тт) <
пк (tt) Vtt̂ ' x Ux ’

(tt) - a (tt , x) V ttE ' x - (’ x fix ’)

nr (тт) +ß (тт, т) V ttEx * - (* хПх *)

пк (тт) +ß (тт?) -а (тт , х) УттЕ' хПх'

By a firing of а Petri-net (P,TT,a,ß) we mean a function f: M-+M such
that if f(nr) = пк , then for all ttEP

m . (тт) = I f (m.) (tt)
3 x6T

m i
where f is a firing of x, chosen arbitrarily but well before the summation, x
for all x6T . The set of firings of a Petri-net will be denoted by

m i

34

where a and ß are defined by the tables:

a T 1 T 2 ß T 1 T 2
1 0 0 1

^ 2
0 1 n 2

1 0

Fig. II-5

35

Fig. II-6

36

The example of Petri-nets demonstrates well the power of Kripke models.
In fact, classical models representing a Petri-net can be constructed in an
inconvenience arises from our having ruled out sophisticated objects such
as functions defined on functions from a classical model and hence no room
remains to incorporate firings (i.e. actions) into a classical model. As
opposed to that, it is relatively easy and natural to construct a Kripke
model which represents a Petri-net in the following way.

Let A = PJTIUu) and let a and ß be two binary functions the same as above
For each marking mtW, enrich the picture with the unary function m. What we
obtain is clearly a classical model for all mEM, denoted by A Then we can
set Q={i4m |m€M} and R=F. Obviously, (Q,R) is a Kripke model which represents
the Petri net (P,n,a,ß). For a very special case, a part of the Kripke model
given in this way is indicated in Fig. II-5; Fig. II-6 shows the same Kripke
model by the more commonly used delineation of Petri nets.

For certain practical applications of Petri nets (e.g. for modelling
protocols) it seemed to be necessary to associate a "firing time" to each
transition in a given Petri-net. The resulting system, the so called timed
Petri-net (introduced independently by several authors
as well as many other graph-theoretical models of protocols can
easily be reformulated in terms of Kripke models. This, however, will be
omitted here.

3. CONCURRENT PROCESSES

In many respects protocols can be viewed as a collection of several
distinct sequential processes which share in variables in a way that each
distinct process can modify (i.e. has direct access) all the variables. This
in turn, means that these processes communicate through the shared variables
Observe, that this type of description corresponds to the component-oriented
method. There are several advantages of this approach (e.g. a relatively
clear theoretical background), nevertheless, since time delays over communi
cation channels cannot be taken into consideration, plenty of the important
properties of protocols remain unmodelled if this way of description is
accepted.

Let m=l and assume that for each i, i-i^n, is a nonvoid set. Let
D = and dQ6D. By a sequential process of m variables defined over D,
we mean a triplet <C,X,p> where C is a finite nonvoid set with two distin
guished elements cin and cout? At (C— {cout ̂ xDh'c and ̂: (C-{ cQut}) xD->-D .

One can imagine this process as follows. C is the set of labels
(control points) of parts of the process, c^n is the entry point, cQut is
the exit point. The name of X is "the next statement" function)! it returns a
label, the label of that part which is to be executed next. The function p
is called "data transformation" function. For each i (l-i^n), the set is

37

considered as the range of the i-th variable of the process, while dQ rep
resents the initial values of the variables.

Let P - <C1, А.1 ,уг> be n sequential processes over D which share in
the m variables. If С1ПС-̂ = 0 provided that i/j, then P is called a (n-compo-
nents) concurrent process of m variables defined over D.

By an "instantaneous state" of P we mean an ordered m+n tuple:
s = < c1,...,cn ,d1,... ,dm>

where ĉ GC"'' for all i (l=i=n) and <d\...,dn> £D. The initial state of P is
defined by s = <c} , . .., cn , d >. Let s. = <cj,. . . ,c!?, d w . . . ,d™> and 1 о in in —о 1 1 1 1 1

1 n 1 1s2 = <c^л. . . c” /d2,.../d^r> be two instantaneous states of P. Let us define
the binary relation -*■. _ by the following items: <s..,s„> £ -*■. p iff1 ft

(i) for all j, (l=j=n) , c|=c2 provided that i^j
(ii) c^ = Ai (c^,d1)

(iii) d2 = у1(с^,^х).

If there exists an i (l=i=n) such that <s.,s >£->-. , then we write1 2 i r P
<s-^,s2> £ . If P is fixed, then the index P will be omitted. Let ■+* be the
reflexive, transitive closure of We say that an instananeous state s of F

is reachable itt <sq ,s ̂ t . a sequence of instantaneous s^,s2... is said
to be a trace of P, iff for all i=l, <s.,s.11> £-»■ .1 l+l

By these definitions, the execution of a concurrent process P is modelled
by multiprogramming. We assume that a scheduler is given which controls this
multiprogramming: at each step of the execution, the scheduler chooses one
from the n components of P and lets the chosen component execute one part of
that sequential process. In an instantaneous state, the first n elements give
the labels to be executed next in the first,..., n-th component, in due course.
The remaining m elements give the actual values of the variables. The binary
relation -*■ simulates this multiprogrammed execution of P. Figure II-7 illust
rates these notions (an example of an instanteneous state is indicated by a
bold line).

To every concurrent process P over D and initial value of the variables
dQ£D we can associate a Kripke model as follows:

We set
Q = {SI<sQ,s> £ +*}

and R = -*.
Observe that R is a preordering in this model. A part of this Kripke

model is shown in Fig. II-8.
Note also, that there exists a distinguished element in the Kripke

model, namely 0£Q, defined as the intial instantaneous state so.

38

Fig. II-7

39

Fig. II-8

40

4. COMMUNICATING SEQUENTIAL PROCESSES

If we wish to concentrate upon the communication realized by protocols,
then we can proceed by using the communicating sequential processes introduc
ed by Hoare [43]. One can imagine, as opposed to the idea of the previous
section, that the members of an n-component process are located distantlyf
hence, direct access to a common field of variables is no longer realistic.
Instead, each component has its own private set of variables, which can be
modified by that component only. The communication between components is then
realized by special transfer statements. Observe that this way of reasoning
is a mixed form of communication-oriented and component-oriented approach.

Let n-1 and for all j (1-j-n), m_.̂ l. Let us define D^ just as in the
m .3previous section: D. = X D.. where D . 0 for all i (1-i-m.). Let us suppose 3 i=1 13 13 3

that for all j,i (l-j,i-n, i^j), and are nonvoid sets and consider

n n
D . = D . x (X T ..) x (X R..).3 3 i=1 3i i=1 3i

Moreover, let d^GZK. By a sequential communicating process of m^ + 2n-2
n

variables defined over (J D . we mean an n-tuple of n+2 tuples:
3 = 1 J

P = 1 s-i-n 1 - j - n
i^j

where
(i) C3 is a finite nonempty set with two distinguished elements c3^, cout

for all j (1-j-n) such that С^ПС^ = 0 if k̂ i. (l=k, £=n)
n .

(ii) A3: (C3-{c3 , }) x D. x (X R.,) + C3 for all j (l^j-n)out 3 k=l 1K
k ĵ

n n
(iii) y3: (C3-{c3 }) x D. x (X R..) D . x (X (T) for all j (l^j^n)out 3 k=1 3* 3 k=1 3*

k ĵ M j

(iv) v?: (Cj-{c3ut}) x T^ ̂-> r _̂. for all i and j (1-j-n, 1-i-n, i^j)

The informal content of these clauses can be explained as follows. The
role played by set c3 is the same as in the previous section. D^ is the range
of private variables of the j-th component; T ^ is the range of the distin
guished variable x^^ (in the j-th component) the value of which is to be
transmitted to the value of the variable y^^ of the i-th component; and
similarly, R^^ is the range of the variable y ^ (in the j-th component) which

41

receives its value from the i-th component. The mappings A-1 and |Р determine
the computation in the j-th component in the same way as in the concurrent
case. Also, d . is the initial value of the private as well as of the commu-

- O]
nication variables in the j-th component.

An "instantaneous state" of the communicating process is determined by
an n-tuple of m^+2n-l tuples:

s= <<cir dxl, . . . , dlm f̂ ti2 ,ti3"-*' Чп' r 12' r1 3 " “ ' rln> '

<c2, d21,..., d2m2' t21,t23f* * *' Чп' r21' r23""*' r2n^'

<Cn' dnl'*'-' dnm ' tnl,tn 2 " ‘-' Ч(п-1)' Гп1' rn2' n

where for all j (1-j-n), c.eC. and

jl 3ml
3 1

<d , d . . >G D .

• »rn (n-1)

' • • 1 / • / 31 1-1-n
i^j

n
e x T ,.

w 31

<^j i>1—i—n
n

e x r ..
i=i 31
i^j

The initial state is given simply by

s = <:<c. . ,d .>, ..., <c . ,d >>о l_i.n —ol n in —on

For k=l,2, let
. . к ,к ,k ,k .к .к к к .

sk Cl,dll, ' - ' ,dlm' t12,t13' * * * '4n' r12 ' * ' * '4n

<c^ ,dk. , . . . ,dk , t^ ,. . . tk , .v, r4,...,r4 ..>>n nl nm nl n(n-l)' nl n(n-l)n
be two instantaneous states of P. We can define the binary relation -*-p which
simulates the execution of P as follows:

<sirs2> G + p iff for all j (1—j—n)

(i) c. = A4c., dj;L.... djm , <rj±>lfei&n)
3 l^j

(ii) <d4,...,d? ,<t4 > = p 4 c 4 d 4 , . . . ,d^ , < x \ >jl 3m. 31 1-i-n H 3 ' 3 I' ' 3m. 31 1-i-n
3 i*j 3 i*j

42

(iii) г.. = v-?(cf,t..) for all i (1-i-n, i^j).J1 i l l]
Again, -»■* is the reflexive, transitive closure of -*■ (where the index p

is omitted provided no confusion can occur). We say that an instantaneous
state s is reachable iff <s ,s>6->*. The definition of a trace is similar to°that of the concurrent processes.

The execution of a communicating sequential process P can be described
briefly in the following way. Each component of P has its own scheduler,
which controls the execution: at every step, the scheduler determines that
part of the component which is to be executed next, according to the next
statement function A, and performs the data transformations prescribed by u.
Observe, that both the choice of the next part and that of the data trans
formation depend strongly on the value of the communicating variables received
from other components in the previous steps. Finally, the scheduler transmits
to other components the values of the communicating variables obtained in
the present step. This way of execution means that different components run
relatively independently; the only synchronization among them is realized
by the communicating variables.

A Kripke model of the communicating sequential process P is easily
obtained by setting

Q = {s |<sq ,s> £ ■ + * and
и = -+*

By definition, R is again a preordering.

43

CHAPTER III. LOGICAL LANGUAGES

The aim of this part is to develop mathematical logical languages
appropriate for studying Kripke models. We shall start by recalling the most
fundamental definitions of classical first order languages. Since familiarity
with these definitions is assumed, we shall proceed at a fairly rapid pace.
The main concepts of these languages will be used in developing nonclassical
languages as auxiliary means.

1. CLASSICAL FIRST ORDER LANGUAGES

By a type d we shall mean a quintuple (ftR, ftp, ftR . tR , tR) where
ft , , ft., are pairwise disjoint sets, the sets of relation, function and
constant symbols, respectively, and tR: ftR {1,2,...}, tp : ftp {1,2,...}
are the "arity functions" of ft and ft . Let a type d be fixed. We can give
thte set of nonlogical symbols for the language to be constructed as
ft-U'ft̂ Uib,. The logical symbols are A ,-i , ¥ and = (for conjunction, negation,R г К
universal quantification and equality) and we shall also use some separator
symbols:),(,and an infinite set V of variables.

By the set of terms of type d we shall mean the least set Term^ satis
fying the following conditions:
(i) ftK C Terrn^ and VC Term^
(ii) if fCft_ such that t (f)=n and т,,...,т C Term,, then f(T,,...,x) e Term,.E Г 1 П Q 1 П U

Let
Primd = {г (t^, . . . ,тп) I rCftR , tR (r)=n, rx.... Tn6

C Ternbj} U { T T2 111 r T 2 S'-Term^} ,

be the set of prime formulae.
The set of classical first order formulae Fd is the smallest set deter

mined by the following recursion:
(i) Primd C Fd
(ii) if <f> ,'l> € Fd , then ~i <p£Fd and <рЛф € Fd

44

(iii) if <PeFd r vGV, then (Vv)<pGFd .
By a classical model of type d, we mean a pair (A,I) such that A^0;

for all fGfi , if t (f)=n, then
1(f) : An + A;

for all rGft , if t (r)=n, then
^ nI(r) C A

and finally, for all kGÍ2 ,
I (к) G A.

С'!The collection of all classical models of type d will be denoted by Md
Elements of will be denoted by capital (script) German (Gothic) letters:
01, £, eC, ... and so on.

Let сяем^1. By an assignment relative to Uf=(A,I) we shall mean a mapping
a: V + A.

ОThe set of all assignments relative to ölwill be denoted by A .
Let and a A^. For every те Term^ we shall define x [a], the "value

of the term т in 0(under assignment a" by the following recurrence:
(i) if x=vGV, then xa[a]=a(v)
(ii) if T = k 6 f l 1_, then т̂ *[а] = I(k)

K /
(iii) if r=f(t ^,...,x) , then

тЯ [а] = I (f) (t [̂ a] ,. . . ,xJJ[a]) .
For every (pGF̂ , the relation t*f= cp [a] , to be read as "(p is true in

under the assignment a" is defined by recursion, too.

(i) if cp * = г(т,,...,т)G Prim,, theni n d
cx \= <p [a] iff <x!j*[a], . .,x^*[a]>G I(r)

(ii) if cp = (t 1=t 2) G Primd , then

CX \= (p [a] iff x^[a] = T^[a]

(iii) if CX = ip, then
(Л 1= <p [a] iff Ui¥ ip [a]i

(iv) if cp = фЛх, then
(Л t=cp [a] iff both (Л \= ф [a] and
cxt=X [a] hold

(v) if <p = (¥v)i|), then
CX [= (p [a] iff for all a'EA** such that a(u)=a'(u) provided u^v,
СЛ И ф [a'] holds.

If for all aEA**, C*t= <p[a], then we say that <p is true in (X and write
simply (X|=ip. If for all IX, OfNcp, then <p is said to be universally true, in
notation: H<p.

45

We shall use some derived logical symbols, too. These can be defined
as follows:

ipVip = —I (—t<pA—|ф)
Ф+ф = -1фУф

ф-енup = ф->-фЛф-»-ф
Зуф = —jVv-тф

It is easy to check that these definitions coincide with the intuitive
meaning of disjunction,implication, (logical) equivalence and existential
quantification.

