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After introducing a suitable Riemannian metric in thermodynamic state 
space, with a simple statistical thermodynamic interpretation, we show that 
the existence of scaling must imply the existence of a conformal Killing 
vector field in the neighborhood of a critical point.

ABSTRACT

АННОТАЦИЯ

В пространстве термодинамических состояний накладывается риманова мет­
рика, допускающая простую статистическую термодинамическую интерпретацию. 
Показано, что из существования скэйлинга следует существование конформного 
векторного поля Киллинга в окрестности критической точки.

KIVONAT
Termodinamikai állapottéren egyszerű statisztikus termodinamikai inter­

pretációval rendelkező Riemann-metrikát vezetünk be. Megmutatjuk, hogy a 
szkéling létezéséből következik egy konformis Killing-vektormező létezése 
kritikus pont környezetében.



1. INTRODUCTION

This paper is concerned with an intrinsic geometrical inter­

pretation of the scaling properties of a thermodynamic system in 

the vicinity of a critical point. The metricization of the thermo­

dynamic state space has been carried out in the past; perhaps the 

subject has been treated most exhaustively by Weinhold'*' in a 

recent series of papers. Unlike Weinhold*- and the references 

cited in his papers, we wish to focus more ditectly on the rela­

tionship between Euclidean spaces defined by different thermo­

dynamic states as a differentiable manifold obtained after intro­

ducing local vector space. The particular choice of metric we 

make (see the next section) has a particularly simple statistical 

thermodynamic interpretation (see Section 3). Having defined the 

metric, in section 4 we introduce the notion of symmetry in our 

Riemannian space. In particular in the last section we show th&t 

the scaling properties brought out by renormalization group 

procedures are a simple geometrical symmetry which implies the 

existence of a conformal Killing equation for our metric tensor.

While our considerations do not contribute in a substansive 

way to extend the results of renormalization group methods they 

do provide a general insight into their geometric meaning.

2. METRIC ON THE SPACE OF THERMODYNAMIC STATES

Consider a homogeneous thermodynamic system having r+1 degree 

of freedom, the X 1,X2....X  ̂ extensive state coordinates, and let
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the entropy S be given as the function of the X's. We shall con­

sider our system as a closed one in the following sense: we shall 

keep Xr+1 fixed excluding it from the arguments of the function 

S, hence S will not be a first-order homogeneous function of its 

arguments. At the points where the system is stable the matrix

constructed from the second paftial derivatives of S with respect
2 3to the X^'S, is a negative definite. ' By means of this matrix 

we can introduce a distance ds between two infinitesimally close 

points of the thermodynamic (configurational) space, whose coor­

dinates are X and X+dX respectively:

(ds) = -
r
li , k=l

Э S (X)
ЭХ. ЭХ. l к

dX. dX. l к (2 .1)

This distance ds in the configurational space can be expressed 

not only by means of the extensive parameters; but introducing 

the (entropical) intensive parameters as

= Э S(X) 
i ЭХ.l

(2 .2)

2(ds) can be written in the following symmetric form:

9 r
(ds) = - I dX dY . (2.3)

i=l 1 1

Let us use Y's coordinates in the thermodynamic space and 

let us define the thermodynamic potential ф, which is the Legendre- 

transform of S and is expressed through the Y^'s as

r
ф = ф (Y) = S - I XiY± .

i=l
(2.4)
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The first derivatives of ф give the extensive parameters X:

Using (2.3) and (2.5) 

sive parameters:

ЭФ(У) =
3 Yi l

2we obtain (ds)

(2.5)

as a function of the inten­

ds)
r
li ,k-l

Э2ф (Y)
Э Y . Э Y. l к

dY.dY, i к (2 .6)

Let us also investigate the general case when the state is

described by mixed coordinates, for example, X extensive and Y ,J a a
intensive parameters where a = 1,2,...,к and a' = k+l,...,r.

In this case it is convenient to introduce the potential

Ф ' = Ф ' ( X ^ . - X ^  Yk+1,...Yr) = S - I Y a , Xa , (2.7)
a '

whose first derivatives are

l&i = у Эф'
ЭХ a ' эх , a a

(2 .8)

Substituting (2.8) into (2.3)

(ds) ^о ЭХ^ЭХ dXadXß + Д  , 9Y ,3Y ,a ß  a ß  а , ß ' а В
dY^,dYü , (2.9)

Here a and ß' take the same values as a and a' respectively. It is 

interesting to note that mixed terms of the type dXdY do not 
appear in (2.9).

