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ABSTRACT
A simple one-dimensional numerical simulation technique is proposed as 

a means of solving the Poisson equation applied for MOS capacitances with 
arbitrary doping profile. The discontinuity condition valid at the Si-SiO^ 
interface was built into the governing equation system enabling accurate 
solution for potential and charge distributions. Based on the accurate solu­
tions ideal C-V curves were derived whose validity was proved by comparing 
them with the curves obtained from the exact solution in the special uniform 
case. The computer program is verified by ideal C-V curves given for enhance­
ment and for depletion type ion-implanted MOS structures.

АННОТАЦИЯ

В статье дается решение уравнения Пуассона в одномерном пространстве с 
целью математического моделирования МОП диодов с неоднородным распределением 
примесей. Применением справедливой на границе раздела фаз Si-Si02 теоремы 
Гаусса в уравнении Пуассона, функции распределения электростатического потен­
циала и концентрации электронов и дырок решаются с необходимой точностью. На 
основе этих результатов определяется идеальная C-V характеристика МОП диодов. 
Точность цифровых расчетов доказывается сравнением результатов расчетов с ре­
зультатами, полученными в явном виде для случая однородного распределения 
примесей, а для демонстрации широкой применимости вычислительной программы 
даются идеальные C-V характеристики, определенные в случае МОП диодов с неод­
нородным распределением примёсей.

KIVONAT
A dolgozat az egydimenziós Poisson egyenlet megoldásán keresztül tetsző­

leges adalék eloszlású MOS kapacitások szimulációját irja le. A Si-Si02 határ­
felületen érvényesülő Gauss tétel Poisson egyenletbe építésével a potenciál 
és töltéseloszlásra megfelelő pontosságú eredményt kaptunk. A potenciál és 
töltéseloszlás ismeretében pedig meghatároztuk MOS kapacitások ideális C-V 
görbéit. A numerikus eljárás pontosságának igazolására a homogén adalékelosz­
lás esetén kapott numerikus eredményeinket összehasonlítottuk az ebben az 
esetben nyerhető exact megoldással. Továbbá, a számitógép program széles körű 
alkalmazhatóságának bizonyítására megadtuk az ideális C-V görbéjét egy nö- 
vekményes és egy kiüritéses ion-implantált MOS kapacitásnak.
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NOTATION
C low frequency MOS capacitance per unit area (F cm )_ 2C qx oxide capacitance per unit area (F cm )
C . low frequency differential semiconductor capacitance per unit area
S1 -2 (F cm z)

DOP (x) impurity distribution (cm 3)
DOPN (x) impurity distribution in dimensionless form 
dQx oxide thickness (cm)
D oxide thickness in dimensionless formox
h mesh spacing in dimensionless form
1 length of the examined sample (cm)
L length of the examined sample in dimensionless form
N number of grid points
N. acceptor concentration (cm )̂
A -3N donor concentration (cm )u -3N_ implanted dose (cm ) -3n^ intrinsic carrier concentration (cm )

q magnitude of electronic charge (A s)
-2Q charge per unit square (A s cm )

Rp projected range (cm)
s the number of the surface point
V electrostatic potential in dimensionless form
V B bulk potential (V)
VG gate potential (V)
Vg surface potential in dimensionless form
x coordinate, distance measured from the gate contact (cm)
X coordinate in dimensionless form
eQx dielectric constant of the oxide
egi dielectric constant of the silicon
Фп quasi-Fermi potential for electrons (V)
фр quasi-Fermi potential for holes (V)
<PT thermal voltage (V)
ф electrostatic potential (V)
p space charge density (A s cm )̂
<5 standard deviation of the implanted layer (cm)

-2
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1. INTRODUCTION
With the appearance of large scale integration and new, sophisticated 

semiconductor technologies the significance of the MOS technique has increased 
faster than ever. The rapid development in this field demands more accurate 
and flexible methods for designing and measuring MOS structures. The well- 
-known C-V technique, for example, which is widely used for process control 
or as a design tool [1], has preserved its significance but the evaluation 
of the desired parameters from it has become much more diffucult and inac­
curate mainly due to the nonuniform doping level near the Si-Si02 interface.

Such nonuniform doping level can be created intentionally by shallow 
diffusion or ion implantation so that the threshold voltage can be adjusted, 
but this may also occur unavoidably due to the redistribution of dopants 
during thermal oxidation.

