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ABSTRACT
In this paper the GE and GM form factors of the proton and neutron are

calculated in the geometrodynamical model of hadrons. Asymptotic behaviour 
and gross features are correctly reproduced, there are deviations from ex
periments in fine details.

АННОТАЦИЯ

В статье приведены расчеты формфакторов Gg и Gm протонов и нейтронов в 
геометродинамической модели адронов. Модель правильно отражает асимптотичес
кое поведение и основные характеристики, однако, наблюдаются некоторые незна
чительные расхождения с экспериментальными данными.

KIVONAT
Ebben a cikkben a proton és neutron G„ és G„ formfaktorai vannak kiszá-Ej M

molva a hadronok geometrodinamikai modelljében. Az aszimptotikus viselkedést 
és a főbb tulajdonságokat a modell helyesen visszaadja, de a mérési eredmé
nyektől finomabb eltérések vannak.



1. INTRODUCTION

The geometrodynamical model is a bag-type model for hadrons, invented and 
elaborated by G. Preparata and his coworkers [1]. The basic idea - explained 
in more detail in-the next section - is that simple geometrical approach is 
enough to determine the wave-functions of hadrons, built from quark degree 
of freedom.

The model has been succesfull in explaining the meson [2] and baryon 
spectrum [3], as well as certain dynamical properties too [4]. When describing 
the baryons, the interesting result was obtained that the three quarks in it 
are in a quark-diquark formation in the center-of-mass system. This reduces 
the inner degrees of freedom.

In this paper we have extend that model to find the current matrix elements 
of nucleons. Specifying it to the electromagnetic current, the formfactors 
Gg and GM can be obtained for the nucleons. It is a fairly difficult question 
how to get conserved current matrix elements in models; for the case of 
geometrodynamical model it was discussed in [5]. In our case, using an 
approximate form of the wave function, the current is conserved. That 
approximate form is very suitable for calculation, hence we do not treat 
the question of conservation in general.

The physical picture for current interaction is very simple: the current 
hits one of the quarks, the other two exchange momentum via exchanging a 
meson in their t-channel, and get rearranged into quark'-diquark formation.
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The picture is similar in other formfactor calculations, too. Farrar and 
Jackson [6], calculated the pion formfactor by solving the light-cone pion 
Bethe-Salpeter equation to leading-log accuracy, taken the kernel from QCD. 
They obtained

F"<ql,qT ^  О’Ы о М  .

Similar analysis was done by Lepage and Brodsky [7] for the baryon. Up to 
logarithmic correction the (Q2 )-a behaviour was reproduced. For the low- 
-energy region the result depended on the assumption how the effective wave 
function of the 3-quark system looked like. Trying two different Ansätze 
for that, the curves fall faster than the experimental one. The character of 
our results is very similar, let alone that in our model there is no room for 
different assumptions.

To compare our results with experiment, we used the excellent review paper 
of Höhler at al [8].

In sect 2. we summarise briefly how the baryon wave-function looks like in 
the model, in sect 3. the current matrix element is discussed and the results 
are presented.
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2. THE MODEL

The baryon wavefunction is denoted by

.^aa,ßb.yc (P;xi , X j , X j )
IPX

aa,ßb.yc (P.x.y) (2.1.)

where a, b and c are internal flavour indices, a, ß and у are Dirac indices, 
x^ are the quark coordinates, and

X 1
1 (x,+x2+x3 ) ха+хз

2 )•

(2 .2 . )

The principles, on which the geometrodynamical approach is based, are the 
following;

i ) Confinement
Vaa,ßb,Yc (P?X'y) = 0 for XrYt R°(P;x,y) (2.3. )

where Ra(P;x,y) is a compact eight-dimensional space-time region with boundary 
B e(P;x,y)

ii) Continuity

For x,y € B8(P;x,y) ViPjXjy) must be continous, i.e.

Vaa,ßb,YC(P;X,y) = 0 for х *У6в“(р;х »У) (2.4.)

More precisely, continuity is required only for suitable scalar functions 
appearing in a Lorentz-covariant decomposition of the wavefunctions. See ref. 
[4] for the details.
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iii) Wave equation

for x,y eR'(P;x,y) У obeys the simple differential equation

D, Da D3 Í = О (2.5.)

where = (i / .+ m . ) is the Dirac operator, acting on the i-th coordinate.

iv) Approximate freedom

The "distance" of У from the "free solution" y<°»(P;x,y), determined by the 
free equations

D± У <0> = О i = 1,2,3 (2.6. )

is minimum, the distance is calculated by an appropriate definition of the 
norm of the wavefunctions [2 ] .