Having introduced ds as the infinitesimal distance the space 

of stable states of the homogeneous, closed, equilibrium thermo­

dynamic system can be considered as an r-dimensional Riemannian
4manifold with distance ds. The metric tensor of this Riemannian
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manifold, expressed through the extensive coordinates is

'ik -s, 32S
ik ЭХ. ЭХ, i к

(2.10)

In intensive coordinates

gik ф 'ik
Э2ф

Э Y . Э Y, i к
(2 .11)

and using mixed coordinates

'ik = <

-ф ;ik

Ф''1к

О

if both the i'th and к 'th 

coordinates are extensive, 

if both the i'th and k'th 

coordinates are intensive,

otherwise.

(2 . 12)

The general coordinates introduced in the thermodynamic
1 2  rspace, in what follows will be denoted by x = (x ,x ,...,x ) 

as in the formalism of General Relativity. When we make a trans­

formation from one coordinate system to another the g ^  matrix 

will be transformed as a tensor. In a given coordinate system, 

the invariant distance ds can be written as

ds2 = 9ik(x) dxidxlc = 1 1  g±k (x)dx1dxk . (2.13)

In what follows the Einstein summation convention is used, that 

is the summation sign over repeated indeces will not be written 

out explicitly. If we have two points x^ and X£ (not necessarily 

close to each other) and a continuous curve connecting them,



the length of this curve is defined as
x2 x2

ds (gikdX dx )
1/2 (2.14)

x1 X 1

where the integrals are taken along the curve. In Riemannian 

Geometry the distance between the pair of points x^ and x2 is 

defined as

3. STATISTICAL INTERPRETATION OF THE METRIC
If the homogeneous thermodynamic system, characterized by 

the X^,....X extensive coordinates is not closed but is a part 

of a homogeneous system which is much greater in size then the 

system in question, then the quantities X will fluctuate around 

their equilibrium values. The thermodynamic fluctuation <$X in 

juadratic approximation follows the Gaussian distribution“*:

of the Riemannian metric introduced in Sec. 2. According to (2.1) 

the probability of fluctuations around a given state of the system 

(at least in the quadratic approximation in the variation of the 

coordinates) depends only on the distance ds represented by the 

fluctuation:

(2.15)
x1

and the minimizing curve is called the geodesic between x^ and x2 .

(3.1)

In the exponent of Eq. (3.1) we have the squared distance (ds) 2

1 2
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Since in Riemannian manifolds the choice of coordinates does 

not affect the value of ds we can use the general coordinates 

x1, i=l ... r . Following (2.13) we can write (3.1) in general 

coordinates as

P(6x) ъ  exp {- д^бх^бх^"} . (3.3)

Let us make explicit the relationship between the fluctua­

tions and the metric tensor. According to (3.2) the average of
2the squared distance (ds) represented by the fluctuations is 

unity (if P(6X) is normalized to unity):

(ds)2 = д±кбх1бхк = 1 (3.4)

whence
- i г к ik . _ r-»бх 6x = g , (3.5)

consequently the correlation matrix of the fluctiations of the 

coordinates of a thermodynamic state is a tensor and is identical 

to the metric tensor, introduced earlier. This is the statistical 

content of the metric introduced in Sec. 2 and we could have 

equally well chosen Eg. (3.5) instead of the formal thermodynamic 

definition used in the previous section. Note that (3.5) is valid 

for an arbitrary choice of coordinates on the space of states.

It is a natural question to ask what is the meaning of the 

distance (2.15) between two arbitrary thermodynamic states. We 

are going to show that the global distance (2.15) corresponds to 

the so called statistical distance introduced recently by 

Wootters^ as a distance between probability distributions. Let us 

consider states P^ and P 2 of the given thermodynamic system and
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the corresponding x^ and X 2  points in the space of the coordina­

tes. Let us connect x^ and X 2  by a continuous curve in this space. 