Moreover, if the doping level near the interface is nonuniform, the 
Poisson equation, describing the potential distribution in the MOS structure 
cannot be solved exactly and the well-known ideal curves of Goetzberger [2] 
based on the exact solution for the uniform case [3] cannot be used in the 
evaluation, what means the Poisson equation should be solved numerically.

However a difficulty arisis during the numerical computation due to the 
heterogeneous structure studied, since an intermediate boundary exists at the 
Si - Si02 interface, where the space charge and the dielectric constant are 
discontinuous. The discontinuity of these functions could be handled by the 
box integration technique described with mathematical rigour in [4] and 
utilized among others in [5], since the required conditions are fulfilled, 
but it would result in a fictitous surface charge violating the Gauss's law. 
Though this fictitious surface charge can even partially compensate the error 
of the numerical differentiation at low values of space charge using fine 
mesh spacings near the surface, but it causes unacceptable error at high 
values of surface space charge.

The purpose of the present paper is to overcome this problem and to 
introduce a sufficiently accurate and effective one-dimensional mathematical 
model suitable for deriving ideal C-V curves for MOS capacitances with 
arbitrary doping profile allowing, at the same time, the presence of a p-n
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junction, too. On the basis of this mathematical model the dependence of the 
C-V characteristics on the parameters of the doping profile and on the 
other properties of the MOS structure might be given, but the number of re­
quired graphical plots would be unreasonable. It is for this reason that we 
wish only to verify the accuracy of the mathematical model by comparing the 
C-V curves derived in this way with the ideal curves of Goetzberger [2] 
at uniform doping, and to give only two examples for the solution of the 
nonuniform case - together of course with a detailed description of the applied 
numerical technique.

2. MODEL FORMULATION
If it is assumed that the examined MOS capacitance has a sufficiently 

large area for the side effects to have no influence on the field chosen for 
simulation and the doping level is nonuniform only in the direction normal to 
the interface, then the problem can be accepted as one-dimensional. In this 
case the governing Poisson equation can be written, as follows:

However as was stated earlier the right hand side function of this 
equation is discontinuous at the Si - SiC>2 interface resulting in an undiffer- 
entiable electrostatic potential at this particular point. Therefore it seems 
to be reasonable to divide the Poisson equation and use it separately for 
the oxide and for the semiconductor area connecting them only through the 
Gauss's law determining the potential at the interface and ensuring internal 
boundary conditions for the two separated Poisson equations. This way the 
generation of some fictitious space charge, violating the Gauss's law and 
created unavoidably at box integration is avoided.

Since we are concerned here with ideal MOS capacitance the oxide charge, 
the interface states and the metal-semiconductor work function difference 
are to be neglected, though taking into account these parameters at the 
Gauss's law would not cause any mathematical problem.

Corresponding to all that has been stated the governing differential 
equation system can be written, as:

dx
if 0<x<dox

if x=dox (2 )

x=dox
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with the boundary conditions:

if x>dox

Ф(0) = VG 

Ф(А) = V B

where H is a long enough distance from the gate contact to ensure that the 
boundary point x = SL is in the neutral region of the bulk.

The space charge in the silicon can be described by:

p = q-[п1-Фп-ехр(ф/фт)-п1*Фр *ехр(-ф/фт)-DOP] (3)

where:

DOP = <

Фп = ехР<-Фп/Фт >

Фр = ехр(фр/Фт )

- for р - type silicon

Nd for n - type silicon

(4)

The presence of the exponential quasi-Fermi potentials, as variables, 
will not cause any problem, because the current density in an ideal MOS capac­
itance at steady state is zero and accordingly the quasi-Fermi potentials 
will be equal and constant throughout the silicon. For simplicity, it is
reasonable to take ф =ф =0 causing Ф =Ф =1; this naturally means that all then p n p
potentials from now on should be related to this reference point.

For convenience, in the numerical calculations, the normalized forms of 
the variables will be used, i.e. the distances will be in units of Debye 
length, the potentials and voltages in units of thermal voltage, the field 
charge in units of electron charge and the charge and impurity concentrations 
in units of intrinsic concentration. Though it could be handled in another 
way, too the relative dielectric constants were included in the Debye length, 
resulting in different normalization factors for distances in the oxide and 
in the silicon.

