
~ tiL .3 62

KFKI-1982-18

F, V A J D A

R E C E N T D E V E L O P M E N T S IN THE
A P P L I C A T I O N S O F M I C R O P R O G R A M M I N G

eHungarian ‘Academy o f ‘Sciences

C E N T R A L
R E S E A R C H
IN S T IT U T E F O R
P H Y S IC S

B U D A P E S T

2017

£■
ß t

:

к

к

KFKI-1982-18

RECENT DEVELOPMENTS IN THE
APPLICATIONS OF MICROPROGRAMMING

F. Vajda
Central Research Institute fpr Physics
H-1525 Budapest 114, P.O.B.49, Hungary

To be presented on the 13. WASCO-TAGUNGS
/March 31-April 3, 1982/ Budapest, Hungary

HU ISSN 0368 5330
ISBN 963 371 901 1

ABSTRACT
The paper provides a brief mosaic-like summary of the basic issues of

microprogramming and the microprogrammed systems. It surveys the present
status of the application areas of microprogramming.

АННОТАЦИЯ

В статье дается короткий обзор основных публикаций и сообщений в связи
с микропрограммированием и микропрограммируемыми системами. Затрагивается
также вопрос настоящего состояния в области применения микропрограммирования.

KIVONAT
A cikk mozaikszerüen röviden összefoglalja a mikroprogramozás és mikro­

programozott rendszerek alapvető problémáit és a mikroprogramozás alkalmazá­
si területeinek jelenlegi helyzetét.

1. INTRODUCTION

30 years have gone by since 1951 when Professor M.V.Wilkes
coined the term microprogramming [1] and used it to describe a
new systematic method for designing the control unit of a digital
computer. In its first decade computer scientists discovered micro­
programming and published their findings. Then it was rediscovered
by computer specialists and applied in computer system design
and implementation. This time it is being learned by a lot of
people who should use and program bit-sliced microprocessors.
Recently, microprogramming has also been discovered as an import­
ant mean of microelectronic integrated circuit implementation.

The main application areas of microprogramming can be grupped
as it follows:
1. Computer manufacturers who implement more and more primitives

and functions for improving realiability (by microdiagnostics)
privacy and data security (by data protection) and propriety
protection etc. by microprogramming. In the same time they
support user (dynamic) microprogramming of their systems.

2. "Traditional" users of user-microprogrammable computer (with
WCS and support software) who recently have found the possi­
bilities of microprogramming.

3. Research works closely connected to microprogramming, e.g.
firmware engineering, dynamic,, high-level language oriented
computer architectures, tuning and restructuring of computer
architecture etc.

4. Designers in the former areas of the traditional digital
design who apply bit-sliced microprocessor families and
firmware supported mainly by the component manufacturers.

5. Applications for component design and implementation by the
computer (e.g. DEC:T-11) and component (e.g. Motorola:68000)
manufacturers for high-end microprocessor and support chip
realization.

2

The history of microprogramming is naturally included in
the history of computer technique and application. As an example
let me quote the development of the implementation of floating­
point instructions:
- First they were performed by subroutines in the frame of a
floating point package (software)
- Later they were (partly) implemented in circuitry (hardware)
- Afterwards the microprogrammed versions of floating point
instruction sets have appeared (firmware)
- In the up-to-date computers an independent processor (floating
point processor) executes these instructions (firmware and paral­
lel processing)
- Hereafter standard VLSI floating-point chips will perform these
functions (microelectronics)

2. LEVELS OF A COMPUTER SYSTEM AND THE MICROPROGRAMMED CONTROL

A set of conceptual levels for describing, understanding, ana­
lyzing, designing and using computer systems was defined [2].
There are at least five levels of system description that can
be used to describe a computer:
- Device level (p-type and n-type semiconductor, dielectric
material and metal formed in various ways)
- Circuit level (transistors, resistors, capacities etc. form­
ing inverters, multivibrators etc.)
- Logic (switching circuit) level (combinational and sequential
logic functions)
- Register transfer level (registers and other functional units
e.g. multiplexers, ALUs, counters etc. and the functional trans­
fer between them)
- Processor-memory-switch (PMS) level (CPUs, memories, I/O etc.)
In contrast to this structural view another more functional multi­
level structure can also be defined. According to this view, a
computer system consists of layers of interpreters, such like
the layers of an onion, i.e.:

3

- Logic (hardware) level
- Microprogram (firmware)level
- Machine instruction (architecture) level
- Operating system level
- Programming language level
- Job control level
In this view firmware [3] is used for establishing a pro­

grammable level between the machine architecture (instruction
set) and the real hardware. More recently, firmware also imple­
ments certain functions of the real hardware level for performance
reasons and for added flexibility .

Some layers are bypassed when more ideal primitives exist
at deeper (i.e. firmware or hardware) layers (vertical migra­
tion) [4] .

Considering microprogramming as a means of computer control
implementation we should reconsider the design tradeoffs on com­
puter performance. These tradeoffs can be groupped into three
categories:

- circuits technology,
- data path topology and
- control unit implementation.

Attention here is focused on the CPU. Processor families can be
categorized as low, medium and high performance implementations.
Technology push has been strongest in the areas of logic and
memory. Relevant parameters of digital integrated circuits are:
functions, density, cost, speed, number of pins, realibility and
speed-power product.

The main trend in the current applications of the logic
components:

1. In low and very low end CPUs: single chip custom design
(with built-in microprogammed control)

2. In medium performance CPUs: semicustom design (gate
arrays and ULAs; Uncommitted Logic Arrays)

3. In high end computers: very fast (e.g. ECL) logic.
In semiconductor memory chips the three main parameters

are: increasing bit density, increasing speed and decreasing
price.

(software)

4

These factors have made microprogrammed control an in­
creasingly attractive and cost-effective choice for the computer
and lately for the microcomputer designers.

The heart of the data paths of a CPU is the arithmetic
logic unit (ALU) trough which all data circulates and where most
of the processing actually takes place. Significant differences
exit among the data paths of the different range of machines.
One major differences is in the width of the data paths. The
second feature is the speed of the data paths which is a direct
result of implementation i.e. the circuit technology employed.
The structure and number of data paths are the main parameters
affecting performance. Set of data paths allows highly parallel
operation. A CPU with horizontally microprogrammed control unit
can perform more in a given microcycle and thus needs less micro­
cycles to complete an instruction. The structure of the micro­
instructions for taking best advantages of instruction features
can also decrease the effective microcycle count.

Considering the impact of special semiconductor components
on microprogrammed control unit design, programmable logic arrays
(PLAs) have an increasing role in implementations of both the
functional and the control parts.

3. FIRMWARE ENGINEERING

With the growth in microprogramming came the requirement
for better microprogram production techniques. The major rea­
sons for this need are the following ones:

- It is very expensive to develop microprogram without a
set of proper tools.

- Erros in applications are expensive to repare .

- New application areas (migration, microdiagnostics,
high-level language support etc.) have led to large
microprograms.

- The availability of microprogrammable processors
(with writable control stores, WCSs) is grown user
microprogramming in traditional sense.

5

- Microprogrammed control has been in wide-spread use by
the availability of bit-sliced microprocessor families
outside the territory of the traditional computer
techniques.

Approaches to firmware engineering [5,6] generally draw
from experience and knowledge in

- microprogramming (microprogramming techniques, micro­
programming languages, simulators, debuggers, test
system, etc.)

- hardware engineering (design techniques, hardware
description languages, simulators, test systems and
methods etc.)

- software engineering (design, specifications, verifica­
tions, test and programming techniques, specification,
design and implementation languages, verification and
test methods, etc.)

- system design methodologies (methods, disciplines,
concepts, principles)

Since much firmware and its development is considered to
be proprietory, many firmware engineering techniques have not
been published in the open literature.

Considering the phases of microprogram development in the
stages of system life cycle we could find six main periods [5].