Now we estimate how many well distinguishable states this curve 

goes through and let us denote this number by N. Following 

Wootters^ we consider the points x and x+dx along this curve

statistically distinguishable if dx is equal to (or greater than)
2 i кthe standard fluctuation of x, that is (ds) = g^^dx dx =1 .

This means, that N is equal to the length (2.14) of the curve 

connecting and P2- Wootters6 , varying the trajectories between 

x^ and x2 interprets the minimum of N as the statistical distance 

of x^ and x2, which, according to (2.15) is equal to the distance 

on the Riemannian manifold introduced by us earlier.

4. SYMMETRIES

The metric tensor fully determines the local structure of 

a Riemann space, nevertheless, as it is well known, e.g. in 

General Relativity, it is definitely not a trivial task to physi­

cally interpret even a known metric tensor. However, there are 

some properties of the metric, which have clear physical conse­

quences: one of them is symmetry (if symmetries exist in the 

investigated space).

Consider a point x in the space, the distance of any pair 

(A ,B) of points in the neighbourhood of x can be given as:

dSAB = 9ik(X)dXABdXAB 14-1»

where dx^B = x^ - Хд , and these distances yield the structure 

of the space. One can ask if there exists a motion which transforms 

all these points in such a way that the distances remain unchanged.
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In the generic case such a motion does not exist; if it does 

exist, then it means that there is at least one direction in which 

the geometry does not change, and then the motion is called a 

symmetry.

An infitesimal motion is defined by a vector field K1,

x1 = x1 + K1 (x)e (4.2)

where e is the (infinitesimal) parameter of the displacement.

Now let us require that the displacement be a symmetry. Then 

from (4.1)

ds2 = ds2 , (4.3)

i. e ,
g., (x)dx*Ddxk = g (x)dx^_.dx^ ylk ' AB AB ^lk AB AB (4.4)

Calculating the coordinate differences at the new points, 

and using eq. (4.2) one gets:

gik (x + K(x)e)(Xg + eK1 (xß) - хд - eK1 (хд )) х

(xk + eKk (xß) - xk - еКк (хд )) = (4.5)

, . , i iw  к к.“ gik(x> (хв - хд > (хв - хд ) .

Since с is infinitesimal, one should keep only the e° and e terms 

in eq. (4.5). The first nontrivial term is of the order of e, 

whence one gets that condition (4.3) is fulfilled if and only if

g .^ir к 9krK gik'rК = О (4.6)

Eqs. (4.6) are called Killing equations^ and is the Killing 

vector of the space. That is, the existence of a Killing vector
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is equivalent to the existence of a symmetry direction.

Eq. (4.6) has been obtained from the condition that the 

transformed geometric objects remain completely unchanged. 

Requiring a weaker condition that they remain similar in a 

geometric sense, i.e. there may be a change of scale,

J ( x ) e ^ (x) (4.7)

one gets the conformal Killing equation 7

írK #i + 9krK^  + ik' rК + h gik = ° (4.8)

where

h = ф , Kr . r (4.9)

If a symmetry exists, one can always use such a coordination 

of the space that the metric tensor is independent of the first 

coordinate. For conformal symmetries there exist coordinates in 

which gik contains the first one only in a multiplicative factor:

, > -ip (x‘ 
gik x > “ e

,x • .) (0), 2
’ik '(x • ) (4.10)

In the special case when h in eqs. (4.9) - (4.11) is a constant,

ф = ф (x) = h x1 . (4.11)

5. SCALING AS GEOMETRICAL SYMMETRY

It is generally accepted that the physical system obeys

some scaling laws in the vicinity of the critical point1 , of a

higher order phase transition. This means that approaching the

critical point the system goes through similar states; the only
2changes occur in the scales of the parameters of the system .
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In the Riemannian space of states introduced in Sect. 2. such 

similarities appear as geometrical similarities thus, according 

to Sect. 4, the existence of scaling must imply the existence of 

some Killing vector field (being the mathematical consequence of 

geometrical similarity) in the neighborhood of the critical point.

