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ABSTRACT
It is shown by the Fourier analysis of broad Mössbauer spectra that 

the even part of the distribution of the dominant hyperfine interaction 
/hyperfine field or quadrupole splitting/ can be obtained directly with­
out using least-square fitting procedures. Also the odd part of this 
distribution correlated with other hyperfine parameters /e.g. isomer 
shift/ can be directly determined. Examples covering the case of amor­
phous magnetic and paramagnetic iron-based alloys are presented.

АННОТАЦИЯ

Анализом Фурье широких спектров Мессбауэра показано, что четную часть 
распределения доминирующих сверхтонких взаимодействий /расщепление сверхтон­
кого поля или квадрупольное расщепление/ можно получить непосредственно, без 
подгонки методом наименьших квадратов. Нечетную часть этого же распределения 
при коррелировании с другими сверхтонкими параметрами /например, с изомерным 
сдвигом/ также можно определить непосредственно. Приведены примеры для слу­
чаев аморфных магнитных и парамагнитных сплавов на основе железа.

KIVONAT
Megmutatjuk a széles Mössbauer spektrumok Fourier analizisével, hogy 

a domináns hiperfinom kölcsönhatás /hiperfinom tér vagy kvadrupol felha­
sadás/ eloszlásának páros részét direkt módon meg lehet kapni, legkisebb 
négyzetes fittelési eljárás nélkül. Ennek az eloszlásnak a páratlan része 
más hiperfinom paraméterekkel korrelálva /pl. izomer eltolódás/ szintén 
direkt módon meghatározható. Amorf mágneses és paramágneses vas-alapu 
ötvözetek példáit mutatjuk be.
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1. Introduction

Disordered systems often exhibit broad Mössbauer spectra due to 
the fluctuation in the strength of the hyperfine interactions from 
site to site. These spectra can be described by the distributions of 
the hyperfine parameters (hyperfine field H, quadrupole splitting ДЕ 
and isomer shift IS). The evaluation of these distributions from the 
measured spectrum is a difficult task and many different approaches 
have been proposed.

The most widely used methods assume that one type of hyperfine 
interaction is dominant (e.g. hyperfine field) and the distribution 
function is expanded in terms of trigonometric functions [l] or step- 
functions [2]. The coefficients of this series are determined from a 
least-square fitting procedure of the spectrum. Improvements and dif­
ficulties of these methods are discussed in Refs, [з] and [4] .

The common feature and basic problem of all published evaluation 
methods lays in the use of a least-square fitting procedure to determine 
the parameters characteristic of the distribution. The number of para­
meters necessary to obtain a reliable fit of the spectra is a sensi­
tive function of the chosen approach. It is difficult to find the op­
timum solution with the possible smallest number of parameters. This 
can be illustrated with the example of amorphous ferromagnetic alloys 
where generally about 9-12 parameters (cosine components) are neces­
sary to determine the shape of the hyperfine field distribution with 
Window's method [lj. The same accuracy (i.e. x2-value) can be reached 
by using only 3-5 parameters when the binomial distribution method 
(BD) [5] is used.

In the following the application of Fourier analysis to the eva­
luation of these distributions will be discussed. It will be shown that 
the even part of the distribution of the dominant hyperfine interaction 
and the odd part of this distribution correlated with other hyperfine 
interactions can be directly determined in the case of broad distribu­
tions - without the use of least-square fitting procedures. The results 
on amorphous iron-based alloys obtained via this method will be compa­
red with those of the BD method on the same systems. Fourier transfor­
mation has been used earlier for the removal of sample thickness effects



4

in the Mössbauer spectra [в] and to increase the resolution of the Möss- 
bauer spectra [7].

2. Basic equations

We will assume for the sake of simplicity (but without loosing ge­
nerality) that the distribution of hyperfine parameters are given by 
p(h,S), where h stands for hyperfine field or quadrupole splitting (ac­
cording to the actual specification) and S is the isomer shift (or a 
combination of isomer shift and quadrupole splitting, according to the 
specification). p(h,S) is normalized, i.e.

//p(h,S) dhdS = 1, (1)

where the integrals are taken between -® and +«> (as always through this 
work when no other boundaries are given).

