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ABSTRACT

A special matrix theoretical method for obtaining molecular symmetry
coordinates is described. The method is based on the diagonalization of the
circulant blocks of G kinetic and F potential energy matrix representing the
interaction of the sets of equivalent internal coordinates. The symmetry
coefficients can be obtained by using a special polynomial relation between
the circulant blocks and the basic circulant matrix. A general formula for
the symmetry transformation matrix depending only on the order of the matrix
is derived for matrices G and F being hypermatrices with circulant blocks
and being circulant blockwise with circulant blocks. The application of the
method has been demonstrated for the molecules CH"™"X, Y(CH3>2 and CU~CI™ and

the obtained symmetry coordinates are classified according to symmetry. An
attempt was made to include into the method the removal of coordinate
redundance.

AHHOTALWA

JaeTca onucaHue MaTpPUUYHOro cnocoba BbYUCAEHUA KOOpAUHAT CUMMEeTPUM Mose-
Kyn. Cnoco6 wucnonb3yeTcda B c/ydae, Korja MaTpuub KMHeMaTUyeCKuUX KO3hphULMEeHTOB
G M CUNOBbLIX MOCTOSAHHLIX F ABAAKTCA K/AETOYHbBIMM MaTpuuaMm C UUPKYNSAHTHbIMW 610Ka-
M. KOoaphuuMeHTb CUMMETPUU MOXHO BbLIYUCAUTbL U3 3/IEMEHTOB COOCTBEHHLIX BEKTOpPOB,
UMPKYNSAHTHO 3aBUCAWMX TONbKO OT nopsigka 650koB. Crnoco6 o606waeTcd Ha cny4an,
Korga matpuubl G M F ABNANTCHA KNETOYHLIMU LUUPKYNAHTHLIMA C UMPKYASHTHLIMW - BroKaMm»
Moka3zaHo ncnonb3oBaHMe cnocoba B cnydae mosiekyn CHMX, Y(CH ) wu CH Cl2* Uc-
KKYeHNss 3aBUCUMBIX KOoopAuMHAT 6bl1o npefycMOTPEHO .

KIVONAT

Egy matrixelméleti médszert ismertetink molekuldk szimmetriakoordinatai-
nak meghatarozasara. A modszer abban az esetben alkalmazhatdé, ha a molekula
G kinetikus és F potencialis energia matrixa ciklikus blokkokbél allé hiper-
matrix. A szimmetriakoordindtakban szerepld egyutthaték a ciklikus blokkok
sajatvektoraibdl alkotott matrixnak, a Fourier matrixnak elemeibdl szamitha-
tok, amelyek csupan a matrix rendjétél figgenek. A médszer altalanosithaté
arra az esetre is, ha a G és F matrix "tobbszintli" ciklikus hipermatrix,
amelyben az egyes blokkok maguk is ciklikus blokkokbdél allé hipermatrixok.
A modszer alkalmazasat a CH™X, Y(CH2)2 és a CH2C12 molekulak esetében mutat-

Juk be, s ez utébbinal a redundans koordinata kikiszébdlésére is példat adunk.



I. INTRODUCTION

Symmetry coordinates that are appropriate linear combinations of the
internal coordinates (i.e. changes of bond lengths and bond angles) are
usually employed to factor the secular equation for the normal vibration
of symmetrical molecules.

Besides the well known Wigner group theoretical methods [1,2] several
useful procedures for obtaining symmetry coordinates have previously been
reported [3-13]. Most of these methods imply a knowledge of the transforma-
tion matrices under the symmetry operation of the point groups of the
molecules.

In this paper a matrix theoretical method is described constructing
symmetry coordinates of molecules whose Hamiltonian has a structure of a
special circulant block. The method is related to those developed by
Kilpatrick [3] and Morozov and Morozova as well [6] and is based on the
diagonalization of the circulant matrices representing the interactions of
the equivalent internal coordinates in the vibration space. The symmetry
coefficients were derived using the spectral decomposition of the basic
circulant. A general formula for the symmetry transformation matrix was
constructed for cases when the matrices G and F have a circulant structure
of higher level because of the molecular symmetry.

The method is applied to the molecules CHA"X (C™) , (Y=2Zn,Cd,Hg)
(D~) for eclipsed rigid configuration and CH2Cl2 (C2Vv~” In tfe case te
last molecule an attempt was made to include the removal of coordinate re-
dundance into the method.