The solution of equs 2.3-2.5 was examined in [3]. The wavefunction 
factorizes into a scalar-part and a spin-part.

? = н в >  (2.7a.)
The scalar-part has the form

Ф ( P;x ,y ) = /de*(P;y,e)6"(CP-x) (2.7b.)

The Fourier-transform of Ф(Р;у,?) is

4(F;q,n) = ;d"xdee-lqx e_inC Ф(Р;у,е) (2.8.)

w h e r e Pi = з Р +  V I q
Pa = 5P- Í Г я - ( Т р ( 2. 9 . )

иоa 5P- /г q + Í F  P



5

are the quark momenta. Due to the quark-diquark structure, both x and p are 
proportional to P, x = £P, p = nP- The quantities К and n are scalars 
in the CM-system their value coincide with x 0 for £, and with p0 for n.
In the CM, , ulgi

*cm (P;q,po)"f cos cos f ('a'> 'а' )Х 7 Г Г 7 Г ^ Г—  - c. — * - -I^K 1д12-а2)16 Cl .6 °2

„ „ , 3w . M I *C . = -E-»+ —;— + “ — Q p1 2 4 3 vC ° о

C2 = -E3+ --X ч +7^p2 3 4 3 Ve о v/a о

v^
a = ~f > m O.l, Ei V f|a 2+m2

Е2=Е3=^Г̂  +m2' , u=E1+Ea+E3-M

R. = —  t о
Next we turn to the spin part.
In the non-relativistic SU(6) model the baryon has the wavefunction

(2.I0.)

SU(3) SU (2) . SU(3) SU( 2)
IB> = “’s xs + 4  XA : 2.11.)

where ф , Ф. are the symmetric/antisymmetric combinations of the SU(3) part
S A

and x » X_ are the appropriate spin part:
S a

= (2ppn - pnp - npp)

ФА = ^  (PnP - npp)

Xs = ^,(2aaß - aßet - ßaa) ■ i < 2"

X > II - 0aa ) ■*< '  •
where p, n are the proton and neutron quarks, a and ß are the spin up and 
down functions.

In our case the only difference is (in the CM frame) that instead of the 
static spinors, Dirac spinors are used with the appropriate momentum variable 
e.g. (for instance xA has the following form):

X A ^ [ U ^ p OU, (Pa)Ut(p3) " U* (P 1 ) U f (p a ) U f (P 3 ) ] (2 .I 3. )

The wave function in arbitrary system can be obtained by a Lorentz transformation 
Л , which satisfies the equations:
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ЛР = p'
Лр± = Pi CN

Due to alignement (i.e. quark-diquark structure) in CM, no Wigner rotation 
appears in (2.13.).

3. CALCULATION OF THE FORMFACTORS

As it was mentioned in the Introduction, the physical picture of current- 
-hadron interaction is that the current interacts with one of the quarks, and 
the other two interacts between themselves to get rearranged into quark-diquark 
formation.

The kinematics is given according to Fig.i.

P = (M,0,0,0)
Q = (-t/2M,0,0— — v4(t+4Ma ) )

2M
P'= P - Q t = Q ’ (3.1.)

The incoming hadrons is characterised by the set P,q,n- the outgoing by P',q', 
n' according to equs (2.9). if the first quark is hit by the current, in the configuration 
space one has bo evaluate the integral

<Pl.yz)lP'>i - / J ,  d*Xid“x!Taß Y (p ,x.)Ta t 3 ,T l (P'x!) (3.2.)

e, \̂i ̂ aa,6<*(z“Xl 6̂i*(Xl-x,)Vr,ßV (ха.х3,х̂ ,х;)б‘*(ха+х3-х^-х^)

where ei is the charge of the first quark, and
ß'у ' (xa »X 3 ,xá ,хз ̂ takes care of the quark interaction. Inserting (2.!.) 

into it and using eq. (2.7.)
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(

'i
t

< P U  (Z)!P'>1- e iQZ Jd“qdndn’ *aßT(q»n)ei[Tu]aa,ta ,ßl .(q+fforn')
(3.3. )

A _ ,(nP-n'P' )Py .P'y '

where 4'(q,n) is given by equs (2.7.).

We have to sura (3.3.) for all three configurations. It is not difficult to 
see that

<PtIJQ (t)IP'♦> 

<PtIJi(t )IP'*>

where Gg and GM are the electromagnetic form factors.

Next we have to fix A(nP-n'P')- The first natural guess would be

=/ y(t+4M2) ‘ GE (t)

=“/ T GM (t)

(3.4a.)

