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ABSTRACT

The Sz=0 excited states of the anisotropic antiferromagnetic Heisenberg
Hamiltonian

5nm + sbsj+l + psjsj+I>

are studied in the case 0 < p <1. The original set of secular equations is
reduced to a simpler one, which contains only the parameters of the excita-
tions. The energy-momentum dispersion of the excitations is also found. The
simplest excitations are described and studied in more detail. It is found
that they can be groupped into two classes, one of them corresponding to the
simplest singlet, the other corresponding to the simplest triplet excitations
in the isotropic limit.

AHHOTAUNA

NccnepoBaHbl Sz=0 BO36YyX[EHHbIE COCTOSIHWS OAHOMEPHOrO, AaHW30TPOMNHOro, dep-
pPOMarHMTHOrO rein3eH6eproBCKOro ramuibTOHMaHa

N

H 311 Eisf+1 + sjsj+l + pPsjflj+1>

B cnydyae O < p si. /3 cucTembl CeKysnsipHbiX ypaBHeHWl/ i 3agaun nofydeHa 6Gonee
npocTasi cucTeMa, cofepxalwasi To/IbKO napamMeTpsl BO36yxaeHwli. OnpeneneH 3akoH AuC-
nepcun BO30GyxaeHui. [pocTeliune Bo36yxaeHUs 6onee AeTa/lbHO U3YYeHbl M MoKas3aHo,
UTO OHM MOryT ObITb pasferneHsl Ha ABa Knacca. [lpuHagnexawue K NepBoMy Kraccy
BO36YXAEHNS1 COOTBETCTBYHT MPOCTENWLMM CUHIIETHBIM BO36YXAEHMSIM B M30TPOMHOM MNpe-
Jene, a KnaccupuuMpoBaHHbE BO BTOPOW K/IACC COOTBETCTBYWT MPOCTENWUM TPUMAETHLIM
BO36YXJEHUAM B TOM Xe npegene.

KIVONAT

N
= + _ 2
H '11(5j3j+| + + Pszsz 1) 1-d anisotrop antiferromagneses
Heisenberg Hgmilton operator S =0 gerjesztett allapotait vizsgaljuk 0O < p s 1
mellett. Az eredeti szekularis egyenletrendszerb6l egy olyan egyszer(ibb egyen-
letrendszert szarmaztatunk, amely mar csak a gerjesztések paramétereit tartal-
mazza. Meghatarozzuk a gerjesztések energia-impulzus diszperzidjat is. A leg-
egyszerilbb gerjesztéseket részletesebben is megvizsgaljuk. Azt talaljuk, hogy
ezek két osztalyba sorolhatoak, az egyik osztalyba tartozéak a legegyszeri(bb
singlet, a masik osztalyba tartozdak pedig a legegyszer(ibb triplet gerjesz-
téseknek felelnek meg az izotrop hataresetben.



1. INTRODUCTION

The study of exactly soluble models, like the 1-d
anisotropic Heisenberg model, has twofold iInterest. First,
such models provide nontrivial examples for interacting many-
-body systems, and this is iIn itself of great interest. The
second point is, that although these models are very much
simplified ones, their solutions can serve as checks for
approximate methods used to solve more complicated but more

realistic models.

In this work we study the low energy excited states of

the anisotropic Heisenberg Hamiltonian

Ho £ Jg< K S0 a-n

where the spin operator with components < , §j and S*
corresponds to an S» W2 spin associated With the site j ,
and the problem is uniquely defined by the periodic boundary

condition: Swu'_si

The study of this Hamiltonian started a long time ago.
The isotropic problem ( ) was already investigated by
Bethe (1931) and Hulten (1938) . In particular, Bethe could
give a classification of the eigenstates of the 1isotropic

Hamiltonian, and showed that finding the eigenvalues and



elgenstates is equivalent to solving a set of coupled non-
linear equations. He succeeded in calculating the ground-
state energy, too. Des Cloizeaux and Pearson (1962) deter-
mined a class of excited states, the so called spin-wave
states. Orbach (1959) extended Bethe®s treatment to the
anisotropic case and Walker (1959) gave an analitical ex-
pression for the ground state energy for pW . Des Cloizeaux
and Gaudin (1966) studied the ground-state and the spin-wave
states for all values of £ _ A strict mathematical proof

of the uniqueness of the ground-state for all values of p
can be found iIn the papers by Yang and Yang (1966); and the
references for the T*0 magnetic properties of the model are:

Griffiths (1964) and Yang and Yang (1966) .