List of mathematical symbols

A = [ai,] —————————————— matrix of order n with scalars a.

n ID
A —mmmmmm e transpose of Ap
U, —======————------mmmo column vector of order n
Vp —TTTTTm oo row vector of order n
W o mmm e conjugate of the complex number w
EAiT]ﬂ,n composite matrix of type (m,n)and order mxn

R conjugate transpose of A



En=diag(o”,...»°n) -————- diagonal matrix with elements o"

/I - - identity matrix of order n

>

.xB=[a”B] -————-——————- direct product of matrices A and B

A 0 B = diag(A,B) =

- Hi?'"-) ———— aireot sum of matrices A and B
u.xv = [uvlfuv2,...,uvn] = [ulvl,u2vl,... "unvl]
EU1V2,U2V2' ,UnVZE'--"HuIVn'UZVn'”h,UnVn—* ------- direct product of
vectors u and v
A £ Bm,n ———————————————— matrix A belongs to the class of matrices Bmm,n
Il. THE METHOD

IT the internal coordinates of a molecule can be divided into sets of
equivalent coordinates that are transformed among themselves under the
symmetry operations of the molecule then the reduction to irreducible re-
presentations of the matrix GF of the vibration operator is equivalent to
diagonalization of its submatrices representing the interactions of the
equivalent coordinates of a different kind. Because of the molecular
symmetry these submatrices (for three equivalent coordinates) have the
circulant form

b b
circ (a,b,b) a b @)

Matrices of this type are characterized by the first row; their spectral
decomposition (proved in the Appendix) can be written for odd order
n = 2m+l as:

A2m+1 = circ,(a,blfb2 ... bm ,bm, - .bX)
/r @
2m+1 2m+1-A 2m+1
where
_ V -V
Aim#l B aln+v§1 bv(ﬂnﬂﬁn ) ®
and N = diag (@,w,w2,. ..,wn 'S with the elements w = exp (~~) = cos ~ *
+ i-sin 29 | The single eigenvalue \ = a+2 Eb s proportional to the

n ° v=l v



frequency of the symmetrical vibration; the multiple eigenvalues
m \V
Ak = a+2 £ bv cos ™) k =1,2,...,m) give the frequencies of double

degenerate vibrations.
For even order n = 2m

A2m = circ (a,blb2" "< ,bm" **e*b2 bl = A 2mA2m ~A2m ®
where
m“1
A_2m = aln+V:E1bV (Q\A+nﬁV)+bmnrrn] ®
m-1 m-1

The single eigenvalues AO = a+2V§|bV+bm and \n = a+2vgi(—1) bv+(—l) bm are

proportional to the symmetrical and antisymmetrical vibrational frequencies
respectively; the double degenerate vibrational frequencies can be obtained

knv

from the eigenvalues Ak = a+2m£1b’\cos + (D “om &k =1,2,... ,m-1) . The

eigenvector matrix (for proof, see Appendix) is:

— _1_ coS o -sin o. _.
/2
—/12— cos i_an ..«>; sin
-1 cos (~"2-0) sin < 2-<p)..
/2
®>
1)V’}2 cos |, 5 V-f- sin "k v-0) -.

cos ( (n-1) -§) sin —=— ("-1)-d)
/2 n "
The Ffirst column belongs to the symmetric the second to the antisymmetric
species; the cosine and sine column pairs correspond to the double degenerate
species G =1,2,.. ., (n-1)) (the second column for odd order is missing).
By changing the value of parameter ¢ we can achieve the simultaneous trans-
formation of the degenerate coordinates ([14], p-287). For odd n (n is the
order of the rotation axis) ¢ = O and for even n, ® = n/n. However the
numbering of the internal coordinates should follow the rule: e.g. for odd
order molecules CH.jJX (nh = 3, = r~rn, a2 = rMar™, a3 = rMir™ RN = rfac-x
G =1,2,3); for even order, e.g. the molecule XY (n = 4), cu = r*ar™+"

G =1,2,3,4).