The Mössbauer spectrum with this probability distribution after the 
substraction of the background is given as

S(v) = //p(h,S) L(h,S,v) dhdS, (2)

where v is the relative velocity between source and absorber, ano

L(h,S ,v ) =
1 + <v - h _+S)2 1 + (v + h + -V (3)

bO.
Here G is the half-linewidth of the individual Lorentzian components and
it will be assumed that all elementary components have the same width,
i.e. G is not distributed (that is no sample thickness effects will be
considered). The Mössbauer spectrum given in Eq. (3) corresponds to the
elementary spectrum of paramagnetic ®7Fe (3/2-1/2 transition) where h =
ДЕ /2 = Q and S = IS or it represents one doublet of the six-line pat- 
'* 57tern of a magnetically split Fe elementary spectrum when h is propor­

tional to the hyperfine field H (via the proper g-factor combination) 
and S is a combination of quadrupole and isomer shifts. Eq. (3) should 
be replaced with the proper expression when the method is used for other 
nuclear transitions.

The Fourier transformed S(v) is defined as
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» i Ír уs(k) = /S(v) e dv, (4)

which reduces into

_i V C  — fl I к Is(к ) = (Jíp(h,S) 2c о s(kh) e dhdS)(nGe ). (5)

The definition of s(k) deconvoluted from the Lorentzian contribution is

SDc (к) = s (к) eG 'k'/2TiG. (6)

After the Fourier transformation of we have removed the Lorentzian
broadening of the Mössbauer lines and obtain the deconvoluted spectrum,
SDC(v) as

\ f — 1 к V
SDC(V) = T- /S- < k> e dk2 и J DC (7)

Using Eq. (5) and (6) we may write

S' (v) = JJp(h,S)[ Jcos(kh)e 1 kSe“lkvdk IdhdS =
D C  ZTT

„.even, . „.odd, „
■ sic <v) - sic <v)- <8)

sums
After replacing the cosine and sine products with the proper cosine 
and using that — - /coskx dk = 6(x), the Dirac б-function, we obtain

£> 7T
for the symmetric part of SpC<v ):

SDC<V) = S^ Ven<v) = //P<h «S) \ [ 6(h + S + v) + 6(h - S + v) +DC

+ 6(-h + S + v) + 6(-h - S + v) ] dhdS, (9)

while the asymmetric part of the Sp^(v) is given by

SDCd(v) = Sn°dd(v> = ~//p<h,S) j [ 6 (h + S - v) - 6(h - S - v) +DC

+ 6(h - S + v) - 6(h + S + v) J dhdS. (10)

Eq. (9) and (10) are our basic equations which contain all information
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of our spectrum after the deconvolution of the Lorentzian broadening. 
It is clear that in principle the two-parameter distribution, p(h,S) 
cannot be determined because only integrated p(h,S) values at special 
parameter combinations are available. Only additional, artificial as­
sumptions like limited range for the parameters used in Ref. 6 may al­
low the non-unique determination of p(h,S).

2.1. Special cases (S << h)

In most cases it can be assumed that one type of hyperfine inter-
57action is dominant. In the case of Fe these are the magnetic 

hyperfine interaction and quadrupole interaction for magnetic and pa­
ramagnetic spectra, respectively. In the following analysis the 8 << h 
assumption will be used. The corresponding approximations of Eq. (9) 
and (10) are

2.1.1. h and S are independent

If there is no correlation between the hyperfine parameters, their 
distribution function can be factorized as

SDC<V) = / Í  t P<h = v >8 > + P<h = -v.S) ] dS =

(ID

and

C V >  - - / I [ I T ' v's> - I T  ’ -V'S) ] —
4.i:3 odd.h

= - / (h = v,S) SdS. (12)

P(h,S) = p (h) p (S), where h S

/ Ph(h) dh = 1 and / PS (S) dS = 1. (13)

In this case
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S

S

. . even.. .DC( » ) . p h (h-v),
odd _ aph <h -odd

DC (v) = -S dh

and

v)
, where S = / Spg(S) dS.