An occurrence of a variable v in a formula ф is bounded iff it is
either immediately after a quantifier or in that subformula of ф which
follows a quantifier. If an occurrence of v is not bound then it is free.
Note that the same variable v can occur in the same formula ф in both ways;
for example, in the formula -|(v=f(k)) Л (Vv)(vEk), the first occurrence of
v is free whereas, the second and third ones are bounded. If no variable
occurs freely in ф , then ф is called a sentence. Similarly, if no quantifier
appears in ф , then ф is named quantifier-free.

01 .It is clear from the abovesaid, that <F^, M^ , t=> is a mathematical
logical language for every type d: the classical first order language of
type d.

2. REFORMULATION OF CONCURRENT AND COMMUNICATING PROCESSES USING PROGRAMMING
-LANGUAGE-LIKE CONSTRUCTS

The aim of this section is twofold: first, to give an application of
the first order classical language and second, to redefine concurrent and
communicating sequential processes in terms of programming-language-like
constructs. These constructs are well-known and commonly used, hence the
reformulation - hopefully - helps to make the use of processes more conve
nient and exploit.

Let d = <ftR,ilF ,fiK ,tR ,tF> be a fixed type; Term^ is the set of
terms of type d and let QFF denote the set of quantifier-free first order
formulae. We shall define the set SCP^, the set of sequential composite
processes of type d, by the following recurrence. *
(i) The set SC^ of simple commands (of type d) is the least set containing
the statements:

(a) skip
(ß) for all v6V and rCTerm^

v«-t .
The informal meanings of these commands are well-known: skip is the empty-
-statement, v«-t assigns the value of т to the variable v.
(ii) The set CC^ of communicative commands (of type d) is the smallest set
which contains the following statements. Let H be an arbitrary (maybe empty)

46

set of templates. Elements of H are intended to identify the sort of messages
transmitted by the communicative statements. (For example, in the case of
HDLC protocols, templates can be: sv for supervisory frames, i for information
frames and u for unnumbered frames, i.e. in this particular case ~ = {sv,i,u}.)
Hence, for all iGTerm^, £GE, vGV and pGSCPd

(a) p(v)!£(t) G CCd
(ß) p (T) ? U v) G CCd

The statement p(v)l£(x) is to be understood informally as: "transfer
the value of x" (which is of the Sortiment given by the template £) to the
variable v of the process p. Similarly, p(x)?£(v) is to be meant as "wait
for the message x of template £ from the process p and receive it in v".
(iii) The set CPd of composite processes (of type d) is the smallest set
which contains SCd U CCd and all of the following statements given below:
(a) The set GPd of guarded processes (of type d) is defined in two steps.
Let n-1, and for all i (1-i-n), let o^GOFFd q^£CPd and p^E(skip}UCC^.
Then (al) the set of selective guarded processes SGPd consists of all state
ments of the form

UU-l/P-l + q-L П ... □ <Pn ,Pn + qn)

(a2) the set RGPd of repetitive guarded processes consists of all statements
of the form

‘‘»i'Pi + 4 D ••• D фп'рп " %>■
The intended meaning of a statement in the form

и(Ф1/Р1 -*■ qx □ ••• □ фп 'Рп ^ qn)
is: "choose nondeterministically an i (1-i-n) such that ф ̂ is satisfied for
the actual values of the variables, then execute p^ followed by the execution
of q ". The statement

••• D фп'Рп + V
is to be understood informally as "repeat nondeterministically in all possible
ways the execution of p^ followed by q^ for all such i (l^i-n) for which
is satisfied by the actual values of the variables until every ф ̂will be
false". (These explanations of the meanings will be made more precise below •)
(ß) The set of sequenced processes (of type d) SPd consists of all statements
of the following form: let C be a finite set (the set of labels) with two
distinguished elements c. GC and c .G C; let plf...,p GCP,, then (c. : plfin out 1 n d v m 1
C]_: P2 ' * * ' ; cout: pn)GSPd-

The execution of a sequenced process is to be understood informally
in the well-known way: let p. labelled by c. be executed first followed by1 in J
P ? labelled by c,, and so on; finally let p^ labelled by c ̂be the last ± n out
in the sequence of execution.

47

The set SCPd is then defined as the smallest set containing SCd , CCd ,
CP , SP and GPj = SGPj U RGP-, and closed under the formation rules exhibit- d c d d a
ed above.

Before going further in the definitions of concurrent and communicative
sequential processes, we define the set of variables V(p) and the set of
communicating variables CV(p) occurring in a process p, by recurrence:
Let p 6 SCPd;
if p = skip, then V(p) = CV(p) = 0
if p = v-*4 T, then V (p) = {v} U V(x)

where V(x) is the set of variables occurring freely in t , and CV(p) = 0
if p = q(v)!£(x), then V(p) = V(x) and CV(q) - {v}
if p = q(T)?£(v), then V(q) = V(x) and CV(p) = (v)
if p = (c^ s Pd» C2 : P2) , then V(p) = V(pd) U V(p2) and CV(p) = CVip-^U CV(p2)
if p = . (ф, ,p, ■+• q, □ . . . □ ф ,p -*■ q) where the dot stands for eitherf l'^l n Mn

n n
U or *, then V(p) = U (У(ф) U V(p.) U V(q,)) and CV(p) = U C(p.) where

i=l 1 1 1 i=l 1

V (ф^) is the set of variables occurring freely in ф .̂
Let m-1 and for all i (1-i-m) p^ 6 SCPd - The m-tuple [p^, . . . ,pm] is a

concurrent sequential process iff for all i,j (l-i,j-m), V(pd) = V(p^) and
СV (pd) = CV(pj) = 0. Similarly, [p^,...,pm] is a communicating sequential
process iff for all i,j (l-i,j-m, i^j), V(p.) П V(p.) = 0 and CV(p.) C

* : ' J ^m
U CV(p.) .

k=l K
k^i

C1To define the semantics of the notions introduced above, let c*6Md and
the set of assignments relative to c* be A ol. Since in either case of the
process introduced above V(p) U CV(p) £ V, we can observe that an "instanta
neous state" is just an element of A 01 (obviously restricted to the set
V (p) U CV (p) . Similarly, the relation -»■ is defined as a binary relation on
/Iе*. This, in turn, means that the Kripke model associated with a concurrent
or communicating process is given on the set of assignments relative to the
classical model <-*, the universe of which contains the ranges of all variables
occurring in that process. Hence Of plays the role of an abstract data type
[32][47].

Formally, we have to define the "next statement function", the "data
transformation function" and, in case of communicating processes the func
tions that determine the communication.

The next statement function X can easily be given - depending on the
properties of the "executing agent", since according to the definitions
above labelling is used only in sequenced processes, and sequencing is
allowed only a finite number of times. In the simplest case, let

(cin!Pl! c’:p cout:pn* 6 SPd'

48

and assume that аС-Л01 defines the actual values of the variables. Then,
X(ci,a) = ci+1 for all i (1-i-n)

where c^n and cßut are denoted by c-̂ and c , respectively.
The data transformation function у is defined by recursion. Let us

suppose that a E A 01 gives the actual value of the variables immediately before
the execution of process p. Let c be an arbitrary label. If p=skip, then
y(c,a)=a. If p=v«-T , then у (c, a) (w) =t ̂ [a] for v=w, otherwise у (c , a) (w) =a (w) .
Let p=U(cp1, P1-*q1 □ ... □ Фп , Pn -̂qn) . If for all i (1-i-n), (9t V cp̂ [a] , then
y(c,a)=a, otherwise let i be chosen nondeterministically in such a way that
N cpi [a] and let us define that y(c,a)=y^(c,a) where у^(с,а) represents

the data transformation of the process (p^;q^).
Let p=* (ф^/P^q^^ □ ... П ^n 'Pn^4n)* If for all i (1-i-n), cl ̂ <p [a] , then
y(c,a)=a, otherwise let i be repeatedly and nondeterministically chosen
so that 0 1 cjk [a] and let у (с , a) =y (c, a) be defined where у.̂ (с,а) again
represents the transformation of the process (p^iq^). Finally, let us suppose
that p=q(v)!5(T) and assume that a and a' give the actual values of the
variables in p and q, respectively. Note that p and q have no common vari
ables, hence alia' is a restriction of an element of A 01. Then, let

and
y(c,a')(w) = a'(w) for w^v .

Using similar notations, if p=q(x)?£(v), then (с,т^[а']) = a(v) andPy(c,a)(w) = a(w) for w^v.
Observe that at each moment of execution, the actual values of the

variables can be expressed by classical first order formulae, hence we can
formulate the before - after behaviour of processes. However, it is impossible
to describe any execution of a process as a whole because classical languages
provide no means for handling more than one assignment simultaneously. What
is missing is a kind of quantification over assignments. This will be pro
vided by more complex languages in the rest of the chapter.

3. MODAL (FIRST ORDER) LANGUAGES

Historically modal languages were introduced for formalizing such modal
sentences as "It is possible that ..." or "It is necessary that ...". Later,
Kripke defined the exact semantics for these languages [45-46] using the con
cept of nonclassical models now named Kripke models. Nowadays, modal languages
are the simplest formal tools which can describe Kripke models. Given a
Kripke model (Q,R), the basic idea of constructing modal languages is that
elements of Q do not appear explicitly in formulae nor does the accessibility
relation R.

49

Let a type d be fixed. The alphabet of modal languages can be obtained
from that of the classical ones by considering two new logical symbols: D
(box) and О (diamond).

The definition of formulae can be carried over in the same way as that
of F, but two new formation rules can be used: d
(i) if ф is a modal formula, then 0<P is a modal formula, too
(ii) if cp is a modal formula, then О ф is a modal formula, too.

The set of modal formulae is the smallest set which contains Fd and is
closed under rules (i) and (ii). The set of modal formulae will be denoted
, „mod by Fd .

KrThe collection of Kripke models of type d is denoted by Md ;

Mdr = { (Q,R) I QCM^1 such that if 01 = (А,1д), = (В, Iß) 6Q then

A = В and RCQxQ}
The assumption that all elements of Q have the same set as a universe allows
the definition of assignment to remain unchanged; let the set of assignments
relative to Q be denoted by Jp . The definition of OL^moĉ cp[a] for <*GQ, a £ A ® ,
(pGF™°d goes similarly to the classical case except that two new clauses must
be added to the recurrénce:
(i) Ct (=т0<̂ С!ф[a] iff for all jJ-GQ, such that < & , & > £ R, &■ |=тос*ф [a] holds;

(ii) |=raO£̂ 0<p[a] iff for seme ^GQ, such that <c*,<&>eR, |=т0(̂ ф[a] holds.

If for all OfGQ, аг|=т0<̂ ф[а], then ф is said to be true in the Kripke
model (Q,R) under assignment a, in notation: (Q,R) (=то<̂ ф [a] . If for all a E A ® ,
(QfR) |=тОС*ф[а], then is true in (Q,R) . If ф is true in every element of
Kj-Mj , then it is a universally true (modal) formula, d

Obviously, we have defined a mathematical logical language
.„mod ,.Kr .mod.
<Fd ' Md ' *= >

this being the first order model language for every type d.
Different properties of the Kripke model (Q,R) can easily be expressed

by modal formulae. Some of them are exhibited in the following table; it is
to be understood that the property on the left hand side of the vertical holds
for (Q,R) iff the formula on the right hand side is true in (Q,R) for all

R is reflexive
R is transitive
R is dichotomous
R is discrete

□ф -*■ Ф
ООф ->• <̂ ф
□ (□ф -*• 0ф) V □ (Пф + Оф)
□ (□(ф -*■ Пф)) -*■ (ФПф ■+ ф)

50

Several properties, useful from the protocol verificational point of
view, can be formalized in the modal languages. Some of the most important
ones are collected in the table below.

Property Modal formula
"Ф will be true and remains
true thereafter"

00ф

"ф will be true again and
again, infinitely often"

□Оф

"<p is an inductive assertion,
i.e. if it is ever true, then
it will remain true thereafter"

□ (ф+Пф)

"if ф is ever true, then ф will
always be true thereafter

Ф+Оф

"if ф is ever true, then <p will
sometimes be true thereafter

ф+0 ф

4. TEMPORAL (FIRST ORDER) LANGUAGES

The functioning of protocols is strongly connected with time considera
tions. Albeit modal languages are appropriate to describe many properties
of protocols, others, more explicitly referring to the flow of time, are
inexpressible by modal formulae only. An example can be:

"cp will have been true, when ф becomes true".
To deal with such sentences, one can introduce other modal operators

in addition to or instead of the box and diamond symbols. One possibility
is to use the "until" operator. This operator is somewhat stronger than □
and 0. Historically, these languages were introduced in order to formalize
the tenses of English verbs, hence they are named tense - or temporal lan
guages [24-27][30-31][44][50-51][60]. The basic idea of constructing such
languages is similar to that of the modal ones, i.e. neither the elements
of Q nor R will appear explicitly in temporal formulae.

Let a type d be fixed. The alphabet of temporal languages are obtained
from symbols of classical languages by adjoining a new logical symbol {> to
them. The recursive definition of- classical formulae is augmented by one
new formation rule: if <p and ф are (temporal) 'formulae, then срС>ф (reads as
"ф until ф") is again a temporal formula.

The set of temporal formulae of type d will be denoted by F*jem. Let
(Q,R)FM^r, а£Л^ and CIGQ. The relation l=tem is defined by the usual recursion
as in the classical case by adding the following clause, as well:
Cl^tem^^j- a] for all Jí-eQ such that <CI,^>eR, we have that if for all £GQ,

51

for which both C*,<C>GR and <«C^>GR hold, then £рЛет -|<p[a] entails «̂ t=̂ em(p[a] .
Clearly, <F^em, M^r, =̂tem> is a mathematical logical language, a tem

poral first order language.
The operator t> is really stronger than □ and <} since we can define:

□ ф iff \pt> (фЛ-чф)
and Пф iff -гСНф for arbitrary ф.

Hence, F™0^ is definable in F^em, which means, in turn, that everything d d
expressible in the modal languages is expressible by temporal formulae.

We can restrict our considerations to a special class of Kripke models,
namely to those where R is a discrete dichotomous ordering. This restriction,
however, causes some minor changes to the description of processes by ruling
out the basic nondeterminancy built into guarded commands. Nevertheless, when
nondeterminancy is only of secondary interest, then the restriction can be
very useful.

Let М°Г C M^r such that R is a discrete dichotomous ordering. In this d d
particular case, the meaning of ф|>ф can be given in a somewhat simpler way
than in the unrestricted one, as follows.