In what follows we show, that the usual version of scaling, 

namely the assumption that the thermodynamic potentials are
g

generalized homogeneous functions of their arguments indeed

leads to a special conformal Killing vector field. Let us chose

ф, defined by (2.4) as the thermodynamic potential. Then the
2homogeneity condition can be written as

ai i iф (Л у ) = Ж у  ) i=l, 2. . . г . (5.1)

Here y^=Y.-Y. , ... and a. are related to the usual critical2 1  i(crit) i
2indeces . (5.1) is assumed to be an identity in X. Thus upon

differentiating eq. (5.1) with respect to X and setting X=l, 

one gets

By introducing a vector field

K1 (Y) = da-y* , (5.3)

where d is the number of spatial dimensions of the system, eq. 

(5.2) can be written as

КГф , - dф = О . (5.4)

By differentiating this equation twice with rexpect to the y1 , 

and using (2.11) and (5.3) for the definities of the metric

tensor one obtains
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g. кг ,, + g , K r . + g ^ir к ^kr , 1 ik 'r К ■dgik « о (5.5)

which is the special conformal Killing equation introduced in

(4.8). It should be noted that (5.5) is valid only asymptotically

in the vicinity of the critical point.

The coefficient a^ in eq. (5.2) can be calculated from the
0

fixed point equations of the renormalization group . One can 

easily show that the vector field, defined by (5.3) is just the 

infitesimal generator of the renormalization group transformation 

near the critical point. That is if

(y1) ' = R*(y)

then

K ± (y) - fi R*(y) s=l+0

(5.6)

(5.7)

Here Rg denotes the operator of the renormalization group trans­

formation corresponding to a scale parameter s. The meaning of s 

is the following: By using a renormalization group transformation 

one wants to eliminate successively degrees of freedom from the 

system in the hope that one finally obtains a system with fewer 

number of degrees of freedom. This transformation, in order to 

preserve the physical properties of the original system must 

leave the total free energy and the density of the degrees of 

freedom invariant. In other words if from now on ф (¥) and ф(У') 

are the ф potentials per one degree of freedom of the original 

and transformed systems respectively and N and N' are the number 

of degrees of freedom in the original and transformed system 

respectively then
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N<My) = N 4  (у') , (5.8)

N/Ld = N7(L')d (5.9)

should hold, where Ld and (L')d denote the volume element of 

the original and transformed systems respectively. Since N'<N, 

(5.9) defines a scale transformation

L' = s_1L (5.10)

where N'/N = s d<l. Then (5.8) implies

ф( (y1) ') = <l>(s iyi) = s ^ i y 1) (5.11)

where
A, .

(y1) ' = s y1 (5. 12)

is the linearized form (near to the critical point) of (5.6) and 

the Â  ̂ are the eigenvalues of the linearized renormalization
g

group transformation . Now we can easily prove our statement 

(5.7) about the К vector field. Let us expand (5.6) around s=l 

(the identity transformation)

(y1) IB9s e
s=l

(5.13)

where e = s-1. Now from the definition (4.2) one gets immediately 

(5.7). Also, on comparing (5.3) with (5.11) one obtains

ai = V d - (5.14)

So we conclude that the existence of a fixed point of the 

renormalization group transformation, describing a higher order 

phase transition, implies a special conformal Killing equation 

for the metric tensor which was introduced. The corresponding 

Killing vector is the infinitesimal generator of the renormaliza-



tion group transformation, which then vanishes at the fixed point 

(see eq. (5.3)).

Eqs. (5.5) renders a clear geometrical interpretation for the

renormalization group transformation. Choose three neighboring

states near the critical point, and perform a renormalization

group transformation for them with the same parameter s. Then

the triangle, formed by the three states remains similar after

the transformation, because the ratios of the lengths of the

sides, measured by the expectation values of the fluctuations

as units, remain unchanged, which is the consequence of the
7Killing equation (5.5) .

The existence of scaling laws, characteristic for the behav­

iour near the critical point, follows from (5.5). To demostrate 

this simply take a system with a single intensive parameter. In 

this case y~(T-T ), (T is the temperature), and the only element 

of the metric tensor g-g^-C, where C is the specific heat with 

C~y a close to the critical point. In this case (5.5) leads to

(5.15)

-a 1using g ~ у , К = — у, where v is the correlation length
g

exponent defined by

(5.16)

one gets from (5.15)

2 - a = dv (5.17)

which is a well-known scaling law2
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