3.1 Design and specification
Techniques of software engineering [7] (e.g. top-down

design, stepwise refinement, structured walk-throught. etc.) are
used but none meet all the criteria of formality, constructabil­
ity, comprehensibility, minimality, wide range of applicability
and extensibility.

3.2 Construction techniques
The widely accepted design tools for aiding the actual

writing of microprograms are the microassemblers and there are
no widely accepted higher level microprogramming languages.

6

Lately there are meta-assembler available, a design to be usable
for a number of microprogrammable machines or bit-sliced micro­
processors. Target definions can be written at the assembler
directive level for these machines. Other features include macro
definition capability, specification of default values, self
documenting etc.

There is an increasing number of research papers dealing
with definition of higher level microprogram languages and with
the design of code generators and optimizers [8] for the system
which means microcode compaction or microcode improvement. Most
part of the code improvement methods are basically local tech­
niques [9] but recently more general global compaction techniques
[10] are also presented.

The basic problem with HLL is how to include machine dependent
information to machine independent language. Several machine
dependent HLL have been designed [11], but programs written in
these languages are not transportable.
3.3 Verification

The work in the area is based for the most part on work done
on the verification of software programs [12]. There are two
major classes of verification methods. In the first one asser­
tions are made about the effect of the execution of a number of
microinstructions while in the second class the verifier attempts
to find a simpler microprogram that is equivalent to the micro­
program to be proved [5].

3.4 Testing
In order to test microprograms effectively, the firmware

tester should be able to do the following:
- Display the state of the machine resources (i.e. all
registers, control and primary store etc.)

- Modify some part of the processor state (registers,
control and primary store) easily.

- Define breakpoints to halt execution at preselected
points for examination of the processor state.

- Generate a record of execution to allow the examination
of the experiment off-line by the record of the execution
paths.

7

3.5 Debugging
Debugging is done by employing either hard [13] or soft

techniques [14]. The former ones are utilizing the host machine
(resident debugger) while the latter ones are using a simulator.
There are a couple of advanteges of the resident debuggers. There
is no problem - using the actual hardware - with the accurate
representation of the target machine for the simulator and they
can run on a stand-alone configuration.

3.6 Maintenance
The two main categories are: repair and updating. Despite

of the fact that firmware maintenance could be very expensive
somehow it is a neglected field. It can be supported by a better
documented microprogram and field tools for retesting and/or
reverification the repaired/new version.

4. APPLICATIONS OF MICROPROGRAMMING

Interpretation of machine language instruction continues
to be the most common application of microprogramming. Here we
discuss a few application and research areas.

4.1 Emulation
As we use the term emulation [13] refers to using firmware

(often assisted by a hardware and software), in one machine to
execute programs originally written for another. We call the
machine which is realized by the emulator a target machine and
the machine which supports microprograms a host machine.

Work concerning emulation can be groupped as it follows[15]:
- Emulation of traditional mini- or microcomputers (mainly
research or student projects for learning microprogramming
fundamentals) .

8

- For software compatibility purposes a new computer
family could emulate the former one (e.g. IBM System/360
for the IBM 1400 series or IBM 7090, the DEC VAX system
for the PDP-11 family etc.)

- Emulation oriented machines, with other words universal
emulators (e.g.Q machine).

- Emulation of new architectures for research purposes.

4.2 Executing Higher Level Language Programs
The implementation of machines which support high-level

languages via a mixture of software-firmware techniques is a well-
established technology.

There are different approaches to support a high level
language on a machine [16]:

- Traditional approach i.e. one machine language for all
high level languages (no optional program representation)

- One machine language for each high level language (e.g.
Burroughs B1700S language for supporting Cobol, RPG and
Fortran).

- Extended instruction set for supporting a language (e.g.
DEC CIS: Commercial Instruction Set for supporting Cobol
or VAX-11 for supporting Fortran).

- Direct execution of the high level language (e.g. Western
Digital Pascal Microengine).

- Multiple machine language for a high level language which
actually involves the development of several machine
languages to find the best support environment [17].

- Compilation to an intermediate level and the direct
execution of the code of this level (e.g. Pascal p-code).