Let C*eM^r<̂ and аел^ С*НфРф1а] iff there exist ^ , . . . such
that for all i (1-i-n), <&.,#..,>€ R and &. Иф, moreover Ъ Ьф.1 í+l 1 n

Considering only elements of , it is possible to introduce another
modal operator called the "next" operator. Let Оф stand for (ф where ф
is arbitrary. Intuitively speaking, Оф states that ф will be true in the
next state.

In closing, we give some properties of protocols, expressible by temporal
formulae in the following table.

Property
"if ф is true, then it remains
true until T becomes true"
" by the time Ф is true, ф
will have been true"

Temporal formula

ф->- (ф>Ч)

фф-* (-1ф>ф)

5. SITUATION-DESCRIPTIVE (FIRST-ORDER) LANGUAGE

In the construction of modal and temporal languages we stipulated that
no elements of Q and R can appear explicitly in formulae and we overcome the
difficulty of identifying states by allowing quantification over Q. (Observe
that according to their definitions, □ and () play the role of universal
and existential quantification on states, respectively.) This indirect and
incomplete specification of states is sometimes unsatisfactory, i.e. when
describing protocols it is often necessary to identify a particular state
explicitly. Hence we have to allow some kind of appearance of elements of A^
in constructing formulae. If this is the case, then the languages obtained

are called situation-descriptive languages [211 [58-59 11 66]. We shall not; deal with
such languages in general, but give only one very special case.

Let L be a finite set of labels. Elements of L will be used as extra-
logical variables. Let F*Iem be the set of temporal formulae constructed

^ sitearlier in this chapter, see Section 4. The set , the set of situation
-descriptive formulae, is defined by

Fsit = ptem y {at 1 \l e L) и {after 11 IE L) .

The models of the language are again Kripke models. By an assignment
relative to the Kripke model (Q,R) we mean a mapping a: V UP -*• QUA where V
is the set of (ordinary) variables and A is the (common) universe of element
of Q, such that

a: V -+ A and a: L -*■ Q.
The set of assignments relative to (Q,R) is denoted by A 1*. The relation
can be defined by recurrence for elements of F*jern just as |=tem was. For the
new formulae, the definitions are given as follows.

Let OtGQ, а6Л°; then

0*=Slt at 1 iff a (1) = CXand
0l=slt after 1 iff <a (1) ,(J>GR.

C K v1 c ^Then, obviously, <F° , M, , \= > is a mathematical logical languaged d
for all type d, the situation-descriptive language.

To illustrate the expressive power of situation-descriptive languages
let us consider a two-component concurrent sequential process F. Let us
suppose that in each of the two components, there exists a critical section
labelled by 1̂ in the first and by 1^ in the second component. If these
critical sections are not allowed to be executed simultaneously,
i.e. the two components are mutually exclusive with respect to the labels
1^ and 12 » then this situation is described by the formula

D —\(at 1 ̂ A at ^2 ^

Observe that for communicating sequential processes the mutual exclusi
vity is meaningless.

We say that a concurrent or communicating process P is deadlocked or,
equivalently, is in a deadlock state, if no component can step any further;
e.g. in the concurrent case, every component of the process is waiting for
the fulfilment of such conditions which are falsified by the actual value
of the variables whereas in the communicating case, every component is
waiting for the arrival of messages from other components. Let us consider
first, a concurrent process with two components and assume that the first
statement 1 : if then 12 else 1-̂ occurs in the first component, the
statement 1^: if then 13 else 1^ in the second one. (Note that the
traditional programming construct if... then...else... is easily express
ible by selective guarded commands.) If may well happen under execution of P

53

that the next parts of the two components to be executed are the statements
labelled by 1^ and 1 ,̂ respectively, but neither ф ̂ nor ф 2 is true under
the actual values of variables, i.e. P arrives at a deadlock state. We can
avoid this undesired situation if we require that the following situation-
-descriptive formula is true in the Kripke model associated with P:

□ ((at 1^ A at 1̂) -* (ФдУф2))
Let us suppose now that P is a communicating process with two compo

nents p^ and p2:
1-̂ P-L (x) ?£ (y)

occurs in p2,
12: p2(u)?£(v)

occurs in p^. Again, it can happen that both components wish to execute the
statements labelled by 1^ in the second and by 12 in the other component.
If this is the case, then P is in deadlock state .since both components are
waiting for the arrival of messages from each other. This undesired situation
can be ruled out by requiring that the formula

□ I (at 1 A at 12)
holds. Note that this formula is similar to the formula expressing mutual
exclusiveness but, in this case, it rather prevents P from being deadlocked.

In connection with critical sections in components of a concurrent
process P is the so called liveness property. Let us suppose, that the labels
of the critical sections are 1^ and 12, respectively in the first and second
component of a (two-component) concurrent process P, and that the formula

фо->0 ~i(at 1^ A at 12)

expressing the mutual exclusiveness of the two components with respect to
the labels 1 ̂ and 12 is true in the Kripke model associated with P. It can
happen, however, that this formula is satisfied in such a manner that, for
example, the second component never enters into its critical section labelled
by 12, that is, at 12 will never be true (hence at 1^ A at 12 will always be
false, which, in turn, means that □ ->(at 1^ A at 12) will always be true).
This objectionable situation is avoided as follows. Let us suppose that the
critical section labelled by 12 appears in the form

< V Pl! 12 : P2’
in the second component. It is clear that if 1q: p^ is actually under execu
tion, then (by definition of sequenced processes) the second component
wishes to execute 12: p2 next. Because of mutual exclusivity, l2 :P2 can ke
executed eventually and not necessarily in the next step. But if we require
that the formula

at 1 4 0 at Lо 2
should hold, then l2 :P2 wi H eventually be executed. This property is called

54

a kind of liveness of the second component at 1̂ . Note that this notion of
liveness has no sense with communicating processes.

In the case of concurrent processes one component can be blocked by a
malicious scheduler, too; i.e. if the scheduler never allows that component
to take a step. This malignancy can be excluded by requireing that for every
such part l:p of the component whose part is critical but defines no loop,
the formula

at 1 0 H at i)

is true in the Kripke model associated with the process at hand. If l:p
defines a loop, e.g. the form of p is

if <p then 1-̂ else 1
then the formula above will not force the scheduler to be benevolent, since
it may well happen that ф will never be true which implies also that

0 H at
will be false forever. Nevertheless, it is possible that ф is true at a
particular moment of execution but just then the scheduler lets another
component continue. The only thing that can be required is for ф to be true
and remain true thereafter, whereupon the scheduler eventually chooses that
component. This is formalized by the following situation-descriptive formula

at 1 ЛПф -+• 0(-i at 1) .
A much stronger property of the scheduling is that if cp is true infini

tely often, then the part labelled by 1 will eventually be executed. This
is given by the formula:

at 1 Л П<>Ф ** <)(~i at 1) .
In the case of communicating processes, every component is controlled

by its own scheduler, which is, of course, benevolent.
These properties and their formalization by situation descriptive

formulae are summarized in the following table.

, Situation-descrip-Property tive formula

"mutual exclusiveness with
respect to labels 1-̂ and l^" □—1 (at Ч л at X2

"no deadlock can occur at
1^ and 1^" (concurrent case)

П ((at
■* (фд̂

h л
V Ф2)

at
1

13)̂

"no deadlock can occur at
1 and 1^" (communicating
case)

□—i (at Ч л at V

"liveness" at Xo -*■ 0 at l2liveness

55

"the scheduling is
bevevolent"

a t 1 + Q(—\ a t 1)

(no lo o p)

a t 1 A Dcp -+ 0 (~I a t 1)

(lo o p)

"the scheduling is
strongly benevolent"

a t 1 ЛСК>ф -*• Q (- \ a t 1)

6. DYNAMIC (FIRST ORDER) LANGUAGES

So far, we have introduced and analysed plenty of languages. All these
languages are appropriate for describing Kripke models (notwithstanding,
with different expressive power). The idea behind them was that to each ruh
of a process, a Kripke model was associated. This means that we can describe
any single particular execution of a process by these formulae, but it is
impossible to deal with all possible executions at the same time. Clearly,
by providing inference systems for these languages, we are able to prove
several properties of every single run, but any property of the whole collec
tion of runs of a process is completely intractable. For example, partial
correctness of a process is to be understood as an assertion that all finite
runs (i.e. all runs which terminate) end in a prescribed state. Kripke models,
however, have po”er enough to contain all runs of a process, hence, by
constructing appropriate languages the features of the collection of all
runs can be investigated. Then, obviously, processes (the parts of the main
process with which Kripke models are associated) must appear explicitly in
formulae to be defined. Allowing this, we obtain another kind of languages,
the so called dynamic languages [48][53-54][56-57][59][65] .

For defining dynamic formulae, let us suppose that a type d is fixed,
and consider P, the set of variables for processes and V, the set of ordinary
individual variables. For all pGP, let [p| and <ф> be two new logical symbols.

We can construct the set of dynamic formulae Fdyn by stipulating
Fcl C Fj^n and that F ^ n is the smallest set closed under the following two d d , d
rules: if cpGF^ and pGP,

then (i) [pj ф €

(ii)<^> cp e Fdyn .

According to their intended meaning one possible reading of these clauses
can be: "for all terminating runs of p, ip will necessarily be true in the
ending states" and "for some terminating run of p, ф will eventually be
true in some state".

The models of these languages can simply be given by defining an
accessibility relation R ,d for each pGP and for every input data vector dQp о

in exactly the same way as was done in Chapter II, Sections 3 and 4.
We can assume that

R , d D R , d, = 0 p — о p — 1*o *0
and

R , d П R , d = 0P0 -o P2 -o

for all pQ, p-̂ , dQ, d^. (This assumption, however, is counterintuitive and
is adopted for the sake of convenience. On the other hand, by admitting this
assumption we do not restrict generality, since using simple technical tools,
we can always distinguish between these relations.) It follows that

R = U R ,d and hence
p d P -°—о

are binary relations on the set of states. Thus, (Q,R) is a Kripke model
where R has a finer structure) i.e. dynamic languages again describe Kripke
models.

Let A ® = (a|a: V-̂ A} be the set of (ordinary) assignments. Every a e A ®
can be extended to the set VUP by defining

a(p) \d) — R— *• —о p , d^ —о
Let Л ^ ' К ̂ = {а|аСЛ"}. The relation can be given in the standard

way for classical formulae while for the new formulae we proceed by recurrence.
Let

аСЛ (Q,R)
then,
(i) (Q,R) f= [p] cp[a] iff for all data vectors d, (CbR^)̂ f= 0 ф[a]
(ii) (Q,R) И <p[a] iff for some data vectors d, (Q,R^)̂ t=4^o[a].

Note that by these definitions |j5l| and <^> differ somewhat from the
similar definitions in Й8] [53-54] [56-57]; moreover that -gfpf -yp is stronger than <̂ >Ф
which again makes some deviations in comparison with the usual definitions
of the modal operators 0 and Q .

Clearly, we obtain a mathematical logical language <F^ n > Н ^ П> »
the dynamic first order language. Observe that by introducing the "until"
operator instead of JjpJ and <(p̂ , we could define another language, the
temporal dynamic language

^„temdyn „Kr .temdyn^
<Fd ' Md ' *= >

along the line of reasoning of Chapter III, Section 4.

57

Some useful properties expressible by dynamic formulae are given in the
table below.

Property Dynamic formula
"p is partially correct
with respect to the input Ф + JpJ Ф
condition Ф and output
condition ф"
"there exists a run of p,
in the final state of which ~\ f"P| ~| Ф
Ф is true"
"there exists a run of p
with input condition <p, Ф 1 [T] 1 Ф
in the final state of which ip
is true"

7. ACTION LANGUAGES

When we allow the appearance of symbols for both state and process
explicitly in formulae, we obtain a language which is very much stronger
than any of the languages introduced so far. This is the so called language
for the logic of actions, [20-21][38][41-42][66]. Here we shall restrict
ourselves to the definition of two particular cases.

The first is simply obtained by putting together the definitions of
and F ^ n. In this particular case, states appear only in the form of

at 1 and after 1? p processes occur in the form of modal operators Q5] and
(or £|J>) . These languages will be denoted by

plam Kr
<pa ’ Md N lam>

and
<Flat м*г, t=lat>

The alphabet of another kind of action language is obtained by adjoining
a new logical symbol Л (delta) to that of the classical one, and taking Ц ,
the set of labels to identify states and P, the set of actions, to identify
processes. Let

ДаД = Fcl u (at 11 lei} и {д cp 11 e l , pep, cpgf^1}ip1
The intended meaning of the new formulae of the form Д-^Ф is:

"if the action p is performed at state 1, <p will be true in the resulting
state", i.e. Д^ is a generalization of the "next" operation. The semantics
of formulae Д^ is defined more exactly as follows.

58

Models of this language are again Kripke models in the form (Q,R). For
each p6P, let

6p C { f I f :Q •+ Q}

and let R be defined as R = U 6 . Clearly, R is a binary relation, henceP P(Q,R) is indeed a Kripke model. Then
(Q,R) Alp <p[a] iff 6 (a(l)) t= cp[a]

where a is an assignment in the sense of Section 6 above.
Of course, we can start with F™° or F*jem instead of F ^ when defining

formulae. Then we have three new languages
^_1аД ..Кг .1аД^<Fd , Md , i= >

<F^amÄ, М«Г, И 1ШПА>

<FdatÄ, Mdr, l=latÄ> .

The overall picture of the languages introduced in this chapter is
given by the following diagram; arrows represent set theoretic inclusion.

60

CHAPTER IV. CALCULI

The aim of the present chapter is to complete the definitions of several
logics by providing calculi to languages introduced in the previous one.

1. CLASSICAL LOGIC

Classical logic has many different complete and correct calculi. For
example, Manna [50] gives an interesting calculus, the resolution calculus
(for further details, see [16] [49] [62]). Another calculus, the natural (or
Kanger-Gentzen) calculus is investigated in detail by Takeuti [67]. Both
types of calculi are designed in such a way that the search for formal proofs
(which is generally extremely difficult) is governed by simple rules, hence
the construction of proofs even for computers is relatively easy and mecha
nical. (This is true, at least in principle. In practice, hovever, the
search for proofs of nontrivial assertions is frequently far beyond the
capacity of the largest computers - even by these well-governed inference
systems.)