According to the number and type of the symmetry elements the matrices
G and F can be:

(@ Symmetrical hypermatrix with circulant blocks

Designation of the class of these matrices: P»”~m n

An n-fold rotation axis and m vertical planes (Cnv) cause matrices G

and F to be Am n - [Air]m n which consists of m blocks each being a circulant
matrix of order n. Thus Am,n R g¢ﬁ$m,n
The spectral decomposition of the blocks A~ (i/j = 1,2,...,m> is of the
form
aj ~inoriin ™
where, if the order of the block is odd, A~ (,j = 1,2,...,m) are diagonal

matrices of type (3 and, if n is even of type () respectively with the
appropriate coefficients, a~,b” (,J = 1,2,...,m).
The decomeosition of matrix Am,n = EA"]m,l1é;Eﬁ;ﬁ,rT is as follows:

Am,n A =x @)

If a designates the mapping

2 ...n n+l... 2n 2n+l.__.mxn" i
o: (©))
ntl.._..2n+l 2 ._..2n+2 n ...mxn .
o(i)
then P = [ 2], where a~™j = 1; a”™ = 0 otherwise, is a permutation matrix

that changes the order of the rows (or columns) of a matrix according to o.
Pre- and postmultiplying the matrix (8 by the matrices P» and Po respect-
ively (Pa = Pal = Pa) one obtains for even n

PAm Pa = T diag (4 e (DEE) ... Efv 1 BT (10

where T = (”n_x\fn)Pa and the diagonal matrix is of the maximum reduced form
according to molecular symmetry. For odd n the species Bm is missing and the
superscript of the species E runs instead of n/2-1 up to (n-1)/72.

() Symmetrical hypermatrix which are block circulant with circulant blocks
Designation of the class of these matrices: mon
The presence of a Cn rotation axis and symmetry planes perpendicular to
it (for example Dnd) cause matrices G and F to be QJJ] = circ (ﬁ;At-.-ﬁn)
where each block is a circulant of order n. Matrices of this kind are block
circulant with circulant blocks.
It can easily be seen by using the appropriate power of the basic

circulant Cm = circ (0,1,...,0) (see Appendix) that



m-1 R
Am,n = circ (A0 Aj - 'AUJ—I) = kio CoXAs (¢ND)
Substituting the decomposition C = Q (for proof see Appendix) and

the decomposition of type (?) into equn. (11) we obtain the spectral de-
composition of a block circulant with circulant blocks as

-~ -~ m]—]l. . -

Am,n = circ AA;---A)D = (™ I,?—)gki(ﬂi XA I X5 <12)
where is a diagonal matrix of type (@) if n is odd and of type B) if n
is even. It is convenient to determine the symmetry type of each individual
row of the matrix T = (J™-X at the application of the method for a given
molecule.

1. APPLICATION

The potential energy matrix of the methyl halides CH3X (C3v) written in
the internal valence coordinates AR, Ar™, fan, A& G = 1,2,3) is

N
fn 1 fAxu
t a3
fl—xmél: [Fijl
where the blocks FA(i,j = 1,2,3) are symmetric circulant matrices of order
3, fj. Is the Tfirst eigenvector of the blocks while the vector
u= (3b, /3 c, /3d). The matrix [F.. , is a composite symmetric matrix

of type (3,3) so [F*J]s 3£> 06ij 3* Therefore by using the transformation
matrix T = diag (1,{13-x "pMHPN) where

Ji_ 1

/3 /3 /3

d d 2 as»
/6 /6 /6

z1 _1 0

/2 /2

and Po is the permutation matrix corresponding to the following mapping

1 2 3 45 6 7 8 9
o: as5)
1 4 7 2 5 8 3 6 9

we obtain the reduced form of matrix F as



TFT = diag (F~a)fF~e),Fle)) (6)
where
-@ HM —‘li' U an
o 1)
and FT  is a 3x3 block with the elements fj~ = a. .+ 2b . (i,J = 1,2,3)

while the two identical blocks F i of order three are the double degenerate
representations with the elements FQJ) = an-b"j.

Since the order of the rotation axis or what is the same the order of
matrix (14) n = 3 is odd we know in advance that there is not an antisym-
metric species but there is (n-1)/2 = 1 a double degenerate species. So it
is easy to establish that the first row of matrix (4) belongs to the
symmetric, the second and third rows to the double degenerate species. The
multiplication of matrix (14) and the valence bond length vector
ar = @r~, Ar2, Ar™) together with AV give the symmetry valence bond
stretching coordinates (Table 1).

Table 1

Set of symmetry bond
stretching coordinates
for CH3X (C3v)

S @ = (1/N) (Ari+Ar2+4r3)
SL(@) = (1//6)(2Ar1-Ar2-Ar 3)
S2@) = (1//6)(Ar2-Ar3)

S @ = AR

We can get similar expressions for the valence

angle bending Aa®, A9~ (G = 1,2,3). So the re- F+
duced form (16) is the maximum one according

to the molecular symmetry.