Our aim is to study the S =0 excited states in the
region 0O*8"™" . In Section 2. after introducing the
general formalism we argue, that the states in question should
be described by complex parameters. In Section 3. from the
original set of secular equations (see for eg. des Cloizeaux
and Gaudin (1966)) a simpler system is deduced which contains
the parameters of the excitations only. In Section 4. the
solutions of these equations for the two simplest case are found
those two classes of states are identified , which go over to
the simplest singlet and simplest triplet spin wave states 1in

the p =i isotropic limit.



2. BASIC EQUATIONS, GROUND STATE, NOTATIONS

2.1 The basic equations

As it is known (Orbach (1959) des Cloizeaux, Gaudin (1966))

according to Bethe®s hypothesis, the eigenstates of (1.1) with

r (4 N/2) reversed spins can be given in the form
| SZ> £ 0(no ...S: @-1
P e
where S-. flips down the spin at the site ret ; I IS

the ferromagnetic state with all spins pointing upwards, and

the coefficients a(n<,nt,._..ar) are given 1in the form

r
a (n , -E e*n|'EAN+ JE % .« @-2)
P 1 el <1 1 I
Here (R, P2, .-Po(...) is a permutation of the numbers
“,2, .. vr) , and the summation is extended over all

permutations. The expression in (2.1) with the coefficients
given in (2.2) represents indeed an eigenstate of (1.1) with
an energy measured from the energy of the state IF>

E- £ (cosk*-9) 2.3)
0C»1

cHKVD) - cot(qv2)
(t-g) oot cot(kp/2) - (1t?)

@-4)



Eq. (2.4) together with the equations expressing the periodic

boundary conditions

NK* - 2itx* + 2 \kjp (2*5)

with all N being integers, are the equations to be solved
for the complet description of the state classified by the

quantum numbers , TH» eee,

To make the system (2.4) (2.5 simpler, auxiliary variables
are introduced: in our case (0ONf£L1) the substitution

(des Cloizeaux and Gaudin (1966))

£ mcos &
(2 .6a)

cott™/1) . oot(W2)-taah("fl</2)
is suitable. With this

cot™p/Z) - cot © tank( ( (2 .6b)
Thus (@2.,49) and (2.5) take the form

Nlarccot (oot £ tank £«) = + 2 2arccot(cotOtanh 2.7a)

L L pxc L

This equation is equivalent to

N Zarctan (@t£ tank 2I¥) =2x  + 2 2arctan(cot 0 tank 2K21£) (2.7b)

where the 3*-s are integers If N-r is odd and half odd-



—-integers if N-r is even. In the following we will use (2.7b).

The energy of the state expressed in terms of these new

variables 1is

r 1/
E--E - 3m 6 . (2 .8)
<k COShI™ = TO0

The momentum 1is

p e K* +rx 2.9

2.2 The ground state

The ground state belongs to the S*»0 subspace if N
is even and to the S*» 1/2 if N is odd. For the sake
of simplicity we will always suppose that N is even. Then
in order to describe the ground state one has to choose the

3,c(\c.) set (des Cloizeaux and Gaudin (1966)) as

I«- ] €* 4, N2.
2.10)
2«c - \
(This choice implies the conventions 0 +k*c 2,X ,
- v | / , -T/lcarctanx /~VL )

With these quantum numbers all kA-s (u*-*) will be real,
In the large N limit the equation obtained from (2.7) for
@) , the density of -s ( is the number of

n -s in the interval ( t ) yields



2.11)

The ground state energy Iis

EOa- N &n @ .12)