A third type of calculi, called Hilbert-style calculus is not so well-
-designed but it is very much easier to comprehend than the first two. This
calculus is axiomatic, and can be given as follows:

• c 1Axioms For all Ф,ф,х G F^ , the following schemata are axioms:
HA1: ф -*■ (ф -*■ <p)
HA 2 : —I —I ф ф
HA 3 : (—I Ф -*■ —»ф) a- (ф -*■ ф)
HA4: (ф -»■ (x -*• ф)) ((ф -*• ф.) ♦ (ф X>)
HA5: ÍW) {<*> ■* ф) -*■ (ф -► (Vv^ provided v does not occur freely in ф
HA6: (Уу)ф -*■ ф, where ф is obtained from ф by substituting an arbitrary

term t into every free occurrence of v in ф provided each (free)
variable of t remains free after the substitution.

61

Inference rules
HR1: ф is inferred from ф and ф ■+ ф (Rule of Detachment)
HR2: Vvф is inferred from ф (Rule of Generalization)

Note that in the presence of equality, three additional axioms (or more
precisely, axiom-schemata), for expressing that equality is a congruence
relation, are needed. A famous and fairly deep theorem, Gödel's Comple
teness Theorem, states that this inference system is complete and correct.

If one wishes to prove a theorem ф , then one can proceed in two basic
ways, viz to start with the axioms and, using inference rules, generate newer
and newer formulae (from the axioms and from the formulae generated previously)
until ф is generated, that is to use a forward or top-down way of reasoning.
The drawbacks of this top-down approach, thanks to the huge number os poss
ible steps at the very beginning of generation and thereafter, are obvious.

The other approach is a backward or a bottom-up way of reasoning, when
one starts from ф to be proved, and looks for formulae from which it can be
inferred and then to continue this searching in the same way to the formulae
found in the previous steps until axioms are arrived. Nevertheless, this
bottom-up way of reasoning is not well organized thanks to the Rule of
Detachment: if ih is to be proved by this Rule, an infinite set of candidates
for ф exists and no general rule can be given to help the choice from this
set. The Kanger-Gentzen calculus rules out this natural but inconvenient
inference rule.

The Kanger-Gentzen calculus is usually given in terms of sequents. Let
I and Г be two finite (maybe empty sets of sentences. By a sequent we mean
the triplet £ -*■ Г. It can be interpreted as follows:
(i) Let £ = (ф ^,...,ф }, Г = {ф^,...,фт }; then £ -* Г is to be meant as

Ф1Л...Лфп + ф-jV..-v^m .

(ii) By convention, Л0 = true, V0 = false; according to this convention if
Г = 0, then £ Г = -j (ф -̂ Л. . .Лф^) ; if £ = 0 then J -* Г = ф-̂V. . .V^n and
if I = Г = 0, then I Г is universally false,

c 1Axioms For all <p£Fq , the sequent {ф} -*- (ф) is an axiom.

Inference rules (£,ф = ф ,£ = (ф}и£ everywhere)
KGRl (Weakening) left: ф , Г -*■ £ is inferred from Г -*■ J

right: Г -* £,ф is inferred from Г -*- £
KGR2 (Factoring) left: ф , Г 1 is inferred from ф ,ф ,Г -*■ I

right: Г -*■ £,ф is inferred from Г ■+ £,ф ,ф

62

KGR3 (Merging) left: Г^,ф,ф,Г9 -* £ is inferred from Г^,ф,ф,Г2 -► £
right: Г -*■ is inferred from Г I ,l2

KGR4 (Negation) left: -g ф ,Г -*■ £ is inferred from Г •> £,ф
right: Г -* [,ф is inferred from ф ,Г -*■ £

KGR5 (Con junction) left: фЛф,Г -*• £ is inferred from ф,Г -> £ or from ф,Г->-£
ritht: Г -> £/фЛф is inferred from Г -*■ £ ,ф and Г £,ф

KGR6 (Quanti
fication) left: (Vv)(p(v), Г ->- £ is inferred from <p (t) , Г £

right: Г -+ ^,(Vv)<p(v)is inferred from Г -*■ £,ф(и)
where t is an arbitrary term, u does not occur in Г and £„

This inference system is again complete and correct (possibly with additional
axioms for equality), as proved by Gentzen and Ranger. Observe that in
constructing a proof for ф in a bottom-up way we can restrict the searching
to the set of subformulae of ф , i.e. to those formulae of which ф is built
up. Since the set of subformulae schenata of arbitrary ф is finite, this restriction
considerably delimits the candidates of formulae by which ф can be proved.

The presentation of the resolution is lengthy, hence it is omitted here.

2. MODAL LOGIC

Calculi for modal logics are investigated in several textbooks [24] [27]
[44]; other aspects are developed in [13]. There ara many different modal
calculi, e.g. Hughes-Cresswell [44] give 30, Gabbay [24] gives another 25.
We shall present only three from hughes-Creswell, the so called S4, S4.3.1
and S5 [44] .

Calculus S4 is in fact the simplest by which processes can be investigated.

Axioms Let Ф*>''ф stand for —10(фЛ—(ф) and ф<г-->ф) for (ф̂ -»ф) Л (ф«-»ф)
S4 А1 фЛф^ фАф
S 4 А2 фЛф~>ф
S4 A3 ф ~> (фАф)
S4 A4 ((фЛф)Лх) (фЛ(фЛх))
S4 А5 ((ф-»ф)Л(ф-> х)) (Ф,~5> х.)
S4 А6 (фЛ (ф->ф)) ~>ф
S4 А7 □ ф -»ОПф

Inference rules
S4 R1 From ф and ф^-^х • infer E,, where E, differs from ф only in having x

in some of the places where ф has ф.
S4 R2 From ф and ф, infer фЛф.
S4 R3 From ф and Ф^>ф, infer ф.

63

Calculus S5 is, in a certain sense, the strongest modal calculus.

Axioms
S5 A1 Axioms for S4
S5 A2 cp ">D<>(p

Inference rules The same as for S4.

It is proved in [13] that S4 augmented with the classical inference
system is a correct and complete calculus for such modal languages where R,
the accessibility relation of Kripke models, is a preordering, i.e. R is
reflexive and transitive; and S5 (with the classical inference system, of
course) is complete and correct for such languages where R is an ordering,
i.e. R is reflexive, transitive and symmetric. In Hughes-Cresswell [44],
S4.3.1, again with the classical axioms and rules, was proved to be complete
and correct with respect to those languages where R is a discrete, linear
preordering.

3. TEMPORAL LOGICS

Calculi of temporal logics are investigated in [60]; other aspects in
[21]. Rescher and Urquhart treat 22 differént calculi for temporal logics
[60]. We shall give here only one of them - obtainable from the inference
system S4.3.1. This is defined as follows.

Axioms
T4.3.1 Al □ Ф .-*■ Ф
T4.3.1 A2 □ (ф + ф) -*• (Пф -*■ Пф)
T4.3.1 A3 ФФф О ф
T4.3.1 A4 П(П(ф ^ П ф) ф) -*■ (ФПф + ф)
T4.3.1 A5 0(—]ф)<— > —(Оф

Calculus S4.3.1 gives axioms and inference rules for treating the
next operator.

Axioms (stands as for S4)
54.3.1 Al ((ф '-»Оф)'-»ф) -*• (ФПф ф)
54.3.1 A2 П(Пф + Пф) VD (Оф ■+ Пф)
54.3.1 A3 Пф -> ППф
54.3.1 A4 Пф -*■ ф
54.3.1 А5 П(ф +ф) (Пф Пф)
54.3.1 А6 ф where ф is a universally valid classical first order sentence

Inference rules
54.3.1 Rl From ф , infer Пф (Rule of Necessiation)

64

T4.3.1 A6 О (cp -*• ф) + (Оф -*■ Oi)i)
Т4.3.1 А7 Пф * Оф
Т4.3.1 А8 []ф ОПф
Т4.3.1 А9 П(ф -»-Оф) ■> (ф -*• Пф)
Т4.3.1 А10 (Оф ф) >ф ■+ Оф (induction axiom)

Inference rules
T4.3.1 RI
T4.31. R2
T4.3.1 R2

If Ф is a classical universally true sentence, then, infer ф.
From ф and ф+ф, infer ф
From ф , infer Пф .

4. ON CALCULI FOR OTHER LANGUAGES

Other languages, introduced in the last three sections of Ch.III. are
more problematic from the viewpoint of their calculi.

For situation-descriptive languages, as defined in Chapter III, it can
be proved indirectly that complete and correct calculi exist. This can be
done by a lengthy elimination of situation-descriptive formulae. Albeit such
calculi exist, no explicit and direct one, for example in axiomatic form,
is known to us at the moment.

Dynamic languages were proved to have complete and correct calculi
for particular models, for the so called arithmetical universes [23] [53—54]. For
more general Kripke models, it is known that these languages have no comp
lete calculi.

lat KrA similar remairk applies to action languages in the form <F^ , ,
] д-j-|= >; languages with Д as a primitive have complete and correct calculi

as was shown in Hayes, Ecsedi-Tóth [21][38]. For these languages, however, again
only the existence of such inference system was demonstrated and no parti
cular system is yet known.

It can be proved that this calculus is correct and complete for the language
.̂_,tem uord .tent
<Fa ' Md - и >•

65

REFERENCES
[1] Andréka, H., Németi, I.: A Characterization of Floyd-provable Programs,

Preprint of Math. Inst. HAS (1978)
[2] Andréka, H., Németi, I.: Classical Many-Sorted Model-Theory to Turn

Negative Results on Program Schemes to Positive, Preprint (1979)
[3] Andréka, H., Németi, I., Sain, I.: Completeness Problems in Verifica

tion of Programs and Program Schemes, Preprint (1980)
[4] Andréka, H., Németi, I., Sain, I.: A Complete Logic for Reasoning about

Programs via Nonstandard Model Theory, I. II., Theoretical Computer
Sei., Vol. 17. No. 2 and 3. (1982)

[5] Bochmann, G.V.: Logical Verification and Implementation of Protocols,
Proc. 4th Data Communication Symp., Quebec 1975, pp. 7.15-7.20

[6] Bochmann, G.V.: A General Transition Model for Protocols and Communica
tion Services, IEEE Trans, on Comm., Vol.# COM-28, No.4. April 1980,
pp. 643-650

[7] Bochmann, G.V.: Architecture of Distributed Computer Systems (Lecture
Notes in Comp. Sei. Vol. 77.) Springer-Verlag, New York, Berlin, (1979)

[8] Bochmann, G.V., Chung, R.J.: A Formalized description of HDLC Classes
of Procedures, IEEE National Telecommunications Conference, (1977)

[9] Bochmann, G.V., Gecsei, J.: A unified Model for the Specification and
Verification of Protocols, Proc. of IFIP' 77, North Holland Publ. Co.
Amsterdam, New York (1977) pp. 229-234

LIO] Bochmann, G.V., Joachim, T.: Development and Structure of an X.25
Implementation IEEE Trans, on Software Ena., Vol. SE-5, (Sept. 1979)
pp. 429-439.

[11] Bochmann, G.V., Merlin, P.: On the construction of Communication
Protocols, Proc. Int. Conf. on Computer Communication, 1980, pp. 371-378.

[1 2] Bochmann, G.V., Sunshine, C.: Formal Methods in Communication Protocol
Design, IEEE Trans, on Comm. Vol. COM-28, No.4. April 1980, pp. 624-631.

[13] Bowen, K.: Model Theory for Modal Logic Kripke Models for Modal Predi-
cate Calculi, (Synthese Library Vol. 127) Dordrecht Boston (1979)

I 14] Brand, D., Joyner, W.H. Jr.: Verification of Protocols Using Symbolic
Execution, Computer Networks, Vol.2., Oct.(1978), pp. 351-360.

[1 5] Brooks, M.: Determining Correctness by Testing, SRI AI Dept, of Comp.
Sei. Memo AIM 336.

[16] Chang, C.C., Lee, R.C.: Symbolic Logic and Mechanical Theorem Proving,
Academic Press New York, London (1973)

[1 7] Danthine, A., Bremer, J.: Modelling and Verification of End-to-End
Transport Protocols, Computer Networks, Vol.2. (Oct. 1978) pp. 381-395.

[181 Danthine, A.: Protocol Representation with Finite State Models,
IEEE, Trans, on Comm. Vol. COM-28, No.4 (April 1980) pp. 632-643.

[19] Ecsedi-Tóth, P.: Logical Basis for Spcification and Verification of
Protocols, Proc. Math. Aspects of System Sei., (Salgótarján, 1982).

66

[20] Ecsedi-Tóth, P.: Intensional logic of actions, CL&CL XII, (197В)
pp. 31-45

[21] Ecsedi-Tóth, P.: On a General Theory of Dynamic Phenomena, Preprint
(1980)

[22] Ecsedi-Tóth, P., Túri, L.: Completeness and Interpolation Theorems
in Lattice-Valued Logics, to appear.

[23] Fischer, M.J., Ladner, R.E.: Propositional Mocal Logic of Programs,
Proc. 9th Ann. ACM. Symp. on Theory of Computing, Boulder (May 1977)
pp. 286-294

[24] Gabbay, D.: Investigations in Modal and Tense Logics with Applications
to Problems in Philosophy and Linguistics Synthese Library, Vol. 92 ,
Reidel Publ. Co., Dordrecht-Boston (1976).

[25] Gabbay, D.:(Axiómátizations of logics of programs, manuscript (1977)
[26] Gabbay, D., Pnuelli, A., Shelah, S., Stavi, J.: On the temporal ana

lysis of fairness, Proc. 7th ACM Symp. on Principles of Programming
Languages (Jan. 1980) pp. 163-173

[27] Gallin, D.: Intensional and Higher-Order Modal Logics, North-Holland-
-American Elsevier, New York, Amsterdam (1975)

[28] Gécseg, F. Peák, I.: Algebraic Theory of Automata, Akadémiai Kiadó
(1972) Budapest

[29] Gergely, T., Szőts, M.: On the incompleteness of proving partial
correctness, Acta Cyb. Tom.4. Fase 1 (1978) pp. 45-57.

[30] Gergely, T., Ury, L.: Time Models for Programming Logics, Proc.
Maghematical Logic in Comp. Sei. (Colloq. Math. Soc. J. Bolyai Vol.
26) North Holland, Amsterdam, New York (1981)

[31] Gergely, T., Ury, L.(A Theory of Interactive Programming, Acta Infor-
matica, Vol. .17, Fase. 1. (1982) pp. 1-20.

[32] Guttag, J.: Notes on Type Abstraction (Version 2) IEEE Trans, on Soft
ware Eng. Vol. SE-6 No.l. (Jan. 1980) pp. 13-23.

[33] Hailpern, B., Owicki, S.: Verifying Network Protocols Using Temporal
Logic, NBS Trends and Application Symp. (May 1980) pp. 18-28.