(14)

(15)

In all present applications S = 0 will be assumed by the proper choice
of the velocity - zero (which can be obtained without fitting via the
weighted average of the spectrum). Thus the hyperfine parameters are 

oddcorrelated when S (v) f 0.DC/

2.1.2. h and S are correlated

In this case there is a functional connection between the two pa-»
rameters of the distribution, i.e. S = S(h). If the distribution of h 
is given by p(h), where /p(h) dh = 1 then the distribution of S is given by

PS(S) = P(S~1(S))

'

(16)

where h = S ^(S) means the inverse function of S. The appropriate versions 
of Eq. (11) and (12) are the following:

_ , . even,,SDC*V) = p (h = v), and

3D > >  * - é  <S<h> ■>°dd>3»  lb - v -
odd

= - [ 4^(h = v> p°dd(h = v) + S(h = v) ^  (h = v)dh dh J
(18)

If for h > 0 the symmetric and asymmetric part of o(h) are identical (i.e 
p(- |h|) = 0) and the correlation between S and h is linear, Eq. (18) of­
fers an immediate direct determination of dS/dh: it is related to the va- 

oddlue of S__ (v) at the v -value where p(h) has its maximum, i.e.DC m

dS
dh SD2d(Vm>/SDC(Vm> (19)

2.2. Illustration

In the following simulation we will assume that p(h,S) is a one-para­
meter distribution having Gaussian shape, i.e.
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p(h,S) = p(h = H, S = 0)
H - H

P(H) = e-i(- V (20)

where HQ = 70, a = 10. The half-linewidth of the Lorentzian components 
in Eq. (3) was chosen to be G = 4. The Fourier transformed spectrum 
calculated on the base of Eq. (2) is given by

s(k) 'v e a e G lk l соэкНф. (21)

If the linewidth used for the deconvolution of s(k) is given by G_ ,D C
where AG = G__ - G > 0, the deconvoluted spectrum is given by DC „

h ^ > 2 Va ' г 2V a ' , „ . AGS_(v) ^ e [ e cos(v - H„) —  +DC 0' 2o
V + H„ „И 0 2

О , „ . AG -I+ e cos(v + HQ) —  J ,
a

(22)

if AG/о << 1.
The successive steps of the evaluation are shown in Fig. 1. (Here and 

through the whole numerical work the integrals are replaced by the corres­
ponding sums). The starting p(H) is regained from the S(v) spectrum of Fig.
lb in Fig. le as a result of the above decomposition process (G_„ = G, i.e.DC
AG = 0 was used).

2.3. Limitations

The fundamental step in deducing the basic equations (9) and (10) was 
that the /cos(kx)dk ’type of integrals were replaced by the proper 6(x) del­
ta-functions. This is valid if the boundaries are ±°° or if s (k) is iden-DC
tically zero on limited boundaries. If we apply a finite cut-off at a к
value, the above-mentioned integrals had to be replaced with sln k̂mx^/km
of expressions. This finite cut-off will result in a cut-off oscillation 

Iin S (v) the amplitude of which is determined by the value of s_„(k )
and decreasing like 1/v for large v-values. The period of the oscillations
is given by 2тт/к . Also the finite cut-off will result in a broadening max
of the distribution functions in S^iv) if SDC^k  ̂ *S not smaü  enough above 
l̂ max i>ecause of the neglection of the high frequency components.
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In the given illustration of Fig. 1 the use of к = 0 . 4  has re-max ^ 2
suited in this type of cut-off oscillation with an amplitude of 3.10 
which cannot be observed on the figure and within this error the ori­
ginal p(H) and the deconvoluted S (v) were identical.

The most serious limitation of this method originates from the 
statistical fluctuation of the spectra. The deconvolution process will 
result in a tremendous amplification of this noise because of the mul­
tiplication with eG k̂ L Thus the possible maximum cut-off value is de­
termined alone by the noise-to-signal ratio, W of the spectra. This
к value on the other hand will limit the minimum width of the die- max
tribution, a . which can be evaluated without deforming the distribu- min
tion. The condition of undistorted reproduction of the distribution is 
that its Fourier transformed function is small at the cut-off frequen­
cy, i.e. assuming Gaussian shape for the distribution:

1.2 2 -jk a . max min e < W. (23)

-Gk
A natural choice of к is e Ф W, which gives the condition:

G I InW' (24)

Typical values of a /G from Eq. (24) are 0.82, 0.66 and 0.54 for W =min
0.05, 0.01 and 0.001, respectively. That is the practical limit for the 
width of the narrowest distribution which can be evaluated with this me­
thod is about о , > G/2.min ъ