If we utilize these simplificatiohs the differential equation system 
used for the numerical calculations will be:
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d2V
dX2

= О if Ö<X<D
OX

dV
dX

, , .1/2 dV
(Esi/̂eox) dX

X=D ox
if X=Dox

X=D ox

d2V
dX
^ = exp(V) - exp(-V) - DOPN if X>Dox

(5)

v(0) = vG/vT

V (L) = VG/<PT

To avoid difficulties with transcendental equations (5) was linearized 
in the most general way [6], i.e. by substituting V with another variable 
6=VNEW - VQLD and using Taylor series expansion in the vicinity of V(J| t for 
the exponential terms. Here is an intermediate or trial solution accepted
as known in an iteration cycle and VNEW is the solution based on it, wiiat 
means that 6 is the error between two successive iteration steps approaching 
zero at a converging procedure.

This transforms equation (5) into:

d2VOLD
dX

if 0<X<D (6)- ox

(e /e )1/2.1 si' ox' dX
d6
dX

X=Dox

dVOLD
dX

X=Dox X=D
OX

(esi/eo*)
1/2 dVOLD 

dX
X=D

OX

if X = Dox

d26
dX2

- [exp(VQLD) + exp(-VnTn) ]-6 =OLD'

d2VOLD
dXT + eXP (VOLD) " exp(-VOLD)-DOPN if X>Dox

with the appropriate boundary conditions:

6(0) = о V = V OLD 1
6(L) = 0 V = V OLD V1
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3. NUMERICAL TECHNIQUE
Equation system (6) , already suitable for numerical calculation, was 

discretized by the traditional three-point finite difference scheme [4], 
resulting in a linear equation system based on a three-diagonal sparse matrix. 
The terms of the matrix and the right-side vector for a general i point in 
the grid system, corresponding to the ith row of the linear equation system, 
can be given as follows:

4,1-1 2/hi (hi+hi+1)

i,i

i,i+l

-2/hi'hi+i

2/hi+l(hi + hi+l)
L if 0<X<Dox

"ai,i-l‘VOLD i-l_ai,i'VOLD i“ai,i+lVOLD i+1

3i,i-l

3i,i+l

ai,i

bi

ai,i-l

3i,i

ai,i+l

0,57/hi

1/hi+l

"ai,i-l"ai,i+l

-a .v -a -V - a -Vi,i-l OLD i-1 i,i OLD i ii+1 OLD i+1 J
2/hi(hi+hi+1)

-2/hihi+l-exp(voLD i)-exp(-V0LD ±)

2/hi+l(hi+hi+1)

“ai,i-lVOLD i-l~ai,iVOLD i“ai,i+lVOLD x+1 + 

+exp (Vqld i ^ P ^ O L D  i)-DOpNi

if X=Dox

if D <X<L ox -

At this step an assumption was made, viz. that the field strength is 
constant between the interface and the grid point next to the interface and 
the value of it corresponds to the exact value just at the silicon side of 
the interface. This assumption coincides with the reality at the oxide side 
and causes an acceptable error at reasonable grid system in the silicon. 
Naturally, if using of a coarse grid system is unavoidable, the field strength 
at the silicon side is to be approached through a more accurate finite dif­
ference formulation.



10

It is easy to realize that the matrix of the created linear equation 
system, including the discretized Gauss's law will be diagonally dominant and positive 
definite, thereby ensuring the convergence of the iterative solution processes. 
There is no reason to use a direct solution technique such as Gauss elimina­
tion because this would permit error truncation and fill the sparse matrix 
with undesirable terms rapidly increasing the required store capacity. The 
use of sophisticated iterative techniques, like block iteration or strongly 
implicit procedure, also seems to be unreasonable because the much simpler 
and convenient successive over - relaxation SOR method [4] with appropriate 
acceleration factor ensures a very good convergence. Thus, the mentioned SOR 
procedure was applied for the solution of the linear equation system with an 
ш=1.73 acceleration factor. The solution was truncated when the maximum 
charge in 6 was less than 10%. The linear equation system was modified on 
the basis of the new intermediate solution, VNEW» creating in this way an 
outer cycle for the solution of the electrostatic potential, V. The rate of 
convergence could be inproved by applying an acceleration factor in the outer 
cycle, too. But, when it is used during the initial stages of the outer loop
instabilities could occur. The outer cycle was stopped when the absolute

-4maximum value of 6 decreased below 10 , i.e. when the electrosratic potential
at every point of the grid system was known with less than +2.6yV error.