[3 4] Hajek, J.: Automatically Verified Data Transfer Protocols, Proc. of
the Fourth Inf. Comp. Communications, (Sept. 1978) Kyoto pp. 749-756

[35] Harangozó, J.: Protocol Definition with Formal Grammars, Proc. Symp.
Comp, Netw. Protocols, Liege (1978) pp. F6-1-10.

[36] Harangozó, J.: Formal Description of the Protocol Hierarchy,
Proc. EUROCOMP' 78, London (1978)

[3 7] Harangozó, J.: Formal Description of Network Protocols, Dissertation
(1978). Techn. High School Budapest.

[38] Hayes, P.: A Logic of Actions, Machine Intelligence 6, Edinburgh
Univ. Press (1971)

[3 9] High Level Data Link Control Procedures. Proposed Draft International
Standard on Elements of Procedures. ISO/TC/SG-6, N-1005 (1975)

67

[40] High Level Data Link Control Procedures. Frame Stuctures.
ISO DIS-3309, 2 (1975)

[41] Hewitt, C.: How to Use What You Know, Advance Papers of The Fourth
ICAI. Tbilisi, (USSR) (1975)

[42] Hewitt, C., Baker, H. Jr.: Actors and Continuous Functionals,
MIT(LCS) TR-194 (1977)

[43] Hoare, C.A.R.: Communicating Sequential Processes, Comm. ACM.
Vol. 21 (1978) pp. 666-677.

[44] Hughes, G.E., Cresswell, M.J.: An Introduction to Mocal Logic,
Methuen, London (1974)

[45] Kripke, S.: Semantical analysis of modal logic I, normal propositional
calculi, Zetischrift für Math. Log. Vol.9. (1963) pp. 67-96.

[46] Kripke, S.: Semantical analysis of modal logic II, non-normal modal
propositional calculi, The Theory of Models (ed. J.W., Addison,
L. Henkin, A. Tarski) North-Holland, Amsterdam (1965) pp. 206-220.

[47] Liskow, B.H., Zilles, S.N.: Specification Techniques for Data Abstrac
tion, IEEE Trans, on Software Eng. Vol. SE-1, No.l. (March 1975)
pp. 7-19.

[48] Lipton, R.: Reduction: A Method of Proving Properties of Parallel
Programs, Comm. ACM, 18, 12 (Dec. 1975) pp. 717-721

[49] Loveland, D.W.: Automated Theorem Proving: A Logical Basis
(Fund. Studies in Comp. Sei. Vol. 6) North-Holland (1978)

[50] Manna, Z.: Introduction to Mathematical Theory of Computation,
McGraw Hill Publ. Co. New York (1974)

[51] Manna, Z., Pnueli, A.: The modal logic of programs, Proc. 6th ICALP
(Lecture Notes in Comp. Sei. Vol. 74) Springer-Verlag, New York,
Berlin (1979) pp. 385-409

[52] Merlin, P.M.: A Methodology for the Deign and Implementation of
Communication Protocols, IEEE Trans. Commun., Vol. COM-24 (June 1976)
pp. 614-616.

[53] Meyer, A.R.: Equivalence of DL, DL+ , and ADL for Regular Programs with
Arrey Assignments, Internal Report, MIT (Aug. 1977).

[54] Parkh, R.: A Completeness Result for PDL, Proc. MFCS'78 (Lecture Notes
in Comp. Sei. Vol. 64.) Springer-Verlag, New York, Berlin (1978)

[55] Postei, J.B.: A Graph Model Analysis of Computer Communication Proto
cols, Ph.D., Dissertation, UCLA, Eng-7410, (1974) p. 184

[56] Pratt, V.R.: Semantical Considerations on Floyd-Hoáre Logic, Proc.
17th Ann. IEEE Symp. on Found, of Comp. Sei. (1976) pp. 109-121.

[57] Pratt, V.R.: Models of Programming Logics, Proc. 20th Ann. IEEE. Symp.
on Found, of Comp. Sei. (1979)

[58] Rasiowa, H.: Completeness in Classical Logic of Complex Algorithms,
manuscript

[59] Rasiowa, H.: Algorithmic Logic, Multiple-valued, Extensions,
Studia Logica XXXVIII (1979) 4, p. 317

[60] Rescher, N., Urquhart, A.: Temporal Logic, Springer-Verlat, Wien,
New York, (1971)

60 -

[61] Rudin, II., West, C.H., Zafiropulo, P.: Automated Protocol Validation;
One Chain of Development, Computer Networks, Vol. 2. (1978) pp. 373-380.

[62] Sandford, D.M.: Using Sophisticated Models In Resolution Theorem Prov
ing , (Lecture Notes in Comp. Sei. Vol. 90) Springer-Verlag (1980)
Berlin, Heidelberg, New York.

[63] Schindler, S.: Algebraic and Model Specification Techniques, Proc.
Hawai Int. Conf. on System Sei, (Jan. 1980) p.13.

[64] Schultz, G.D., Rose, D.B., West, C.H., Gray, J.P.; Executable Descrip
tion and Validation of SNA, IEEE Trans, on Comm, Vol. COM-28, No.4.
(April 1980) pp. 661-677.

[65] Segerberg, K.; A Completeness Theorem in the Modal Logic of Programs,
Notices Amer. Math. Soc. 24 (1977) A-552.

[66] Stepankova 0., Havel, I.: Some Results Concerning the Situation Calculus
Proc. of MFCS'73 (1973, High Tatras) Math. Inst. Slovak Acad. Sei.
(1973) pp. 321-326.

[67] Takeuti, G.: Proof Theory, (Studies in Logic Vol.81.) North-Holland /
American Elsevier, Amsterdam, New York (1975)

[68] Teng, A.Y., Liu, M.T.; A Formal Approach to the Desigh and Implementa
tion of Communication Protocols, Proc. COMPSAC 1978

[69] Teng, A.Y., Liu, M.T.; A Formal Model for Automatic Implementation and
Logical Validation of Network Communication Protocols, NBS Computer
Networking Symp. 1978, pp. 114-123

[70] Wand, M.: Induction, Recursion and Programming, North-Holland, Amsterdam
New York (1980).

[71] West, C.H.: General Technique for Communications Protocol Validation,
IBM J. Res. Develop. Vol. 22, No.4. (July 1978) pp. 393-404

[72] von Wright, G.H.: An essay in deontic logic and the general theory of
action, (Acta Philo. Fennica Vol. 21.) North Holland, Amsterdam,
New York (1968)

[73] Zafiropulo, P.: Protocol Validation by Duologuw-Matrix Analysis.
IEEE Trans, on Comm, Vol. COM-26, No.8. (Aug. 1978) pp. 1187-1194.

[74] Zafiropulo, P., West, C.H., Rudin, H., Cowan, D.D., Brand, D.:
Towards Analyzing and Synthesizing Protocols, IEEE Trans, on Comm.
No. 4. (Apr. 1980) pp. 651-661.

ALGOR П И П FOR INVESTIGATION
OF FORMALLY DEFINED COMPUTER NETWORK

PROTOCOL CONFORMITY
P. TÖKE

Department of Numerical Methods and Computer Science
Eötvös Loránd University, Budapest, Hungary

70

ABSTRACT
Possible and realizable algorihms for the conformity examination of

computer communication networks based on Digital Network Architecture (DNA)
are dealt with. Such examination is possible only if the rules governing the
communication of the entities of the layers of a given network architecture
are defined by some formal methods. In the present paper algorithms are pro
posed for conformity examination when the communication rules or protocols
are defined by finite algebraic automata and formal grammars. The possibility
of applying the developed methods is demonstrated in the DDCMP governing the
communication in the data link control layer of the DNA.

АННОТАЦИЯ

Условием надежного применения алгоритмов, служащих для исследования кон
формности сетей ЭВМ на базе DECNET, является определение совокупности свойств
слоев сети данной архитектуры. Автором предлагается алгоритм для исследования
конформности в таких случаях, когда правила коммуникации определяются средст
вами конечного автомата или формальной грамматики. Пригодность метода автор
демонстрирует на протоколе DDCMP на процедуре управления коммуникацией данных.

KIVONAT
DECNET-bázisu számitógéphálózatok konformitásvizsgálatára szolgáló algo

ritmusok megbízható alkalmazásának előfeltétele, hogy az adott hálózatarhitek-
tura rétegeinek entitásai formális módszerekkel legyenek meghatározva. A szer
ző konformitásvizsgáiati algoritmusra tesz javaslatot olyan esetekre, amelyek
ben a kommunikációs szabályokat véges automata, vagy formális nyelvtan eszkö
zeivel definiálják. A módszer alkalmasságát a szerző DDCMP protokollon (a DNA
adatkapcsolatát vezérlő eljáráson) demonstrálja.i

71

I. INTRODUCTION

In the r e a l i z a t i o n of a c o m p u t e r c o m m u n i c a t i o n n e t w o r k th e
u n a m b i g u o u s d e f i n i t i o n o f t he c o m m u n i c a t i o n p r o t o c o l s is very-
i m p o r t a n t . O n t he o t h e r h a n d for t h e e r r o r f r e e o p e r a t i o n of a
n e t w o r k b a s e d o n a g i v e n n e t w o r k a r c h i t e c t u r e it is n e c e s s a r y
t h a t t he e l e m e n t s of t h e r e a l i z e d n e t w o r k o p e r a t e in c o n f o r m i t y
w i t h the c o r r e s p o n d i n g f u n c t i o n a l u n i t s of t h e g i v e n n e t w o r k
a r c h i t e c t u r e .

T h e p r e s e n t c o m p u t e r n e t w o r k a r c h i t e c t u r e s h a v e a l a y e r e d
s t r u c t u r e . T h i s m e a n s t h a t t he f u n c t i o n s of t h e g i v e n a r c h i t e c
t u r e a r e c l a s s i f i e d i n t o h i e r a r c h i c a l l y o r d e r e d c l a s s e s s u c h
t h a t t h e l a y e r s a r e i n d e p e n d e n t of e a c h o t h e r . T h e f u n c t i o n s of
a l a y e r a r e r e a l i z e d u s i n g t h e s e r v i c e s p r e s e n t e d b y t h e l o w e r
l a y e r s in t he h i e r a r c h y . In a g i v e n l a y e r a f u n c t i o n is t h e r e
s u l t of s p e c i f i c c o m m u n i c a t i o n of t he e n t i t i e s a c c o r d i n g to t he
p r o t o c o l s g i v e n b y t h e c o m m u n i c a t i o n a r c h i t e c t u r e . T h e c o m m u n i
c a t i o n of t h e e n t i t i e s in a g i v e n l a y e r is c a l l e d p e e r c o m m u n i
c a t i o n b e t w e e n t h e p e e r e n t i t i e s . F o r t h e r e a l i z a t i o n of the
f u n c t i o n s o f a g i v e n l a yer, t he s e r v i c e s o f t h e l o w e r l a y e r s
a c c e s s e d t h r o u g h t h e s e r v i c e a c c e s s p o i n t in th e l a y e r ' s b o u n d a r y
a r e n e e d e d . T h e a c c e s s to t h e s e r v i c e s o f t h e l o w e r l a y e r s a re
g o v e r n e d b y i n t e r f a c e s .

T h e d e f i n i t i o n of a g i v e n n e t w o r k a r c h i t e c t u r e c o m p r i s e s
t h e d e f i n i t i o n o f t he h i e r a r c h i c a l l a y e r i n g o f t h e f u n c t i o n s ,
t h e s p e c i f i c a t i o n o f t he i n n e r s t r u c t u r e of t h e l a y e r s , t h e d e f i
n i t i o n of t he i n t e r c o n n e c t i o n b e t w e e n t h e l a y e r s a n d t h e d e s c r i p
t i o n o f t h e r u l e s o f p e e r c o m m u n i c a t i o n s a n d i n t e r f a c e s .

12

A c o m m u n i c a t i o n a r c h i t e c t u r e c o n t a i n s n o i n f o r m a t i o n for
its r e a l i z a t i o n b y s o f t w a r e a n d h a r d w a r e e l e m e n t s b u t it is
q u e s t i o n a b l e w h e t h e r a g i v e n r e a l i z a t i o n d o e s c o n f o r m to the
n e t w o r k a r c h i t e c t u r e p r e s c r i b e d . O n t h e o t h e r h a n d if w e a r e to
a dd a n e w e l e m e n t to a n e t w o r k w e m u s t c h e c k w h e t h e r t h i s element:
h as th e c o m m u n i c a t i o n c a p a b i l i t y i d e n t i c a l to t h a t g i v e n in t he
c o m m u n i c a t i o n a r c h i L e c t u r e .

In b o t h c a s e s w e m u s t i d e n t i f y the c o m m u n i c a t i o n c a p a b i l i t y
of a r e a l e l e m e n t of a. n e t w o r k w i t h t h e s t a n d a r d d e f i n e d b y a
c o m m u n i c a t i o n a r c h i t e c t u r e .

T h e i d e n t i f i c a t i o n p r e s u p p o s e s an a b s t r a c t f o r m a l d e f i n i t i o n
of t h e c o m m u n i c a t i o n p r o t o c o l s . W h e n d e f i n i n g f o r m a l l y the p r e
s e n t n e t w o r k a r c h i t e c t u r e s t he elements a n d m e t h o d s o f the t h e o r y
of a 1g e r a t e a u t o m a t a a n d f o r m a l g r a m m a r s w e r e a p p l i e d .

In o r d e r to a p p l y a b s t r a c t a l g e b r a i c a u t o m a t a t h e i n p u t a n d
o u t p u t f u n c t i o n s a r e d e f i n e d b y h i g h l e v e l p r o g r a m m i n g l a n g u a g e s
a n d the c o n n e c t i o n s b e t w e e n t h e a u t o m a t a a r e i l l u s t r a t e d by
d i a g r a m s .

T h e d e f i n i t i o n b a s e d o n f o r m a l g r a m m a r s is u s e d m a i n l y to
d e f i n e t h e p r o t o c o l s o f th e l o w e r lay e r s .

In t h e f o l l o w i n g s e c t i o n s t h e p a p e r p r o p o s e s t h e o r e t i c a l l y
b a s e d a l g o r i t h m s for t h e c o n f o r m a n c e e x a m i n a t i o n a n d f o r the
d i a g n o s i s o f e r r o r s .

In S e c t i o n II. t he b a s i c n o t i o n s of t h e t h e o r y of a l g e b r a i c
a u t o m a t a a n d f o r m a l g r a m m a r s a r e g i v e n .