4.3. Operating system enhancement
In order to improve operating system features by implement­

ing primitives in microcode is one of the main application area
of the method of vertical migration [4].

For example to support the OS/VSZ MVS (Multiple Virtual
Storage) operating system of IBM, a microcode feature called
CPS:MVS is provided that enhances the operating system in the

9

area of lock management, integrity, tracing, interrupt handling
and real storage management. By the technique of microcode assist
the operating system overhead could be reduced by more than 70%
in some cases [19].

4.4 Microprogrammed monitoring
Monitors are well-known tools for observing certain aspects

of computer systems. A firmware or microprogrammed monitor is a
tool whose sensor and selector part at least are implemented in
the firmware level of the system to be measured.

There are different objects (and objectives to be pursued)
that can be observed by these tools [20] .

- To determine the kind of instruction used or the memory
area which is referenced by instructions (performance
improvement)

- To check the result of a microprogram (debugging support)
- Interface of the hardware level (microdiagnostics)
- To monitor software functions (for supporting vertical
migration decisions)

Recently microdiagnostics is very popular and widely used
by computer manufacturers for improving realibility and mainten­
ance of computer systems.

4.5 User-microprogrammable computers
There are an increasing number of user-microprogrammable

computer available on the market, (e.g. DEC PDP-11/60, HP 21MX,
HP 1000 etc.)

For user (dynamic) microprogramming, they should have the
following features:

- A Writable Control Store (WCS) with extra address space
in the control store

- Means to load3 dump and check the WCS
- Program access to microcontrol (bus or I/O port, special
instructions, trap, microbreak etc.)

- Support software (microassembler, micromonotor etc.) for
user microprogramming.

10

For simplifying microprogramming they usually apply simle
(vertical) microinstruction sets which is a real bottle-neck for
writing efficient (fast) microprograms.
Typical applications:

- Instruction set extensions with special functions
- Microcoding application kernels (10% of the code is normal­

ly executed 90% of the time)
- Implementing specific algorithms (e.g. Fast Fourier
Transform)

- Realizing an application environment (e.g. terminal control
for improving stack handling capabilities, dynamic al­
location of communication buffers, speeding up interrupt
processing etc.)

4.6 Control Devices and Special-Purpose Applications
In modern computer systems, control devices are frequently

implemented by microprogramming (e.g. data channels, disc control
unit, graphical display control etc.).

Microprogrammed versions can greatly improve the features of
processing systems (e.g. image processing).

Glossary of basic terms

Architecture
The set of computer's features which are visible to the pro­
grammer .

Field (control field)
A collection of bits in the microinstruction that controls a
primitive machine activity.

Emulation
The use of microprogramming techniques for the interpretive ex­
ecution of one machine by another.

Encoded control
A method of microword organization in which the value of the
fields must be decoded to generate control signals.

11 -

Firmware
A term used to describe the microprogramming level between hard­
ware and software in the implementation of computer systems
(usually by code in ROM).

Horizontal architecture
It is not a very precise term to categorize machines whose micro­
word capability has some of the following attributes:

- capability of specifying multiple simultaneous operations
- not highly encoded
- relatively wide
- specifies the address of its successor

Host machine
A microprogrammable computer upon which an emulator for a target
machine is implemented.

Macroinstruction (Machine instruction)
A machine language or macro level instruction.

Microcode
One or more microinstructions of writing a microprogram.

Microcycle
The smallest unit of time available for the execution of a single
microinstruction.

Microinstruction
One instruction of a microprogram.

Microoperation
Specification of a primitive machine operation or an operation
specified by one (or more) field(s) of a microinstruction.

Microprogram
A program composed of microinstructions.

Microprogrammable
Pertaining to the capability to control the actions of the micro­
level machine via microprogramming.

12

Microword
A word in the control storage.

Organization
A level below architecture, organization is concerned with, how
the facilities available to the programmer are provided.

Realization (Implementation)
In the hierarchy of architecture, organization and structure,
realization describes the lowest level - the chips and connec­
tions which implement a machine structure.