The before-discussed difficulties are illustrated with the case of 
crystalline Zr Fe in Fig. 2. The Mössbauer spectrum consists of a well-«3
resolved quadrupole doublet [9], that is the distribution of quadrupole
splitting is a delta-function, its width is zero. According to this, the
deconvoluted Fourier transformed spectrum, s (k) is a cosine-function
without damping (Fig. 2c). If the cut-off takes place at too small k ^ ^
value strong cut-off oscillation with decreasing amplitude results (Fig.
2d). Also the distribution function is considerably broadened - in the
example of Fig. 2d its width is larger than that of the spectrum. For
increasing к values the evaluated width of the distribution is de­max
creasing like l/к and the effect of cut-off oscillations is suppressed max
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by the amplified effect of the noise. In Fig. 2f the width of the dis­
tribution is 0.04 mm/s G/4) but about half of the curve is noise.

It is worth to emphasize that there is an inner control possibi­
lity in this Fourier deconvolution method: when it is incorrectly used 
for the evaluation of too narrow distribution (in the sense of the in­
equality (24)) the evaluated distribution (or a certain part of it) will 
change as a function of the chosen кmax

In the following point a natural selection of the best value
and typical applications will be presented.

3. Applications

This method can be applied for most amorphous and a large number
57of disordered crystalline systems containing iron. In the case of Fe 

the dominant hyperfine interaction parameter is the hyperfine field or 
quadrupole splitting for magnetic or paramagnetic spectra, respective­
ly. The isomer shift is often only a minor perturbation.

The results of the present Fourier deconvolution method will be com­
pared to those obtained by the binomial distribution method 15 j T h e  BD 
method was chosen for this comparison because the correlation between 
the hyperfine parameters is easily included. The p(h) distribution of 
the dominant hyperfine interaction h is approximated by a binomial dis­
tribution

p(x,n) = (^) xn(l - x )Z ", n = 0, 1 ....z (25)

with
h(n) = h^ + nAh, (26)

and
p(h(n)) = p(x,n)/Ah. (27)

The parameter z is arbitrary (usually z = 20 was chosen). A least-square 
fitting procedure determines the value of the shape parameter x, the sam­
pling interval Ah and hQ. Linear correlation with the other parameter S is 
included via the relation
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S(n) = SQ + nAS, (28)

and the distribution of S is given by p(S(n)) = p(x,n)/AS. The values of
Sg and AS are again determined by the least-square fitting procedure and
—  is given by — . More complicated spectra can be described with the dh Ah
combination of more binomial distributions [б].

Typical Mössbauer spectra of ferromagnetic and paramagnetic amorphous 
alloys will be analysed in the following sections.

3.1. Ferromagnetic cases

The two investigated cases are characteristic of the "narrow" 
(Fe68Co10B12Si1()) and "broad" (Fe68v10Bi2Silo* type °f hyPerfine field dis­
tributions. These spectra are shown in Fig. 3 and some of the results of 
the BD analysis were published elsewhere [lo]. The Fourier deconvolution 
will be performed on the 2 and 5 lines of these spectra which were obtained 
by using the spectrum substraction method [б]: a linear combination of two 
spectra with different relative intensities of the lines 2 and 5 was taken 
in such a way that the 1,6 and 3,4 lines were removed by adjusting the 
outer - free of overlap - part of the intensity of lines 1 and 6. The two 
spectra were recorded in the usual geometry, in a small external field 
(% 200 Oe) parallel to the ribbon plane and without external field in 
which case the Stress between the amorphous ribbon and the adhesive tape 
turns most of the magnetic moments out of the ribbon plane [ll] suppressing 
the intensities of the second and fifth lines. Using the p(H) obtained 
from these separated 2 and 5 lines by the BD method and also by Window's 
method [l] the original spectra could be fitted with one free parameter: 
the (average) relative intensity of lines 2 and 5, thus justifying the pro­
cedure. The advantage of this spectrum substraction method is that the 
systematical errors connected with the a priori unknown relative intensity 
of lines 2 and 5 are ruled out [l2,13] and significantly simplifies the 
interpretation of the results of the Fourier deconvolution. Also difficul­
ties caused by the too small broadening of the lines 3 and 4 in the case 
of narrow p(H) are avoided this way. (Because of the unfavorable g-factors 
the о width of p(H) is scaled to 0.158 о for these lines).