S e c t i o n III. f o r m u l a t e s t h e c o n f o r m a n c e p r o b l e m as t h a t
r e q u i r i n g t h e i d e n t i f i c a t i o n o f a l g e b r a i c a u t o m a t a . It r e f e r s to
the t h e o r e m s u s e d in t h e d e v e l o p m e n t o f the a l g o r i t h m f or the
e x a m i n a t i o n of t h e c o n f o r m i t y a nd it d e a l s w i t h t h e s t r u c t u r a l
p r o p e r t i e s of th e a u t o m a t a a n d p r o p o s e s m e t h o d s to r e d u c e t h e
c o m p l e x i t y of th e a l g o r i t h m s u g g e s t e d .

S e c t i o n IV. c o n c e r n s i t s e l f w i t h t h e i d e n t i t y p r o b l e m w h e n
t he p r o t o c o l s a r e d e f i n e d b y f o r m a l g r a m m a r s . T h e s e f o r m a l
g r a m m a r s a re of t y p e - 3 in C h o m s k y ' s h i e r a r c h y a n d t h e l a n g u a g e s
g e n e r a t e d b y the g r a m m a r s c a n be a c c e p t e d b y a p p r o p r i a t e a c c e p t o r
a u t o m a t o n w h i c h c a n be u s e d in t h e c o n f o r m i t y e x a m i n a t i o n a n d
e r r o r d e t e c t i o n .

- 7 3 -

In S e c t i o n V, w e a r e a b l e t:o s e e thee p o s s i b l e a p p l i c a t i o n
of the m e t h o d s d e v e l o p e d in the c a s e of t h e D D C M P u s i n g t h e f o r
mal d e s c r i p t i o n g i v e n by H a r a n g o z ó [3].

II. PRELIMINARY NOTATIONS AND GENERAL NOTIONS

D e f i n i t i o n : A M e a l y - t y p e a u t o m a t o n is a s y s t e m M = (A,X,X,6,A)
w h e r e A , X a n d Y a r e (n o n - e m p t y) sets; f u r t h e r m o r e , 6: A x X -> A
a n d A ; A x X -* Y a re f u n c t i o n s d e f i n e d on A x X. S e t s A , X , Y are
t he s e t s of (i n t e r n a 1) s t a t e s , i n p u t s a n d o u t p u t s , r e s p e c t i v e l y .
T h e f u n c t i o n s 6 a nd A are c a l l e d the t r a n s i t i o n f u n c t i o n a n d the
o u t p u t f u n c t i o n r e s p e c t i v e l y .

In the p r e s e n t p a p e r w e d e a l m a i n l y w i t h t he n o t i o n of a
M e a l y - t y p e a u t o m a t o n s o w e o m i t the p r e f i x " M e a l y - t y p e " .

L e t Z b e a (no n - e m p t y) f i n i t e set. By the f r e e s e m i g r o u p
F (Z) g e n e r a t e d b y Z w e m e a n t h e s et F(Z) of a l l (n o n - e m p t y) f i n i
te s e q u e n c e s of e l e m e n t s of Z w i t h t h e f o l l o w i n g r u l e of m u l t i p
l i c a t i o n : if p = x , x 2 ...x^ a n d q = x j x 2 a re F (z) t h e n
p q - x .x ~ ...x, x ;x ; .. .x; . we s h a l l u s e t h e n a m e s a l p h a b e t , l e t t e r s ± 2 К 1 2 x
a n d w o r d f or t he s e t Z, e l e m e n t s of Z a n d e l e m e n t of F(Z) r e s
p e c t i v e l y . W e c o n s i d e r the l e n g t h p = x ^ x ^ . . to r e p r e s e n t

Ip I =■ k *
L e t M = (A ,X , Y/5 , A) be an a u t o m a t o n . M is c a l l e d i n i t i a l if

it h a s a d i s t i n g u i s h e d a (GA) i n t e r n a l s t a t e . A n i n i t i a l a u t o m a -
t o n can be g i v e n in t he f o r m M = (A ,aQ , X ,Y , 6 , A) .

L e t M = (A ,X ,Y , 6 , A) be an a r b i t r a r y a u t o m a t o n a n d let F ^ (A) ,
F ^ (X) and F-^Y) d e n o t e t h e f r e e s e m i g o u p s w i t h i d e n t i t y e l e m e n t
g e n e r a t e d b y A , X a n d Y r e s p e c t i v e l y . T h e f u n c t i o n s 6 a nd A can
b e e x t e n d e d to

6: A x F 1 (X) + F x (X) ,
A : A x F 1 (X) -* F 1 (Y) ,

r e s p e c t i v e l y as f o l l o w s . F o r an a r b i t r a r y s t a t e a (GA) a n d i n p u t
w o r d p = X j X 2 . . . x k (GF-^ (X)) let

<5 (a ,p) = a 1a 2 . . . a k (GF -̂ (A)) ,
A (a,p) = У !Y 2•••Уk (6F1 (Y))

- 74 -

w h e r e a ̂ = ó (a , X j) , a 2 = 6 (a] ,* 2),..., aR = Ä (a k _]x R)
a nd у 1 =■ A (a , x j) , y ? = A (,x2) , . . . , y R = A (a R _ Lx R)

L e t M - (A,a , X , Y , y , <5) b e an i n i t i a l a u t o m a t o n .ci О
О

T h e f u n c t i o n
a a : P + M a Q ,p)

о
is c a l l e d t he f u n c t i o n i n d u c e d by the M a о

L e t a (EA) b e an a r b i t r a r y i n t e r n a l s t a t e of the a u t o m a t o n
M, By the f u n c t i o n i n d u c e d b y the s t a t e a w e m e a n the f u n c t i o n
i n d u c e d by the i n i t i a l a u t o m a t o n M = (A ,a , X ,Y , 6 , A).3

D e f i n i t i o n : L e t M - (A , X , Y , 6 , A) be an a u t o m a t o n . T h e i n t e r
na l s t a t e s a ,b of M are e q u i v a l e n t if t he f u n c t i o n s i n d u c e d by
a and b a re e q u i v a l e n t .

F o r an a r b i t r a r y a u t o m a t o n M = (A , X , Y , 6 , A) , d e n o t e s the
s e t of all f u n c t i o n s i n d u c e d by t he s t a t e s of M.

D e f i n i t i o n : L e t M = (A ,X ,Y , 6 , \) a n d N = { B , X , Y , 6 ' X ') be
a u t o m a t a w i t h i d e n t i c a l i n p u t s (X) a nd o u t p u t s (Y) . T h e s t a t e s
a (EA) a nd b (EB) are s a i d to b e e q u i v a l e n t if t h e y i n d u c e the
s a m e f u n c t i o n .

If = ф ^ t h e n the a u t o m a t a M a nd N ar e s a i d to b e e q u i -
va J e n t .

D e f i n i t i o n : L e t M = (A , X , Y , 6 , A) b e an a u t o m a t o n . T h e e q u i
v a l e n c e r e l a t i o n R on A is s a i d t o b e a c o n g r u e n c e r e l a t i o n if
f or a ll a , b(EA) a n d x(EX)

and
a Rb => 6 (a , x) R 6 (b , x)

A (a ,x) = A (b , x)

A n e q u i v a l e n c e r e l a t i o n R on t h e s e t of s t a t e s of M is s a i d
to h a v e t he s u b s t i t u t i o n p r o p e r t y it

a R b => 6 (a ,x) R 6 (b , x)
fo r all a,b (E A) and xEX.

l

- 75 -

An e q u i v a l e n c e r e l a t i o n R on t he s e t of the s t a t e s M is
o u t p u t c o n s i s t e n t if

aR b => A (a , x) = A(b,x)
for a l l a , b (£ A) a n d x (6 X) .

D e f i n i t i o n : L e t M = (A,X,Y,6, A) b e an a u t o m a t o n a nd let R
b e a c o n g r u e n c e r e l a t i o n on A.
T h e a u t o m a t o n

M R = <{CR | a ! } a € A ’ V * * * * X 'Y ' V V
is s a i d t o b e the f a c t o r a u t o m a t o n of M i n d u c e d b y R w h e r e
C [a] d e n o t e s t he c l a s s of A r e p r e s e n t e d b y a £ A a n d К

R * 6 R (CR [al = C R [6 (a ,x)l

R : a r (CR [al ,x) = A(a,x)

D e f i n i t i o n : A f o r m a l g r a m m a r is a q u a d r u p l e G = (VN ,VT ,S,H)
w h e r e V„T an d V m a re d i s j o i n t a l p h a b e t s , a nd H is a f i n i t e s e t of N T
o r d e r e d p a i r s (P,Q) s u c h t h a t Q is a w o r d o v e r the a l p h a b e t
V = V., U V,,, a n d P is a w o r d o v e r V c o n t a i n i n g at l e a s t o n e l e t t e rN T
of V „ . T h e e l e m e n t s of V., a re c a l l e d n o n t e r m i n a l s a n d t h o s e of N N
V t e r m i n a l s . S G V AT is c a l l e d t he i n i t i a l l e t t e r . E l e m e n t s (P,Q)T N
of H a re c a l l e d p r o d u c t i o n s o r r e w r i t i n g r u l e s an d a r e w r i t t e n
P -* Q.

D e f i n i t i o n ; T h e f o r m a l g r a m m a r G is c a l l e d l e f t l i n e a r if
e a c h p r o d u c t i o n h a s o ne of t h e t w o f o r m s

X -> Y p or X -> p

w h e r e X , Y 6 a n d p £ F ^ (V T).

D e f i n i t i o n : T h e l a n g u a g e L (G) g e n e r a t e d b y G is d e f i n e d b y

L(G) = { p | p G F 1 (VT) a n d S+*p}

D e f i n i t i o n : A s s u m e t h a t t h e f i n i t e s e t s X = { X ^ , X ^ f •.•
a n d V' = {U ,* ,ф ,(,)} a r e d i s j o i n t a l p h a b e t s . A w o r d p o v e r
XUV' is a r e g u l a r e x p r e s s i o n o v e r X if:

76

(i) P is a l e t t e r of X or t h e l e t t e r ф, or
(ii) P is o n e of t he f o r m s (R U Q) , (OR) or Q* w h e r e Q and

R a r e r e g u l a r e x p r e s s i o n s o v e r X.

E a c h r e g u l a r e x p r e s s i o n p o v e r X d e f i n e s a l a n g u a g e |p | o v e r
X a c c o r d i n g t o t h e f o l l o w i n g c o n v e n t i o n s :

(i) L a n g u a g e | ф | is an e m p t y l a n g u a g e .
(ii) T h e l a n g u a g e d e n o t e d b y |x^| (xT^x) c o n s i s t s of the

w o r d X ..l
(iii) F o r t he r e g u l a r e x p r e s s i o n s P a n d Q o v e r X,

I (P U Q) I = IPIUIQI , I (PQ) I = IPI IQI a n d |P*| = |p |*

T h e l a n g u a g e s d e f i n e d b y r e g u l a r e x p r e s s i o n s over X a r e called
r e g u l a r l a n g u a g e s o v e r X.

D e f i n i t i o n : T h e i n i t i a l a u t o m a t o n M = (A,a ,X,6) w i t h o u t----------—----- 3 ̂ Q
o u t p u t s a c c e p t s t he l a n g u a g e L o v e r X w i t h t he s u b s e t A' of the
i n t e r n a l s t a t e s or in o t h e r w o o r d s t h e i n i t i a l a u t o m a t o n M d
g e n e r a t e s the l a n g u a g e L w i t h t h e s u b s e t A' of t h e i n t e r n a l
s t a t e s if

p E L <=> 6 (a , p) L A '

T h e o r e m I I . 1. (Kleene, 1956) T h e l a n g u a g e s g e n e r a t e d b y
f i n i t e i n i t i a l a u t o m a t a a n d o n l y t h o s e a r e r e g u l a r .

T h e o r e m I I . 2. T h e l a n g u a g e s g e n e r a t e d b y l e f t (right)
l i n e a r g r a m m a r s a n d o n l y t h o s e a r e r e g u l a r .

III. ON THE CONFORMITY OF THE REALIZATION OF A GIVEN NETWORK
ARCHITECTURE DEFINED BY ALGEBRAIC AUTOMATA

T h e e l e m e n t s of t h e t h e o r y of t h e a l g e b r a i c a u t o m a t o n s e e m
to be e f f e c t i v e t o o l s in t h e f o r m a l d e f i n i t i o n of n e t w o r k a r c h i
t e c t u r e s [6-8, .10, 13-15].

T h e f o r m a l d e s c r i p t i o n b y a l g e b r a i c a u t o m a t a of a g i v e n
n e t w o r k a r c h i t e c t u r e m e a n s t h e d e f i n i t i o n of t he f u n c t i o n of the
e n t i t i e s (f u n c t i o n a l u n i t s) of t h e l a y e r s of t h e n e t w o r k a r c h i t e c
t u r e b y a l g e b r a i c a u t o m a t a . T h e i n t e r c o n n e c t i o n of t he a u t o m a t a
at t h e i r i n p u t a n d o u t p u t c o r r e s p o n d s t o t h e i n n e r r e l a t i o n s b e
t w e e n t he e l e m e n t s of t h e g i v e n n e t w o r k l ayers.

77

S u p p o s e t h a t w e are t o d e v e l o p a r e a l i z a t i o n of a n e t w o r k
w h i c h m u s t c o n f o r m to a g i v e n n e t w o r k a r c h i t e c t u r e . D u r i n g the
d e v e l o p m e n t t h e q u e s t i o n s o o n a r i s e s w h e t h e r t he f u n c t i o n of a
r e a l i z e d e l e m e n t c o n f o r m s to the g i v e n n e t w o r k a r c h i t e c t u r e . We
ar e f a c e d w i t h th e p r o b l e m of d e c i d i n g t h e e q u i v a l e n c e of the

a u t o m a t o n m o d e l of t he r e a l i s e d e l e m e n t w i t h t h e (co m p o s i t e) a u t o
m a t o n w h i c h c o r r e s p o n d s to t h e f u n c t i o n s of t h e e n t i t i e s r e a l i z e d

F o r t h e a l g o r i t h m i c s o l v a b i l i t y of t he c o n f o r m a n c e p r o b l e m
w e n e e d t h e f o l l o w i n g t h e o r e m :

T h e o r e m III. 1. L e t M = (A,X,Y,<5,A) a n d N = (B , X , X , 6 , A) be
a u t o m a t a w i t h c o m m o n i n p u t s (X) a n d o u t p u t s (Y), |a | = m, |b | = n
S t a t e s a E A a n d b E B a re n o n e q u i v a l e n t if t h e r e e x i s t s a p EF-^(X),
|p I _< m + n - 1 a nd

A(a,p) ^ A ' (b,p)

C o l l o r a r y : If th e s e t X of i n p u t s is f i n i t e t h e n t he e q u i
v a l e n c e p r o b l e m of s t a t e s a E A a n d b E B c a n b e d e c i d e d in a f i n i t e
n u m b e r of s t e p s . T h e e q u i v a l e n c e p r o b l e m of t w o f i n i t e a u t o m a t a
w i t h c o m m o n i n p u t s a n d o u t p u t s is a l g o r i t h m i c a l l y s o l v a b l e .