2.3 Extension to complex ~ -s

It Is iInteresting to note, that in the ground state all
k* fall into the region (0 ;I1T-0) . It is very probable,
that the ground state is the only S*«0 state for which

all kA -s are real and
onk*/- 2ft-0 (2.13)

<for all Ich-s. An argument supporting this is that in the
planar limit (p=0, O»Tr/l the only S4»0 state with all
kK falling into the region (/2 ) 372 is the ground
state, thus supposing continuity In © one has to assume

that in the excited states (2.13) does not hold for all «kn

Since (2.6a) defines real -s for W -s satisfying
(2.13) only, we have to extend (2.6) to complex variables

too. In doing this, we will use the definitions

Larctan (cot O tank ( X)) «
(2.14a)

+2%)) 1 + [larctan (ootO tank @uj+1X )]
ot @



Farctm(ooto tanh@ LE®)] W -u4 v — Oggg\u) ~ 88§‘%€0+>’<\) e

(2.14b)
+arttctn(coi(6-XjlankK4)) + arctan (cot(O+X) tarv.lvij>)
[ Zarcta.rv(cot© blaK(u)+-ix))j -
" U «** (2.140)
=1 sigaif £5tgrc(x-9) + siga(x-0+X) + siga(-x-6) + sigiv(-x-0 +X)J
Here we understand, that 07-0 and |art<wx|c T/2.

for real X .

It is not hard to see, that complex K -s correspond to
complex -s with ™~] , while real K -s not satisfying
(2.13) are described by complex ~-s with Tt/SIT. As in any
0 excited state some of the K -s must be complex or real
but not satisfying (2.13), in order to find S**0 excitations
we will look for such solutions of Eq. (2.7b) in which some of
the -s are complex with -T*=3m tX% -In doing this our
strategy will be the following: we write Egs. (2.7b) both for
the real and complex 7" -s. The equations for the real ~"-s
will be solved for the density of these variables. By means
of this density, the real 1i1®~s can be eliminated from the

equations for the complex <*-s leading to the set of equations:



H
(2.15)
niL (G-2)
Here the set of auxiliary variables represents the
complex -s (see (3.19) and (3.20)) and the "ry variables

are the positions of the holes in the real 4 distribution.

The equations determining the variables will be found to

be of the form:

(2.16)
(G-»))

where ¢ is a monotonically increasing function of its

argument, varying between + (%"Z9)/(1-(%-&)) (see (38.26)).

After deducing the above set of equations (Section 3.)
we will solve them in Section 4. for the case when the number
of 4 -s is two. Two classes of solutions will be found, one
corresponding to states with a complex k pair, the other
corresponding to states with one real U outside of the
region (0-2T-0) . The fTormer states are singlets, while

the later ones are triplets in the isotropic limit.



3. EQUATIONS FOR THE STATES WITH SEVERAL COMPLEX ~-s

In this section we derive equations for the parameters
characteristic for the states with complex o”-s. The complex
y*» -s will be laballed by Latin indices (m, n) to distinguish
them from the real r|]-s which will be labelled by Greek
indices. The real and imaginary parts of the -r*s will be
denoted by -s and X"-s respectively: iXn . The
numbers In« , 2nt and will denote the numbers of complex

-s with [X]-2.® , 20i»|X-|"-T and X-X respectively.

3.1 Density of the real N-s

Eq. (2.7b) for the real -s can be written i1n the form

N.larcfan (cot | tank £ j - 2T 3 + £ larcUr. (coi 0 tank

G-D
E IZarc+an (toi O tooth. 'iilis jj
totd
where we iIntroduced
3 - F + 3 71jflarctonfcotefarvK 3*21 .11 (3.2)
n Je(iscord

all 31 -s are integers if N2 -n3 1is odd and they are half
odd-integers otherwise. If iIn Eg. (3.1) we put all terms onto

the l.h.s. except for ZT3™ , we find that its value is between
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+ and -TC(N/1 +2.at+n3) . Taking into account also the
restriction on the parities of the WY/ numbers we find that
the largest and smallest possible values for the I -s are
+ and -CG/(N/2.+2nt+n3-1) respectively. Thus, to have an 34-0
state (r* N/2.) , for the 3* set we have to choose