For the second and fifth lines of the six-line pattern the line posi­
tions are given by Eq. (3) if
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h = 0.578 H and S (29)

where the proper g-factor combination Is used and It Is assumed that
AEq << H.

3.1.1. Amorphous Fe6&Co1()B12Si10

Fig. 4a shows the separated second and fifth lines of the spectrum
of Fig. 3a. The deconvoluted Fourier transformed spectrum s (k) of Fig.
4c clearly shows that before the strong amplification of the noise there
is an interval where s (k) ъ 0. (For the deconvolution the linewidth ofD C
the Fe calibration (G = 0.15 mm/s) was used). The back-transformations 
from this interval differ only in the amplitude and frequency of the os­
cillations determined by the к value, but the shape of the peak inmax
S (v) is not influenced (Figs. 4d to f). The hyperfine field distribu- D C
tion p(H) is obtained from S^iv) by rescaling and normalizing the curve.
For the к values of Figs. 4d to f these p(H) curves are shown in Fig. max
5a and they are identical apart from differences of the order of their 
noise. Also the comparison of the p(H) evaluated by the Fourier decon­
volution with that obtained from the fit to the spectrum by the BD method 
shows that they are identical within the error of the evaluations (Fig. 
6a). This comparison convincingly proves the reliability of the parame­
terless Fourier deconvolution process.

There is a simple criterion for the selection of the optimum кmax
value in terms of the goodness parameter, g which is defined as

g = (A -  A  ) / ( A  + A ) ,  w here A and A  a re  th e  a re a s  w i th  th e  (30 )

c o r re s p o n d irg  s ig n  under S (v). Since the distribution functions are
positive definite by definition the deviation between A and its absolute
value ia characteristic of the cut-off and noise oscillations, g = 0 at
к = 0  and it would increase asymptotically to 1 if the noise would be max
absent. The amplification of noise at large к values on the other handmax
will result in g = 0. Thus g has a maximum as a function of к whereb max
is the optimum value of к . Fig. 7 shows that in the present case theremax
is a broad maximum in g around к =9.42 s/mm where the g-values aremax
above 0.9. This is a typical value for proper deconvolutions. On the
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other hand, in the former case of crystalline ZrgFe the g-values are 
around 0.5 - clearly indicating the improper quality of this decon­
volution .

Fig. 5b shows the obtained p(H) distributions when different
linewidths were used in the deconvolution. All curves were obtained
with the same к =8.08 s/mm to have the oscillations in identical max
positions. As it is expected on the base of Eq. (22) a definite nar­
rowing of p(H) is observed for increasing G ^ .  Also the amplitude of
the noise has increased. However, even with two times larger G (0.30D C
mm/s) than the linewidth of the calibration, no structure (new peaks) 
appears in p(H). This is contrary to the results obtained by the method 
of Window [l] where decomposition with large linewidths results in the 
appearance of new peaks in p(H) [3,4,14] which we had to attribute to 
the artifact of the least-square fitting procedure. Also Fig. 5b and 
Eq. (22) show that small deviation of G__ from G results only in small 
distortion of the deconvoluted p(H).

3.1.2. Amorphous F e ^ o ^ a ^ p

Fig. 8a shows the separated second and fifth lines of the spectrum 
of Fig. 3b. The hyperfine field distribution is more broad here than in 
the former case. According to this sDC(k) is nearing to zero more quick­
ly (Fig. 8c). The p(H) distributions calculated for different к va-max
lues are again identical within their noise (Fig. 8f). The comparison 
with the p(H) obtained by the BD method shows that they are identical 
within the error of evaluation (Fig. 9a).

3.2. Paramagnetic cases

Two room temperature spectra of amorphous alloys will be investi­
gated. It is typical for these cases that the isomer shift perturbation 
is much smaller than the quadrupole splitting, i.e.

aeqh = = Q and S = IS. (31)

The line positions are given by Eq. (3).
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3.2.1. Amorphous Zr3Fe

Fig. 10 shows the room temperature Mössbauer spectrum of melt-quen­
ched amorphous Zr^Fe together with the deconvolution process. The values
of g are shown in Fig. 7. again there is a к -interval where the g-о о max
values are above 0.9. The form of S^ ív) is identical for different кDC max
values within the error of the determination (Fig. lOd and e). The qua- 
drupole splitting distributions p(Q) obtained after normalization are 
in general in good agreement with that obtained by the BD method from 
the fitting of the spectrum (Fig. 11).