F r o m t he e q u i v a l e n c e of t h e t w o a u t o m a t a , it d o e s n o t f o l l o w
t h a t M a n d N a r e i s o m o r p h i c . T w o e q u i v a l e n t a u t o m a t a M a n d N ar e
i s o m o r p h i c if an d o n l y if t h e y a r e r e d u c e d .

D e f i n i t i o n : T h e a u t o m a t o n M = (A , X , Y , 6 , A) is r e d u c e d if
f or an a r b i t r a r y p a i r a,b (E A)

a = a, < => a = ba b

T h e o r e m I I I . 2. F o r e v e r y a u t o m a t o n (A , X , Y , 6 , A) t h e r e
e x i s t s a f a c t o r a u t o m a t o n M w h i c h is e q u i v a l e n t t o M a nd r e d u c e d

T h e o r e m III.3. If t h e a u t o m a t o n M = (A , X , Y , 6 , A) is f i n i t e
t h e n in a f i n i t e n u m b e r of s t e p s t h e r e d u c e d f a c t o r a u t o m a t o n
M c a n b e d e t e r m i n e d t h a t is e q u i v a l e n t t o M .R

P r o o f . L e t b e th e e q u i v a l e n c e r e l a t i o n on A:

a R ^ b <=> A(a,p) = A(b,p)
f o r a l l p E F (X) , |p| <_ k. It c a n e a s i l y b e s e e n t h a t

78

and

k + 1 :> R, = Rk+j ' j>l.

It can be proved that there exists such k, that

l<k < IAI - 1 a n d R. = R. , ,— 1 1 к k + 1
let k ^ b e th e m i n i m u m of к h a v i n g t h i s p r o p e r t y . It c a n b e p r o v e d
t h a t fo r a n y p a i r a , b (GA)

a a a, < = > aR, b о к о

a nd t h e r e l a t i o n R, is c o n g r u e n t a nd t h e f a c t o r a u t o m a t o n Mк
is r e d u c e d .

C o l l o r a r y . In t h e c a s e of f i n i t e a u t o m a t o n t h e r e d u c t i o n
c a n b e c a r r i e d o u t in a f i n i t e n u m b e r of steps.

F r o m t h e p r a c t i c a l p o i n t of v i e w w e c a n s u p p o s e t h a t the
a u t o m a t a d e s c r i b i n g the r e a l n e t w o r k a r c h i t e c t u r e s a re f i n i t e
a nd r e d u c e d .

L e t M = (A , X , Y , 6 , A) a n d N = (В , X ,Y , 6 ' , A ') b e t w o r e d u c e d
a u t o m a t a d e s c r i b i n g a f u n c t i o n a l u n i t of a g i v e n n e t w o r k a r c h i ”
t e c t u r e a n d t h e m o d e l of a p o s s i b l e r e a l i z a t i o n of t h a t f u n c
t i o n a l u n i t r e s p e c t i v e l y .

F o r a n y p a i r of a , b (aEA, b E B) , 0 (m ^ 1) n u m b e r of
o p e r a t i o n s is n e e d e d t o d e c i d e t h e i r e q u i v a l e n c e w h e r e m = !X !.
T h i s c o m p l e x i t y c a n b e r e d u c e d t o a l a r g e e x t e n t if t h e a u t o m a t a
M a n d N c a n b e d e c o m p o s e d i n t o m o r e s i m p l e c o m p o n e n t a u t o m a t a .
T h e d e c o m p o s a b i l i t y of a u t o m a t a M a n d N d e p e n d s o n t h e g i v e n
n e t w o r k a r c h i t e c t u r e .

T h e f o l l o w i n g notions and theorems c o n c e r n t h e a l g e b r a i c s t r u c
t u r a l p r o p e r t i e s a n d t he d e c o m p o s a b i l i t y of t h e a l g e b r a i c
a u t o m a t a .

D e f i n i t i o n ; T h e a u t o m a t a = (A^ ,X^ , Y-^, 6 ̂ , A a nd
M 2 - (A2 ,X2 f Y 2 ,62 ,A2) f or w h i c h

Y 1 X 2

is a s e r i a l d e c o m p o s i t i o n of t he a u t o m a t o n M if

79

M = Mi © М2 = (А2хА2, XirY2,ő Д)

w i t h
6 ((s , t) , x) = (ő1 (s , x) , 6 2 (t , 6 ^ (s , x)))

Л ((s ,t),x) = X 2 (t , A X (s , x))

T h e o r e m I I I . 5. T h e f i n i t e a u t o m a t o n M h a s a n o n t r i v i a l
s e r i a l d e c o m p o s i t i o n if a n d o n l y if t h e r e e x i s t s a n o n t r i v i a l
e q u i v a l e n c e r e l a t i o n w i t h a s u b s t i t u t i o n p r o p e r t y on t he s e t of
s t a t e s of M.

D e f i n i t i o n : T h e a u t o m a t a = (A i ' x i / , 6 ^ , A) a nd
M 2 = (A2 ,X2 r Y 2 , ő2 r A2^ a r e P a r a l l e l d e c o m p o s i t i o n s of a u t o m a t o n

it

M = \ \ \ M2 = (A1x a 2/x iXx 2 ,y ix y 2 ,6/A)
w i t h

6 ((s1 , s 2) , (xl f x 2)) = (ó-ĵ (s 1 , x 1) , & 2 (s2 ,x2))

A ((s ^ , s 2) , (x ^ , x 2)) = (A ̂ (Sj^ fXj^) , A 2 (s 2 , x 2))

T h e o r e m I I I . 6. T h e f i n i t e a u t o m a t o n M h a s a n o n t r i v i a l
p a r a l l e l d e c o m p o s i t i o n if a n d o n l y if t h e r e e x i s t t w o n o n t r i v i a l
e q u i v a l e n c e r e l a t i o n s R ^ , R 2 w i t h t h e s u b s t i t u t i o n p r o p e r t y on
t h e s e t of s t a t e s of M s u c h t h a t

Rl‘R2 ^

T h e p r o b l e m of. c o n f o r m i t y c a n b e d e f i n e d as f o l l o w s . L e t
(A ,x ,Y , 6 , A) a n d N = (B , X ,Y , 6 ' , \ ') b e f i n i t e r e d u c e d a u t o m a t a

d e s c r i b i n g a f u n c t i o n a l u n i t of a g i v e n n e t w o r k a r c h i t e c t u r e
a n d t he m o d e l of t he b e h a v i u o r of a r e a l i z a t i o n of it r e s p e c t i v
ely. S u p p o s e t h a t w e c a n o b s e r v e t h e f u n c t i o n of t he a u t o m a t o n

f r o m a ny i n i t i a l s t a t e a n d t h a t i n i t i a l s t a t e c a n b e r e s e t .
L e t ф b e a o n e t o o n e m a p p i n g b e t w e e n t h e s t a t e s of M a n d N.

It m u s t b e d e c i d e d w h e t h e r ф is i s o m o r p h y .

80

T h e o r e m 1 1 1 . 7 . T h e p r o b l e m of c o n f o r m i t y is a l g o r i t h m i c a l l y
s o l v a b l e .

P r o o f . By t h e o r e m IÍI.1. for a l l p a i r s of а, ф(а) t h e i r
e q u i v a l e n c e c a n b e d e c i d e d in a f i n i t e n u m b e r of s t eps.

L e t us s u p p o s e t h a t th e d e c i s i o n of th e c o n f o r m i t y of t w o
a u t o m a t a M and N g i v e s a n e g a t i v e r e s u l t . It m e a n s t h a t t h e r e
e x i s t s at l e a s t o n e a (LA) s u c h t h a t it is n o n e q u i v a l e n t t o
Ф (a) (LB) . By t h e o r e m III.l. t h e r e e x i s t at l e a s t o n e p L F ^ (x)
s u c h that

|p| < 2 I AI — 1 a n d A(a,p) ^ A ' (< M a) , p)

T h e s e t D of s u c h w o r d s p f or a ll s t a t e s a (LA) is c a l l e d
the d i a g n o s t i c s of the c o n f o r m i t y e x a m i n a t i o n .

T h e o r e m III. 8 . T h e s e t D of t h e d i a g n o s t i c s c a n b e g i v e n
in a f i n i t e n u m b e r of step s .

IV. ON THE CONFORMITY OF THE REALIZATION TO A GIVEN NETWORK
ARCHITECTURE DEFINED BY FORMAL GRAMMARS

T h e d e f i n i t i o n of c o m m u n i c a t i o n p r o t o c o l s c an b e l i n k e d
w i t h t h e t h e o r y of f o r m a l g r a m m a r s .

L e t A d e n o t e t he s e t of a l l p o s s i b l e s t a t e s of a g i v e n
e n t i t y E. S u p p o s e t h a t A is a f i n i t e set. Let i a n d e (LA) d e n o t e
t he i n i t i a l a n d f i n a l s t a t e of E r e s p e c t i v e l y . T h e s t a t e of E
is c h a n g e d b y r e c e i v i n g or s e n d i n g m e s s a g e s . L e t X d e n o t e t h e
s e t of p o s s i b l e m e s s a g e s . W e m a k e a d i f f e r e n c e b e t w e e n t h e in-
- c o m i n g a n d o u t - g o i n g m e s s a g e s e v e n t h o u g h t h e y ar e of the s a m e
type.

W e g i v e , f o r m a l l y , a ll t he s e r i e s of m e s s a g e s t h a t t r a n s
f o r m s E f r o m s t a t e i t o s t a t e e:

i-y*e

w h e r e -*■* m e a n s a f i n i t e n u m b e r of i n t e r a t i o n s of th e o n e s t e p
t r a n s f o r m a t i o n s c a u s e d b y r e c i v i n g or s e n d i n g a s i n g l e m e s s a g e .

'

81

T h e t r a n s f o r m a t i o n s b e t w e e n the p o s s i b l e s t a t e s of an
e n t i t y E are r e s t r i c t e d as f o l l o w s .

L e t E be in an a r b i t r a r y s t a t e a (G A) . F o r all m e s s a g e s
x(ex) a n d s t a t e s a (a€A) s u p p o s e t h a t t h e r e is at l e a s t a f i n i t e
s u b s e t A of t h e s t a t e s w h i c h a r e a l l p o s s i b l e o u t p u t s t a t e sX f a 1
f r o m s t a t e a (EA) b y a p p l y i n g t h e m e s s a g e x.

T h e f u n c t i o n of E c a n b e d e s c r i b e d by t he f o l l o w i n g i n i t i a l
a c c e p t o r a u t o m a t o n

\ = (A,i,X,5)
w i t h

6 (a,x) = A x , a

T h e f u n c t i o n ca n b e e x t e n d e d to

6: 2A x F (X) -> 2A ,

b e t б (В ,p) = a y B Ő (a,p)
for a l l BGA.

L e t L be t h e s e t of a ll s t r i n g s of m e s s a g e s w h i c h t r a n s f o r m
t he s t a t e of t h e e n t i t y E f r o m i t o e.

F r o m t he d e f i n i t i o n of t he 6 f u n c t i o n t h e f o l l o w i n g t h e o r e m
c a n e a s i l y b e p r o v e d .

T h e o r e m I V .1. L a n g u a g e L c a n b e g e n e r a t e d b y a u t o m a t o n
w i t h t he s u b s e t {e} of A.

T h e o r e m I V .2. L e t G b e th e g r a m m a r c a n o n i c a l l y d e r i v e d
(see: I 4]) f r o m t h e a t u m a t o n M G r a m m a r G g e n e r a t e s l a n g u a g e L
a n d is i d e n t i c a l w i t h t he g r a m m a r s g i v e n b y H a r a n g o z ó [1,2] f or
t h e c l a s s e s of o p e r a t i o n of the H D L C p r o t o c o l .

P r o o f . G r a m m a r G = (A,X,i,H) is d e f i n e d b y [4] as f o l l o w s .
F o r a l l a , b G A a n d x G X

(a , x b) G H <=> б (а , х) Э Ь

S t a r t i n g f r o m t h i s d e f i n i t i o n t h e t h e o r e m c a n e a s i l y b e p r o v e d .

82

In s o m e c a s e s of c o m m u n i c a t i o n p r o t o c o l s t he f i n a l s t a t e
of e n t i t y E is n o t d e f i n e d (see: [3]). In t h i s c a s e l a n g u a g e L
c o n s i s t s of s u c h p G F ^ (X) f or w h i c h

6 (i,p) i ф

L e t Mf = (AU{a },i,X,6') b e an a c c e p t o r a u t o m a t o n , a G A a n d l о ^ о
f o r all a G A a n d x G X

<$'(a,x) = 6 (a , x) U { a o } if ő(a,x) ^ ф

ő'(a , x) = ф if ő (a,x) = ф

a nd ő ' (a ,x) = ф f or a l l x G X

T h e o r e m I V . 3. L a n g u a g e L c a n b e g e n e r a t e d b y a u t o m a t o n
w i t h th e s u b s e t {a } of th e e x t e n d e d s t a t e s of E.

1 о
P r o o f . L e t L' d e n o t e t h e l a n g u a g e g e n e r a t e d b y a u t o m a t o n

MÍ w i t h {a }. A s s u m e f i r s t t h a t pGL;1 о

p G L => 6 (i,p) f ф

F r o m th e d e f i n i t i o n of f u n c t i o n 6' it f o l l o w s t h a t

6 ' (i , p) Э а о

c o n s e q u e n t l y pGL'.
C o n v e r s e l y , a s s u m e t h a t p G L ' . It c a n b e s e e n t h a t

ő ' (i , p) 3 a Q => 6(i,p) ^ ф

w h i c h m e a n s t h a t pGL.

T h e o r e m I V . 4. L e t G b e t h e g r a m m a r c a n o n i c a l l y d e r i v e d
f r o m t h e a u t o m a t o n . G r a m m a r G g e n e r a t e s l a n g u a g e L a n d is
i d e n t i c a l w i t h th e g r a m m a r s g i v e n b y H a r a n g o z ó [3] f or t h e c l a s s
of o p e r a t i o n of t h e D D C M P .

P r o o f . G r a m m a r G = (A,X,i,H) is d e f i n e d as f o l l o w s :
F o r all a , b G A , x G X

83

(a r x b) ír Ы < = > b € ő ' (a , x) and b / a Q

a n d (a ,x)GH <=> a G 6 # (a #x)
F r o m t h a t the t h e o r e m f o l l o w s .