N2. -2.M,-2nL-Mj different numbers from the set:

G-3)

It can be shown (see Appendix A) that for such a choice of the
3* -s Eg. (8.1) has a solution. Equation (3.1) defines N -s
(later on denoted by ) also for the +h i+ 2h3=H 3"-s

(the numbers left out of the set (3.3)):

N.lorctaa(coi ® tank « 27 3+ £ 2arcton(coiO taah.
P
G-4)
L yZarten (@O tank.
font
The density of the -s satisfying (3.1) with the above
choice of the 3J -s must satisfy the equation
(e 0]
sn 6 N . A , sinl10 -
aEh in- cos© (M +TrE AVID) +_(;)COSk’\—yj— as0 ShVI
G-5

sin. 20
N h Mskiy-nJ-cosZ©

which, when solved by Fourier transformation yields

) 1 B(n) * 4 tniin) (3-6)
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where w is the ground state density given by @.11);

and @D and () are given as

sink i«(vnk) .
E— —_— 3.7
Zsinkw(*-0j <toh«© du G-
r,. 1 [rJ Uy - K) 1
: 3.8
A I 2.siaw(ir-0) ashtoo | € du (3-8)
The function  £(0; %) is defined as
00
f(e;*). sinkuT ,-L ito® , d,, .
(e 7§ “COIK( M)~ 0080 - (-9
Its form for O il
IX-0
o) sinku 0 9txtiH
e w* iiaM*"®) *6 Tx"-0 @ -10)
~N(x+x) 50b 0 -(1X-Q) *.x A-0
(X2
e $iakui(X-©) -ix 6 x c-(u-e)
and for TrMMo*-mn it it
( ® u(x-9) 0 * Xi. IX
e-wl*-*>_sink m 2X-0 " %-t 6
(Uur-ejAx"ii-© (3.i0b)

-0 xn—-u-oj

e-“&+a) .9in.i14-(ve) —zxat-o6
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(We give the form of in the Tull K ~zX

region as in later calculations this will be needed.)

3.2 Equations for the complex ~ -s

Eq. (2.7b) for a complex ~ takes the form

N.Z.aixta*(cot“"t<mk2b) = + 2 2arcf<uv(cotOianA 2LMNUJ
(3.11)

+ 2 Z2ai'chx.ia(totO +an.k

IT we replace the continuous part of the second term on the

r.h.s. by

00]
N.J jlarctanfcot© tank (3.12)

-00

after some algebra we get

N.larctan (tarvh. ( £ |X,|"20)
= +
N.2.. $iqayh (u I1xj"O)
o (3.13)
2 ~2arcbu\(cot ©ta/vk + | Mfac8n(cotot&n-k  n X
neaxrs mlo wit
G:@d + + 2 2attun, (oot9 tank 2L|£l'|’??)
m S

What is iInteresting for us is the. imaginary part of the l.h.s.
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of the above equation: It has a value proportional to N if
and it is zero if |XK]*20 . In the first case
Eq- (3-13) can be satisfied only if at the same time the r_h.s.

has an imaginary part of the order of N , that is, for the

with |X,]J<E-20 there is another for which
2arctout ( cot© tanK + (3.14)
is of the order of N , 1.e. (see Eq. (2.14b))

(3.15)

with $ being exponentially small in N _As the term (3.14)
appears also on the r.h.s. of Eq. (3.13) for (with a minus
sign) it is clear that also [|X/1] must be less than 20

Thus we conclude that the set of complex ~ -s with PJ]~™-20

must consist of pairs satisfying Eq. (3.15), that is pairs of

the form

v O (3.16)
We note, that since all with IkJ~™X must appear iIn the
complex set together with i1ts complex conjugate (3.16)
implies also, that the set of -s with [X-J 20 must

consist of
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i/ complex conjugate pairs of the form