* In the case of the molecules for eclipsed Fig. 1. Symmetry of the
rigid configuration Y(CH3)2 (D3d) (Y=zZn, Cd, Hg) molecule Y{CH")g and its
(Fig. 1) the sets of the equivalent internal internal coordinates
coordinates are a consequence of a threefold
rotation axis C3 and a plane o™ perpendicular to it. The potential energy
matrix in terms of the internal coordinates M., OU2, Jox~, OP~
GG=1,2,...,6), [fle, fle” is:



s
where the blocks Fﬁ? = circ (a,b), [Frr]j/d and FEE, = diag (c,c) belong 4:0
the interactions of the equivalent internal coordinate groups (AR®, AR2)*

ari1,...,A3g) and (Ae,Ae") respectively. The block 7Fij 3,6 *$3,6 while
each Fij (B2,3*

Therefore by applying a combination of the decomposition formulae (12)
and (8) we obtain the symmetry transformation matrix

T = diag (3" ,1 -x(7" —x 71),1) 19)

which diagonalizes the blocks belonging to the

€))

interactions of the equivalent

coordinate groups. In equn.

@0

and j 3 is matrix (14). On the basis of the symmetry point group of the
molecule, matrix 7”2 belongs to the symmetry operation
type Ag and Ay. Thus, by using the symmetry type of the rows of 7j estab-

lished in the previous molecule and the rule of multiplication properties of
direct products of irreducible representations ([1],

i so its rows are of

p-331) one obtains

1 | A 1
/6 /6 /6 /6 /6 /6 b
2 -1 -1 2 -1 -1
/12 /12 z12 /12 /12 /12
1
1 1 1 -1
I
0 2 2 ° 2 2
3vxT?=-
1 1 J_ 1 21 zi
/6 /6 /6 /6 /6 /6
2 -1 R 1 1
/12 /12 /12 j /12 /12 /12
1
0 1 -1 I o -1 1
2 2 2 2
Multiplication of matrix (1) with the vector Ar = (Ar™,.. . ,A"*) and matrix

T with the vector (ARYAR.),)

gives the symmetry stretching coordinates to



be seen in Table 1l. We obtain the same linear combinations for [ou, 43"
(=1,2,...,6) as was obtained for Ar™ including the redundance whose
presence is necessary because of symmetry considerations. An attempt to in-
clude the removal of redundance can be seen in the case of the following
molecule. The internal deformation coordinates [le and [e" are themselves
symmetry coordinates of the type Ey so the determination of the symmetry
type of the rows of matrix (19) is complete.

Table 11

Symmetry stretching coordinates for the
molecules Y(CH3)2 (D3d)

= =  EQOr,+ E Ar.1
sCalg} " B \icr' 1 j:4ﬂ' X/
S(aig) ™ 2 (arl+ar2)
S(a)(eg) i 1o (2ﬂr1—ﬂr2—ﬂr3+2ﬂr4—Ar5—ﬂr6
Ls(b)<eg)  » (Arr-ATs+Ors-Are)
L e £ g
- == r,- E Ar,
S@> - 5 qi=l’ 1 j=4 1/
N
S(azws " 5 (ARI-AR2)
[s(a)(e,) — - QAr -Ary-irg-2Ar ;+Org+Arg)
- - /12
1 (@r2-Ar3-4Ar4+4r6)
2

The CH2C12 molecule {Fig. 2) is of lower symmetry than the previous two,
however, the method works well in this case too. Matrix F, in terms of in-
ternal coordinates, is

Ar4jﬂr- Oon [a, fa, ,-la,

Frr ulwv Fra i
F w 22)
FLD
a(& 7 r
Symm.

FO
aa



C.(2) where the blocks presenting the interaction of
the equivalent coordinates are Fix® . and Fap - Accord-
ing to thelt_gtrUCtuﬁ%%\Frr y IﬂA,A om - circ
@,b) and Frfa £ (&> > "32 2" Therefore the
matrix which diagonalizes these blocks is

T = (-j=x © (r2-xm2) (€2))

where -7 is matrix (o), i.e. the same matrix
belongs to each pair of internal coordinates

(Ar"JAr™Y) r (ArzrArs) and (Jaiz " [as4”™* However
the symmetry type of the rows of the blocks is

Fig. 2. Symmetry of the different. Because the order of the rotation
CHgCSLy molecule and ite

- Z axis n = 2 is less than three there are only
internal coordinates

symmetric and antisymmetric species. On the
basis of the molecular symmetry the species of the rows of the block in
order are @MY , (a1 ,b2) and (a”a”) . By applying the multiplication rule
of the species of the first two blocks one obtains

(D)

Choosing the permutation matrix as

rp

)

with the blocks

(26)
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where the e”s are unit vectors of order 10 and the special linear combina-

tion of the vectors eé>and e/ is used to remove coordinate redundancelthe

result of the matrix-vector product P~Ts where S = @r~, Ar2, Ar3/4r4 ;falz,

[a34 3 [al3> [laz s /NNald#Aa24> gives the syn™etry coordinates of CH2C12 (see
Table 111).