A s s u m e t h a t a c o m m u n i c a t i o n p r o t o c o l is d e f i n e d by a r i g h t
l i n e a r g r a m m a r G. T h e r e e x i s t s b u t n o t u n i q u e l y a f i n i t e a c c e p t o r
a u t o m a t o n t h a t a c c e p t s the l a n g u a g e L g e n e r a t e d b y g r a m m a r G.

T h i s a m b i g u i t y y i e l d s t h a t the m e t h o d d e v e l o p e d in S e c t i o n
III c a n n o t b e a p p l i e d in c o n f o r m i t y e x a m i n a t i o n s w h e n t h e c o m m u
n i c a t i o n p r o t o c o l s are g i v e n b y f o r m a l g r a m m a r s .

T h e m o d e l of t h e r e a l i z a t i o n of an e n t i t y E w i t h t h e c o m m u
n i c a t i o n c a p a b i l i t i e s d e f i n e d b y a l i n e a r g r a m m a r G c o n s i s t s of
an a c c e p t o r a u t o m a t o n w h i c h a c c e p t s t h e l a n g u a g e L g e n e r a t e d by
g r a m m a r G, w i t h an a p p r o p r i a t e s u b s e t of s t a t e s .

F r o m the v i e w p o i u n t of t he c o n f o r m i t y e x a m i n a t i o n it is
n e c e s s a r y to k e e p the n u m b e r of s t a t e s of the a c c e p t o r a u t o m a t o n
to a m i n i m u m .

L e t Л = { b D p (L) } ___ . d e n o t e t he s e t of all l e f t d e r i v a -^ p E F ̂ (X)
f i v e s nf 1a n g u a q e L. It is k n o w n t h a t if g r a m m a r G is l i n e a r
t h e n s e t A is f inite.

D e f i n e the e q u i v a l e n c e r e l a t i o n on F-^(X) as f o l l o w s :

, D (L) , D (L)p = L q < = > b p v = b q v

T h e o r e m I V . 5 . L e t ([pJ d e n o t e t h e c l a s s of F(X) r e p r e s e n t
e d b y p. T h e f i n i t e d e t e r m i n i s t i c a c c e p t o r a u t o m a t o n

M = ({C[p]} (x) , C [e] , X , 6) ,

w h e r e e d e n o t e s the e m p t y w o r d a nd

6 (C [p] , x) = C [p x]

a c c e p t s l a n g u a g e L w i t h the s u b s e t { C [p] } ^ of s t a t e s .
It is a g u e s s t h a t a u t o m a t o n M h a s t h e m i n i m u m n u m b e r of

s t a t e s .

84

V. APPLICATION POSSIBILITIES TO DECNET

In the d e v e l o p m e n t of a D E C N E T c o n f o r m i n g to the D i g i t a l
N e t w o r k A r c h i t e c t u r e and in the c o n f o r m i t y e x a m i n a t i o n s e n c o u n
t e r e d d u r i n g the r e a l i z a t i o n w e ca n r e l y on the r e s u l t s of
s e c t i o n s III a n d IV.

A t the r e a l i z a t i o n of the d a t a l i n k c o n t r o l l a y e r w e can
u s e the f o r m a l d e s c r i p t i o n g i v e n by H a r a n g o z ó [3]. T h e d a t a
link c o n t r o l l a y e r is d e f i n e d b y a r i g h t l i n e a r f o r m a l g r a m m a r .
T h e D D C M P s p e c i f i e s o n l y the r u l e s of the l i n k s e t - u p a n d d a t a
t r a n s f e r an d d o e s n o t t a k e i n t o account t h e p o s s i b l e d i s c o n n e c
t i o n .

T h e g r a m m a r G d e f i n e d in [3] d e r i v e s th e f o l l o w i n g l a n g u a g e
L

p G L <=> < s t a r t > * * p < s >

w h e r e <s> is an a p p r o p r i a t e stat e .
L e t = (V , V T , < s t a r t > , H) be t he g r a m m a r g i v e n in [3]

d e s c r i b i n g the o p e r a t i o n of an e n t i t y in t h e d a t a l i n k c o n t r o l
l a y e r of t he DNÄ.

L e t us d e f i n e the g r a m m a r G' = (V ' , V t ' ' < s t a r t > / H ')
w h e r e

V. = V. V ' = T V T and

H' = HL){<n> -> X [3 m, m G V ^ a n d < n > ^ X < m > C H)

T h e o r e m V ,1. L a n g u a g e L' g e n e r a t e d b y g r a m m a r G' is i d e n
t i c a l w i t h l a n g u a g e L.

L a n g u a g e L is of t y p e 3 a n d f r o m t h a t it f o l l o w s t h a t t h e r e
e x i s t s an a p p r o p r i a t e f i n i t e a c c e p t o r a u t o m a t o n M w h i c h g e n e r a t e s
L b y a s u b s e t of s t a t e s of M.

T h e a c c e p t o r a u t o m a t o n M = (A,S,X,<5) c a n b e c r e a t e d in the
f o l l o w i n g m a n n e r :

A = V.TU {A } w h e r e A £ V.T' is an a r b i t r a r y N o о N л
s y m b o l ,

S < s t a r t > , X = V T ' and

85

b ■* x / A i => ó(b,x) = {С ICGV a n d b ■> x c G H ' } ,

b x G H => ő(b,x) = { A o) u { c (C G V N a n d b -> x c G H '} ,

a nd
ő (A ,X) = ф f or a l l x G X .

T h e o r e m V.2. T h e a c c e p t o r a u t o m a t o n M = (A,S,X,6) a c c e p t s
l a n g u a g e L w i t h t he s u b s e t { A q } °f t h e s t a t e s of M.

T h e a c c e p t o r a u t o m a t a t h a t a c c e p t l a n g u a g e L a re c a l l e d
line t e s t e r s . T h e o r e m V . 2 s t a t e s t h a t t h e r e is a line t e s t e r for
t he c l a s s of o p e r a t i o n s of t h e D D C M P e x a m i n e d in [3j. T h e l i n e
t e s t e r s g i v e t h e p o s s i b i l i t y of t he r e a l t i m e o b s e r v a t i o n of the
d a t a link c o n t r o l t r a f f i c a n d d e t e c t i o n of the e r r o r s o c c u r r i n g
d u r i n g d a t a link c o n t r o l c o m m u n i c a t i o n .

A c c o r d i n g to t h e o r e m V . 2 w e c an s a y t h a t l a n g u a g e L c a n be
a c c e p t e d b y f i n i t e a c c e p t o r a u t o m a t a . U s i n g t h e f u n d a m e n t a l
t h e o r e m of K l e e n e w e can c o n c l u d e t h a t l a n g u a g e L c a n b e r e p r e
s e n t e d b y a r e g u l a r e x p r e s s i o n o v e r th e a l p h a b e t

T = {ф ,e, *,+ ,(,) ,*}UX

T o c o u s t r u c t a r e g u l a r e x p r e s s i o n f or l a n g u a g e L w e c a n u s e
the f o l l o w i n g t h e o r e m .

T h e o r e m V .3. (R.F. M c N a u g h t o n a n d H. Yam a d a)
A r e g u l a r e x p r e s s i o n r e p r e s e n t i n g l a n g u a g e L a c c e p t e d b y a
f i n i t e a c c e p t o r a u t o m a t o n M c a n b e c o n s t r u c t e d a l g o r i t h m i c a l l y .

P r o o f . L e t t h e s t a t e s of M b e i n d e x e d f r o m 1 t o n. L e t us
s u p p o s e t h a t the i n d e x of t he i n i t i a l s t a t e is 1. W i t h o u t a n y
loss of g e n e r a l i t y w e c a n s u p p o s e t h e n t h a t t h e " a c c e p t i n g " s u b
s e t c o n s i s t s of o n e a e l e m e n t ,

к mL e t L^j d e n o t e t h e l a n g u a g e e l e m e n t s of L w h i c h t r a n s f e r
f r o m s t a t e a^ t o a. t h r o u g h t he p o s s i b l e i n t e r m e d i a t e s t a t e s

{ ai 'a2 f••*ak)
F o r L ij

Lk . = f t 1 + if:1 l*:1* i*:1l] l] lk kk kj

!

- 86 -

h o l d s . U s i n g this e g u t i o n w e c a n s a y t h a t the l a n g u a g e s L̂ , are
r e g u l a r for a l l p o s s i b l e i , j , k , a nd a p o s s i b l e r e g u l a r e x p r e s s i o n
for t h e l a n g u a g e L . . can b e d e s c r i b e d in a f i n i t e n u m b e r of s t e p s

It can b e s e e n t h a t
= L lm

F r o m t h a t t h e t h e o r e m f o l l o w s .
A r e g u l a r e x p r e s s i o n fo r l a n g u a g e L v e r y e x p e s s i v e l y d e

s c r i b e s t h e l i n e t r a f f i c on t h e d a t a l i n k c o n t r o l level.

ACKNOWLEDGEMENT

I m u s t e x p r e s s m y s p e c i a l g r a t i t u d e to K a t a l i n T á r n á i , D e n i s e

A m b r ó z i a n d J ó z s e f H a r a n g o z ó fo r t h e m a n y c o r r e c t i o n s a n d

h e l p f u l s u g g e s t i o n s r e s u l t i n g f r o m a p a i n s t a k i n g r e a d i n g o f t he

m a n u s c r i p t .

V e r y s p e c i a l t h a n k s a re d u e M i s s A n d r e a N a g y a n d Mrs. P é t e r n é

B e r o n f or p l e a s a n t a c c u r a t e a n d f a s t t y p i n g s e r v i c e .

í

87

REFERENCES

1. H a r a n g o z ó ,J . : " P r o t o c o l D e f i n i t i o n w i t h F o r m a l G r a m m a r s , "

Proc. C o m p u t e r N e t w o r k s P r o t o c o l s ,L i e g e 1978. pp.

F 6 - I F 6 - I 0 .

2. H a r a n g o z ó , J . : " F o r m a l L a n g u a g e D e s c r i p t i o n o f a C o m m u

n i c a t i o n P r o t o c o l , " T e c h n . Rep. No. 92, C e n t r a l

R e s e a r c h I n s t i t u t f or P h y s i c s , B u d a p e s t , Dec. 1977.

3. H a r a n g o z ó , J . : " A D D C M P A d a t k a p c s o l a t i S z i n t ű P r o t o k o l l

F o r m á l i s L e i r á s a , " N e m P u b l i k á l t A n y a g , 1982.

4. Peák, I " B e v e z e t é s az A u t o m a t á k E l m é l e t é b e , " E g y e t e m i

J e g y z e t , 1980.

5. T r a k h t e n b r o t , B.A . , B a r z d i n , J a .M . :" F i n i t e A u t o m a t a

/ B e h a v i o r a n d S y s t h e s i s / , " N o r t h - H o l l a n d Pub. Со.

1973.

6. B o c h m a n n , G.V., C h u n g , R . J . : " A F o r m a l i z e d S p e c i f i c a t i o n

o f H D L C C l a s s e s o f P r o c e d u r e s ," P r o c . N a t i o n a l Comm.

Con f . L o s A n g e l e s , 1977. pp. 0 3 A : 2 - 1 - 1 1 .

7. B o c h m a n n , G . V . : " F i n i t e S t a t e D e s c r i p t i o n o f C o m m u n i c a t i o n

P r o t o c o l s , " C o m p u t e r N e t w o r k s 2 / 1 9 7 8 / pp. 3 6 1 - 3 7 2 .

88

8. D a n t h i n e , A . A . : " P r o t o c o l P r e s e n t a t i o n w i t h F i n i t e - S t a t e

M a c h i n e , " I E E E T r a s . In Com m . V o l . C O M - 2 8 . No. 4.

A p r i l , 1980. pp. 6 3 2 - 6 4 2 .

9. R u d i n , H., W e s t , C.H., Z a f i r o p u l o , P . : " A u t o m a t e d P r o t o c o l

V a l i d a t i o n : O n e C h a i n o f D e v e l o p m e n t , " C o m p u t e r

N e t w o r k s , 2 / 1 9 7 8 / . pp. 3 7 3 - 3 8 0 .

10. B o c h m a n n , G . V . : "A G e n e r a l T r a n s i t i o n M o d e l fo r P r o t o c o l

s a n d C o m m u n i c a t i o n S e r v i c e s , " I E E E T r a n s , on

Comm. Vol. C O M - 2 8 . N o .4, A p r i l , 1980. pp. 6 4 3 - 6 5 0 .

11. K a w a o k a , T . , Y o s h i t a k e , S., M o r i n o , K . : "A M e t h o d for

V e r i f y i n g L a y e r e d P r o t o c o l P r o d u c t a n d Its A p p l i

c a t i o n to D a t a C o m m u n i c a t i o n N e t w o r k P r o d u c t , "

Proc. 4th. ICCC, 1980. pp. 3 7 9 - 3 8 4 .

12. T s u k a m o t o , K . , Itoh, T . , N o m u r a , M . , T a n a k a , Y . : " A S t u d y

o f P r o t o c o l A n a l y s i s for P a c k e t S w i t c h e d N e t w o r k , "

Proc. 7th. D a t a C o m m u n i c a t i o n S y m p o s i u m I E E E 1981.

pp. 1 0 8 - 1 1 7 .

13. S a i t o , T . , Kató, T . , I n ose, H . :" P r o d u c t V a l i d a t i o n for

S t a n d a r d i z e d N e t w o r k P r o t o c o l , "

14. S u n d s t r o m , R . : " F o r m a l D e f i n i t i o n o f I B M ' s S y s t e m N e t w o r k

A r c h i t e c t u r e , " P r o c . N a t i o n a l T e l e c o m m . Conf.
L o s A n g e l e s , 1977. pp. 0 3 A : l - l - 7 .

89

15. S N A F o r m a t a n d P r o t o c o l R e f e r e n c e M a n u a l : A r c h i t e c t u r e

L o g i c S C 3 0 - 3 1 1 2 - 1 F i l e No. S 3 7 0 - 3 0 .

16. W a c k e r , S . : " D N A : T h e D i g i t a l N e t w o r k A r c h i t e c t u r e , "

I E E E T r a n s , o n Comm. V o l . C O M - 2 8 . No. 4. A p r i l ,

1980. pp. 5 1 0 - 5 2 6 .

17. H a r t m a n i s , J . , S t e a r n s , R . E . :" A l g e b r a i c S t r u c t u r e T h e o r y

o f S e q u e c t i a l M a c h i n e s , " P r e n t i c e - H a l l 1966.

C * M i r