(3.4b. )

A(nP-n'P') = óMnP-n'P') (3.5a.)

i.e. that the non-hit quarks propagate freely. However, it is easy to see, 
that it leads to P = P' which is nonsense. So we have to allow meson 
exchanges, e.g.

v AßY,ß'Y’('lP-r’’P,)
6 ß ß , 6Y Y '

[nP-n'P' ] 2 + i e ( 3 . 5b . )

for scalar meson exchange. Mass term could have been allowed in the 
denominator.

This propagator has a pole in variable t, its imaginary part is just 
6[(nP-n'P')2]. Using equs (3.4.) we are going to calculate the imaginary
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part of G„, Gu and they will be recovered by using dispersion relation. r E M

g e ,m
ImGitjJ dt
tf‘4 (3.6.)

Here this is just a mathematical trick, it has nothing to do with the 
analytical properties of the form factors.

Strictly speaking, eq. (3.3.) is valid only if the current hits the single 
quark, and the diquarks rearrange among themselves. However it can be proven 
that quark-diquark rearrangement (i.e. when the single quark becomes a member 
of the diquark system after the interaction) is very much suppressed.

The current (3.3.) is not conserved as it stands. This can be remedied in 
the same way as in [5] for the meson current in this model. However, the 
space part of the wave-function, (2. 10.), f(Iql) can be approximated by 
<S*(q2-a' ).

As can be calculated, in this approximation the current is conserved.
This approximation considerably simplifies the calculation, so we use 
it in this paper.

It is fairly easy to obtain the high t behaviour of (3.3. ). A t factor
comes from the propagator (3.5. ), and another t-1 from the space-part-function
of the outgoing baryon. The spin-part of the outgoing baryons at first sight
contibutes with v̂t"5” as each spinor in the kinematical configuration (3.1.)
corries \/t, however for those two, wich are coupled to scalar, this v't2 
cancels out, and the net behaviour of the spin part is v̂ t. Comparing this to
(3.4.), we obtain
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Gg(t) ~ GM (t)~t-2 for high t.

This behaviour is confirmed by experiments.

We have started this chapter with the physical picture of the current-hadron 
interaction. However, it is quite conceivable, that the current interacts via 
vector-meson dominated term too, as in Fig. 2, and not only the direct term 
of Fig. 1 as allowed.

In the framework of the geometrodynamics, the meson wave-function which 
appears here, depends on the variable Qtp^pJ )which is fixed to a number 
due to the б-functions in the wave-functions. So, the t-dependence will not 
be altered by adding this type of contributions.

The overall normalisation is fixed at t = О by the requirement that it 
should give the total charge, which is the sum of quark charges. If the 
quark masses were not equal, to recover the quarks charge additivity would 
be quite a problem.

The rest is numerical calculation. It is fairly tiresome because the integrand 
is oscillating, and most of the multidimensional integration procedures fail.
We have succeded at last with the routine DIVONNE (DI05 in CERNLIB), which 
performs a multidimensional Monte-Carlo integration with intervallum adjustment.

Let alone the propagator (3.5.) we tried pseudoscalar propagator too, but 
that yielded funny small-t behaviour. We have not tried vector-meson 
nominator, due to technical (i.e. numerical) complication. However, we 
consider (3.5.) as some "effective propagator" for several types of meson 
exchanges.
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The results for proton in the low-energy region is presented in Table 1 
and Fig. 3,4. As can be seen, they fall faster then the experimental data.

The similar calculation can be repeated for neutron too. Roughly it is 
true that

a function of q 2, (the high q 2 behaviour was the same) but in the small-q 
region (0.1<q2<0.4) its value was too big to be accepted.

In our. wiev this shows that the model using the kernel (3.5b.) reproduces
the gross features, but further improvement would be necessary to get fived details.

However, due to enormous technical difficulty, we do not think that it is 
possible and feasible.

The authors are indebted to Prof. G. Preparata for useful discussions.

( n)the factor between them varyes with q>. Ĝ , ' (q2) is fairly flat as
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Qat GeV]3 rpge rpGM

0.017 0.94 2.60
0.120 0.69 1 .95
0.146 0.62 1 .64
0.195 0.52 1.51
0.311 0.34 1 .08
0.393 0.31 0.82
0.584 0.20 0.59
0.780 0.12 0.34
0.990 0.11 0.25
1.170 0.08 0.20
1 . 360 0.05 0.16
1 . 560 0.025 0.11
1 . 750 0.014 0.09
2.00 0.010 0.06
2.40 0.008 0.02

Table 1

Fig. 1 Fig. 2
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