3.2.2. Amorphous FeQQZr10

Fig. 12 shows the room temperature Mössbauer spectrum of melt-quen­
ched amorphous Feg0Zrio together with the deconvolution process. The 
p(Q) obtained from Sp^(v) after normalization is in general in good 
agreement with those obtained by the BD method from the fitting of the 
spectrum (Fig. 13).

3.3. Correlation between the hyperfine parameters

In the previous applications only the even part of the Fourier trans­
formed spectra was taken into account. Since the velocity-zero was chosen 
in such a way that S = 0, the odd part of the Fourier transformed spectra 
should be identically zero if the hyperfine parameters are uncorrelated. 
However the parameters are correlated as it is obvious from the asymmetric
shape of the spectra. According to Eq. (18) the odd part of the deconvo- 

oddluted spectrum S (v) gives limited information on this correlation and on DC
the asymmetric part of the dominant distribution. In the following this 
information will be explored for the investigated cases.

3.3.1. Amorphous Fee8Co1()g12Si10 and Fe^ ^ S i ^

The odd part of the Fourier deconvoluted second and fifth lines of
the Mössbauer spectrum of amorphous Fe Со В Si is shown in Fig. 14c.bo 10 JlZ 10
Similar result was obtained in the case of amorphous Fe V В Si . It6o 10 JlZ 10
is clear from Fig. 14c that the correlation between the hyperfine field 
and the S — IS - 1  AE^ combination of isomer shift and quadrupole split­
ting is rather weak. Since in both cases the hyperfine field distribution
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does not extend to H = 0 values, It is probably a good approximation to 
©ven oddassume that p (H) 5 p (H). Then, if the correlation is linear between 

S and H, dS/dH can be obtained directly from the deconvoluted spectrum. 
According to Eq. (19) and Eq. (29):

dS
dH -0.578 S ^ d (»n )/SDC(vm) (32)

at the v value where S„_(v) (i.e. p(h)) has its maximum. dS/dH = 0.031 m DC
and 0.042 was obtained for amorphous Fe68Col0B12Si10 and Fe68V10B12Si10’ 
respectively.

These values agree well with those deduced from the fits of the 
spectra with the BD method, which are dS/dH = AS/ДН = 0.023(7) and 0.027(6), 
respectively. It is worth to emphasize that these values differ both 
in magnitude and sign from the d(IS)/dH-values obtained in similar crys­
talline intermetallic compounds [ 15]. In those systems (like FegB, Fe2B,
FeB) it has been found that the absolute value of the hyperfine field 
has decreased with increasing isomer shift with a value of d(IS)/dH = -0.038. 
Since there is no evidence which would suggest that isomer shift and hy­
perfine field would be correlated differently in amorphous than in similar 
crystalline systems we had to conclude that the quadrupole splitting is 
also correlated with the hyperfine field. This conclusion is supported 
by the shape of the lines in the Mössbauer spectrum of amorphous Fe0gC°iQ®l2BilO 
in Fig. 3a: the width of lines 1 and 6 is about the same while the lines 
2 and 5 are quite asymmetric. (For the lines 1 and 6 S = IS + ~ ЛЕ). Si-a
milar result was obtained in amorphous Fe В [б] .öv ct\J ^

The combination of the value of dS/dH = d(IS - AE^/dH = 0.031
1 Qwith the crystalline d(IS)/dH = -0.038 results in d(- ЛЕ )/dH % -0.07 for
Л Q

this correlation. In crystalline orthorhombic (Fe,Ni) В compounds a value 
of d(—  AE^)/dH = -0.08(1) can be deduced [lö] . The good agreement should 
be considered fortuitous because these values are quite sensitive for the 
actual topological arrangement of the atoms. The origin of the correlation 
between the hyperfine field and quadrupole splitting is the dipole contri­
bution of the hyperfine field [ 17].