Structure
All the functional building block and their relationship (con­
nections, links, intercommunications).

Target machine
The computer whose architecture is implemented by an emulator
running on a host machine.

Vertical architecture
A terms used to describe machines whose microwords have some of
the following attributes:

- specify a single operation
- Relatively narrow
- Highly encoded
- Microinstruction-counter sequencing

WCS (Writable Control Store)
Control Store implemented with RAM so that the user can dynamical­
ly alter its contents.

%

13

REFERENCES
[1] M.V. Wilkes: The best way to design an automatic calculating

machine. Manchester Univ. Computer Inaugural Conf.,
Manchester, July 1951. pp. 16-18 (Reprinted by the Micro­
processing and Microprogramming. Vol. 8. 1982. pp. 142-144)

[2] C.G. Bell et al.: Computer Engineering. Digital Press, 1980.
[3] A. Opler: Forth-generation software, Datamation, January

1967. pp. 22-24 (Reprint by the Microprocessing and Micro­
programming, Vol. 8. 1981. pp. 146-148)

[4] L. Richter: Forschung and Praxis bei vertikaler Migration
(13. Wasco-Tagung in Budapest, 1982.)

[5] G. Chroust and J.R. Mühlbacher (eds.): Firmware, microprog­
♦ ramming and restructurable hardware, North Holland Publ.Co.

1980.
[6] S. Davidson, B.D. Shriver: An overview of firmware engineer­

ing, Computer, Vol. 11. 1978. pp. 22-33
[7] B.W. Boehm: Software engineering, IEEE Trans, on Computers,

Vol. C-25, 1976. pp. 1226-1242
[8] M. Tokoro et al.: Optimization of microprograms, IEEE Trans,

on Computers, Vol. C.-30, 1981. pp. 491-504
[9] D. Landskov et al.: Local microcode compaction techniques,

Computing Surveys, Vol. 12. 1980. pp. 261-294
[10] J.A. Fisher: Trace scheduling: A technique for global micro­

code compaction- IEEE Trans, on Computers, Vol. C-30. 1981.
pp. 478-490

[11] S. Dasgupta: Some aspects of high-level microprogramming,
Computing Surveys, Vol. 12. 1980. pp. 296-326

[12] T. Gilb: Software metrics. Wintrop Publ. Inc. Cambridge,
Mass. , 1977 .

[13] F. Vajda et al.: EMU: A bit-sliced microprocessor-based
emulator, in Microprocessor System: Software, firmware
and hardware (eds.: Sami, Thompson and Mezzalire)
North Holland Publ. Co. 1980. pp. 53-58

[14]
*

C. Vickery: Software aids for microprogram development, 7th
Annual Workshop on Microprogramming, pp. 208-211

[15] T.G. Ranscher and P.M. Adams: Microprogramming: A tutorial
and survey of recent developments, IEEE Trans, on Com­
puters, Vol. C-29. 1980. pp. 2-20

14

[16] M.J. Flynn: Directions apd issues in architecture and
language, Computer, October, 1980. pp. 5-22

[17] Y. Chu and M. Abrams: Programming languages and direct-
-execution computer architecture, Computer, July 1981.
pp. 22-32

[18] G. Frieder: The Fortran project, SIGmicro Newsletter, Vol.
8. 1977. pp. 47-50

[19] H. Cordero and J.B. Chambers: Second group of IBM 4341
machines outdoes the first, Electronics, April 8. 1981.
pp. 149-152

[20] W. Grätsch and H. Kästner: Firmware monitoring - History
and perspective. Microprocessing and Microprogramming,
Vol. 8. 1981. pp. 237-246

1

Kiadja a Központi Fizikai Kutató Intézet
Felelős kiadó: Szalay Miklós
Szakmai lektor: Ambrózy György
Nyelvi lektor: Csákány Antal
Gépelte: Beron Péterné
Példányszám: 315 Törzsszám: 82-169
Készült a KFKI sokszorosító üzemében
Felelős vezető: Nagy Károly
Budapest, 1982. március hó