Table 111

Normalized symmetry coordinates for the
CH2C12 molecule

Species Symmetry coordinates

s, = -& (ari+ar2)

/2
5, = ——
" T, (AT3+T4}
al!
= (-2fal2~2[la34+[al3+[a24+[lald+[la23)
Y2
S, = /5 (Aal2-Aa34}
_ 1
S = -—-= ((4rr 4Ar2)
/2
bl!
S, = (Aal3"Aa23+Aald_Aa24)
S_ = L
-7, (Ir3Ara)
b2:
S.» = ~% (Aal3"Aa23-Aald+Aa24)
a2: { S. = _  (Aal3+Aa23"Aal4-fla24)

It should be noted that the method in its present form is suitable for
determining molecular symmetry coordinates only when the reduced form of the
representation of the molecule®s point group does not contain triple degen-
erate representations. This means that for triple degenerate species,
matrix (6) should contain three angle parameters instead of one (@ in order
to ensure the simultaneous transformation of the triple degenerate species.
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APPENDIX
The definition of the basic circulant of order n is

Cn = circ (@O, 1,...,0) @n

the elements of which are defined as

if j = k-1
mod n. (28)
" - if j * k-1
Its spectral decomposition is
chb =rnr, 29
where i
Q = dfag B ,w,w?,. . w15 (30)

and ,jn is the so-called Fourier matrix of order n

7* = — [w@-1)(-D] irj = i1,2_.... (n-D [€1))
/n
with the elements w = exp ( nA) = cos %? + i sin %P ;= /-T.

By multiplying matrix (31) by matrix (30) the j-th row of the matrix
product

1 wd-DAINy -1 B 561 -D 12
/n /n

then multiplying equn. (32) with the k-th column (1//n)(w*k 17T)
(r 0,1,...,(n-1)) of matrix (3l) and taking into account the relation
wNr =w N =wn N~ we obtain the (j,k)-th element of matrix (29 to be

1 nélW jﬂN(k—l)r

- 1L, rg-k+b
n r=0 n 0

1 if j=k-1
r= T

mod n. (€2))
O i

this is equivalent to definition (@28) ([15] p-72).
-V - ’
By using the relation Cn = cn” we can easily see that any circulant
matrix of order n can be written as a maximum (n-1)-th order polynomial of

the basic circulant matrix of order n. That is, for odd n = 2m+l

A2m+1

I
0
-
-
(e}

eeebm *bm* *** b1} =
G

I
2

+ B b '+
v=l v n n
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and for even order n = 2m

Giro o, oL, b2 )
m-1 (35)

- aln * vf" bv (Qr/]+cr¥) * merp]

Substituting egun. (29) into equns. (34) and (35) one obtains

36
A2m+l * K * I{al,, + V:1’ bv (@ r > 3} "m+1 (36)
and
m-1 i 3
Aim - J2m(aln * Vgl bv (Q¥+nnv)+bmﬂp1}:5§m ) S
By substituting egun. (30) into equns. (35) and (36) we obtain for the
eigenvalues of A2m+1
m
X =at+t2 £ b (€2))
© v=l v
and
_ 2n _ - 39
hk = at? V£1 b, cos ZTn}ﬁ? K = 1/2 fe%mfn (€))
while for the eigenvalues of A:m
m-1
X =a+t2 £ b _+b (Cl))
o vl vVom
m-1
A, = a2 & GDVbvt i), 41)
V=1
e X, = a+2 m;l b, cos KWV 4 Dkb 42
k Vo1 V m b m

Equations (38)-(42) show that any symmetric circulant matrix of odd order
(n = 2m+1) has one single and m double eigenvalues whereas any symmetric
circulant matrix of even order (n = 2n) has two single and (m-1) double
eigenvalues.

By using the following linear combinations of the column vectors of
matrix (31) [16]

I T _
L, (fcrfenel-ky @M K rom 1k K- 1,2,...,m “3)

the imaginary parts of the eigenvectors can be elimated and we obtain
matrix () for even order. For odd order the second column is missing
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