This result is quite contrary to the common view that in metallic 
glasses the quadrupole interaction is averaged out due to the randomness of 
the magnetization directions with respect to the electric field gradients.
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3.3.2. Amorphous Zr^Fe and Fe Z r ^

The odd parts of the Fourier deconvoluted Mössbauer spectra of 
amorphous ZrgFe and Fe^Zr are sbown in Fies - 15c and 16c, respec­
tively. The correlation between isomer shift and quadrupole splitting
is quite strong in both cases. Assuming linear correlation we can de-

oven oddtermine d(IS)/dQ by using Eq. (19), if p (Q) = p (Q) . The values 
are -0.211 and +0.142 for amorphous Zr^Fe and Fe^Zr , resPectively.
The fits of the spectra with the BD method has provided -0.213(12) 
and +0.137(8) , respectively. Again the agreement between the two inde­
pendent determinations is quite good. The different sign and magnitude 
of d(IS)/dQ in these systems suggest different electrostructure and
possibly different atomic structure, 

oddS (v) was calculated within the present approximation by using1/v
the deduced values of dS/dQ and S (v) with Eq. (18). The results are 
the dotted curves in the inserts of Figs. 11a and 13a. The overall 
agreement with the result of the Fourier deconvolution is satisfactory, 
however, the calculated curves are not asymmetric. The deviation is 
larger for Feg0Zrio tban for Zr^Fe. This difference may be caused by 
the roughness of the linear correlation approximation at small Q va­
lues. However, it is more probably that the dominant reason is that 
even . oddP (Q) ? p (Q), i.e. the quadrupole distribution extends for ne­

gative values. The larger deviation for Feg0Zrio can be correlated then 
with the larger p(Q = 0) value which indicates more contribution in. the 
negative Q-range. In this case the full p(Q) distribution (for positive 
and negative Q-values) can be determined independently by using large ex­
ternal magnetic fields. However, the full p(Q) can be determined also 
from the Fourier deconvolution if the form of the S(Q) correlation is 
known. The information about [ S(Q) p°dd(Q) ] in 4 Sp^d (v) can be ara~ 
plified at the expense of the information in S^iv) by S 5* 0 choice of
the velocity-zero. For lack of direct experimental determination of 
oddp (Q) (in external magnetic fields) no such analysis was here perfor­

med) .

4. Summary

It has been shown that the Fourier deconvolution method gives more
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information about broad distributions without adjustable parameters 
than the least-square fitting procedures. If a dominant hyperfine in­
teraction parameter can be selected the even part of the Fourier de- 
convoluted spectrum provides the even part of the distribution of this 
parameter. The odd part of the Fourier deconvoluted spectrum gives 
the derivative of the product of the odd part of this distribution with 
its correlation with other hyperfine parameters.

It is worth to emphasize that differences in the symmetric and 
antisymmetric part of the dominant distribution may be important when 
the parameter has both positive and negative values. This possibility 
is generally overlooked in fitting of very broad hyperfine field dis­
tributions (extending to zero fields) with Window's [l] method. The 
Fourier deconvolution method can provide both even and odd parts of 
the dominant distribution when the correlation with other parameters 
is known.
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FIGURE CAPTIONS

Fig. 1. Illustration of the Fourier deconvolution procedure. The
theoretical p(H) (a) was used for the calculation of S(v)
(b). s(k) is the Fourier transformed spectrum (c). The
deconvoluted Fourier transformed spectrum is s (k) (d)LH./
and after back-transformation the Lorentzian broadening
was removed in S__(v) (e). The maximum value of the curvesDC
was chosen to be 1.

Fig. 2. Fourier deconvolution of the Mössbauer spectrum of crys­
talline Zr^Fe. Notation as before. For the deconvolution 
the linewidth of the Fe calibration was used. Back-trans­
formation is shown for different к values: 10.68 s/mmmax
(d), 26.71 s/mm (e) and 42.74 s/mm (f).

Fig. 3. Mössbauer spectra of amorphous Fe_QCo,„B Si measuredÖ O  10 12 10
at 77 К (a) and amorphous Fe V В Si measured at 5 К6o 10 12 10
(b).

Fig. 4. Fourier deconvolution of the second and fifth lines of the

Fig. 5.