Further on the silicon capacitance can be defined as the slope of charge 
change caused by the surface potential perturbation. That is,

'Si = JLQ.Эф (8)

This can be written in numerical form, using the previous simplifications,
as!

N
Z [exp(V^+1)-exp(V^)+exp(-V^)-exp(-V^+1)]•hi

CSi = a
i=s

Vk+1
(9)

V

Here "a" is a constant used to transform the dimensionless form into SI 
one and the к and k+1 suffixes refer to the two different potential distribu­
tions obtained at V_ and V_+A gate voltages, where Л is a sufficiently small 
voltage change. The value of a equals 3,14*10 F/cm for silicon at T=300°K 
assuming that the described normalization technique was applied for the 
numerical calculation of the potential distribution.

With the knowledge of at a given gate voltage the relative capac­
itance C/Cqx of the MOS structure can be obtained as

C/Cox
^si

e /d +C ox' ox si
(10)

If the described numerical calculations are repeated at the desired gate 
voltages the ideal curves for MOS capacitances with arbitrary profile can be 
derived.
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4. RESULTS
On the basis of the described numerical technique a FORTRAN program was 

developed suitable for determining the potential and charge distribution in 
a MOS capacitance and enabling these results to be used to derive the required 
ideal C-V curve. The distribution of the grid points in the silicon was made 
in accordance with an error analysis, on which a report was published earlier 
[7], stating that the potential distance between two neighbouring points 
should not exceed lcpT to ensure an accurate solution. In order to fulfil this 
requirement and to achieve sufficient accuracy near the interface a 2o8 
spacing was chosen next to the interface increasing in accordance with geo­
metrical progression. Applying fifty grid points altogether for deriving the 
ideal C-V curve by calculating the relative capacitance at 20 different 
gate voltages, a main store capacity of 42K and less than 120 sec CPU time 
was required for computation on an ES - 1040 computer even though a very 
primitive trial solution was used at the starting gate voltage.

Fig, 1, Low frequency relative MOS capacitance as a function of the gate poten­
tial for different bulk concentrations i
(A) N.=l-1014 cm~3. d =1000 Я:A * ox
(B) N.=l-1016 cm~3, d =1000 Я:A ’ ox
--  exact solution, + numerical solution described in the paper,
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Figures 1 and 2 show a comparison of two ideal C-V curves and poten­
tial distributions gained by the exact solution of the governing equation 
for uniform doping whith the results obtained from the described numerical 
simulation procedure to verify the validity and the accuracy of this tech­
nique.

Fig. 2. Surface potential in a MOS structure as a function of the gate poten­
tial for different bulk concentrations:
( A )

1 4
N A= 1 - 1 0 2A

-3 
от у d  = 1 0 0 0  

o x
2 :

( B ) N . = l - 1 0 1 6A
-3

cm 3 d  = 1 0 0 0  
o x

2 :

—  exact solution, + numerical solution described in the paper.

Figures [3] and [4] show the C-V curves for MOS capacitances with ion- 
-implanted layers near their interfaces obtained using the discribed numeri­
cal simulation technique. The doping level in the implanted layers were cal­
culated by means of the normal Gaussian distribution:

D0Plmp<*> ■ 2 172 e x Pt~ 2(2ттб̂ ) x/z 26г

(X-R )*
(11)

This distribution might be changed during heat treatments, but the dis­
cussion of this subject is beyond the frame of the present work.
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Fig. 3. Low frequency MOS capacitance as a function of the gate potential for 
an enhancement type implanted MOS structure with the parameters:
Na =1-1015 cm~3, NQ=1,25‘1012 cm~2, Rp=1910 Я,
6=550 Я, d =1000 Я.

3 OX
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Fig. 4, Low frequency MOS capacitance ae a function of the gate voltage for 
a depletion type implanted MOS structure with the parameters:
R.=1.1015 cm~2, N=6,2S'101:l cm~2, R =1120 ЯА О P
6=400 Я, d =1000 Я.3 ox

5. CONCLUSION
The proposed model is suitable for deriving ideal C-V curves of MOS 

capacitances with arbitrary doping profile and contributes to a better under­
standing of the physical processes taking place in them. The numerical tech­
niques used have proved to be effective and accurate for the solution of this 
task. Neverheless, a more accurate method based on measurements or process 
simulation is required to support this program with the real doping level to 
make this simulation technique a more effective tool in device design and 
process control.
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