Mössbauer spectrum of amorphous Fe„0Со,„В, „Si shown inbo 10 12 10
Fig. 3a. Notation as before. Back-transformat ion is shown
for different к values: 8.08 s/mm (d), 10.77 s/mm (e) max
and 13.46 s/mm (f).

a, Hyperfine field distribution of Fe Со В Si calcu-6o 10 ±Z 10
lated from the deconvoluted spectra S (v) of Figs. 4dUv
to f, for different к values: 8.08 s/mm (dashedmax
line), 10.77 s/mm (continuous line) and 13.46 s/mm 
(dots), respectively.

b, Hyperfine field distributions of Fe..Co1nB Si calcu-bo l O  12 10
lated from the deconvoluted spectra S (v) where diffe-DC
rent linewidths were used in the deconvolution: G__ =DC
0.15 mm/s (dashed line), GDC = 0.225 mm/s (dots) and
Gjĵ, = 0.30 mm/s (continuous line), respectively, The
value of к was the same (8.08 s/mm) in these cases, max
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Fig. 6. Hyperfine field distribution of Fe_0Co, B,„Si,obtainedb o  10 1 0
by the binomial distribution method (histogram) compared
to that obtained by Fourier deconvolution with к =max
9.42 s/mm (dashed line) (a). The fit of the spectrum ob­
tained by the BD method is also shown (b).

Fig. 7. Goodness parameter as a function of : amorphous
FeegCo1QB12Si10 (•), the same in the case GDC = 0.30 mm/s 
(A), amorphous Zr3Fe (o) and crystalline Zr3Fe (+).

Fig. 8. Fourier deconvolution of the second and fifth lines of the
Mössbauer spectrum of amorphous FeggV^B^Si^Q shown in
Fig. 3b. Notation as before, S^iv) is shown for different
k ^ ^  values: 5.36 s/mm (d) and 10.73 s/mm (e). The hyperfine
field distribution calculated from the deconvoluted spectra
is also shown for the different к values: 5.36 s/mm (con-max
tinuous line) and 10.73 s/mm (dashed line) (f), respective­
ly.

Fig. 9. Hyperfine field distribution of FeggV^B^Si^g obtainecl ЬУ
the binomial distribution method (histogram) compared to
that obtained by Fourier deconvolution with к =5.36 s/mramax
(dashed line) (a). The fit of the spectrum obtained by the BD 
method is also shown (b).

Fig. 10. Fourier deconvolution of the room temperature Mössbauer spec­
trum of amorphous Zr Fe. Notation as before. S (v) is showno DC
for different к values: 16.03 s/mm (d) and 21.37 s/mm (e). neue

Fig. 11. Quadrupole splitting distribution of amorphous ZrgFe obtained
by the BD method (histogram) compared to those obtained by
Fourier deconvolution with к =16.03 s/mm (dots) and withmax
kmax = 21,37 в/mm (continuous line) (a). The fit of the spec­
trum obtained by the BD method is also shown (b). The insert 

oddshows (v) as obtained from the Fourier transformation
(continuous line) and calculated by assuming linear correla-
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tion between Q and IS as explained In the text (dots).

Fig. 12. Fourier deconvolution of the room temperature Mössbauer
spectrum of amorphous FegQZrl0. Notation as before.
is shown for к = 18.70 s/mm (d). max

Fig. 13. Quadrupole splitting distribution of amorphous Fe90Zrio
obtained by the BD method (the two histograms illustrate dif­
ferent samplings) compared to that obtained by Fourier de-
convolution with к = 18.70 s/mm (continuous line) (a), max
The fit of the spectrum obtained by the BD method is also
shown (b). The insert shows S°dd(v) as obtained from theD C
Fourier transformation (continuous line) and calculated by 
assuming linear correlation between Q and IS as explained 
in the text (dots).

oddFig. 14. в (k) is the odd part of the Fourier transformed second
and fifth lines of the spectrum of amorphous Fe 68C°10B12S110
(a). The odd part of the deconvoluted Fourier transformed 

oddspectrum is s (k) (b) and after the back-transformation 
odd 00of Sĵ , (k) the odd part of the deconvoluted spectrum is

(c). Here к =9.42 s/mm was used.DC max

Fig. 15. Odd part of the Fourier deconvolution of the Mössbauer spec­
trum of amorphous Zr_Fe. Notation as on Fig. 14. к =J max
21.37 s/mm was used.

Fig. 16. Odd part of the Fourier deconvolution of the Mössbauer spec­
trum of amorphous Fe-rtZr,_. Notation as on Fig. 14. к =90 10 max
18.70 s/mm was used.
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