JIR AOwD) |V e ((0+J) (1n-0) (3.17)

i1/ and quartets of the form

(3.18)
e(fn+ c(I*@®)-<C ; V %+ FCEAO)+ L.
Later on it will be convenient to represent the set by a
set of auxiliary variables which are defined as follows:
@ / one complex pair, and of the form of
(3-16) 1is represented by a single
+ 11«1 (3.19)
p / a complex with |XJ*20 1is represented by
a of the form
© N 1xNh ~ A (3-20a)
with
4y _0 a rn ze
Mu> (3.20b)
r 4 -Z0“ 4 ~-X

The set of W -s consists of real numbers, complex conjugate

pairs and complex numbers of the form ip+ - The number
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of all -s is al+ 2k I+ nn> N/ , that is half of

the number of "holes" in the real \ distribution.

Using the definition of U~-s, (T, , the part of $(r\)
that corresponds to the complex -s can be written in a

simpler form:

~ X= Y e Sto.(9*/(T-g-—--------=~ (3.21)

The equation for a A with puml *- ® can be obtained
by summing up Eq. (3.13) for the corresponding and ny~
Doing so, the large terms of the two equations cancel each other,
and in the remaining part the S"-s can be neglected (see:
Appendix B) . The equations for the -s with (#F=|>0 are
obtained simply by rearranging the terms in Eq. (3.13) for the
corresponding -s, and neglecting the exponentially small

< -s. As a result we get for all VjN-s:

23 Zarciarvicrt”® tan.k 2T -1-C ZarttaK(cot®© bl n A, n n
n a 1 ) ML ' ((2.15)

Here we used the notations

0,=1 V 0 / i O*K“TrO" Kk« (3.-23)

The 3k parameters were obtained by collecting the terms of
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the form nj ; their connections with the original -S
are

Ka 3#+K - X + X |/£||4K @+ 10 (3-24a)
for the ¢uy* -s with *\|+-0" and

3,,-r«y«™n +§I’5 TWMT .-V + r’l?v i'r(4~"4)
(3.24b)
*PTE MY>, - 4,)
for the -s with J/aJdlJ "~ 0" . The parity of the numbers

2.3 is the same as the parity of \N\IZA\

3.3 Equations for the variables

The equations for the orj~s can be obtained from Eq. (3-4)

by replacing the sum over the -s on the r.h.s. by an
integral over the ~ -s with density NG@™J . This way one
gets
N.l.arctan (tank ~ j - AlYitYid 'h
(3.25)
+Z Zarctan (cot tank )
n o | "
Here we used the notations
dw SCnkui (T-0J to* (3.26)

. Ov  2$C«kwit cosko®© 1

-0
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and
“3k “VvfS fZarcb.fc(tdt J 4aKwWw”™ 5/°) ] (3.27)
** K v Jdclicoat
The parameters are integers if N2. is odd, and half

odd-integers if NI/2 is even.

3.4 Remarks in connection with the system (3.22) and (3.25)

By solving the system (3.22) (3.25) one can construct the
solution of the original Eq. (@2.7): if the ij~-s are given,
according to Egs. (3.16) (3.19) and (3.20) the complex -s
can be calculated (up to exponentially small terms) and knowing
also the T~-s through Egs. (3.6) (3.7) and (3-21) the density

of the Tj~-s can be determined too.

The system (3.22) and (3.25) can be used to calculate the
excited states of an isotop (£*4) Heisenberg chain too. For
this we have to take the 0-*0 limit. In this limit all
variables (except those complex Vj-s for which X*T )
desappear proportionally to 0 while the \/G (* Cot(k/Z2))
ratios remain finite. From the complex N —-s with 7A&=T only
the "discount” parts of the arctan, Tfunctions remain. It is not
hard to check that this procedure leads to the same equations
as the procedure described in Subsections 3.1-3.3 applied
directly on the secular equations of the isotrop Heisenberg

chain.
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In a strict sense Eqs. (3.22) and (3.25) are equivalent
to the original Eq. (2.7) only if the number of excitations (h)
is small compared to N . The reason for this iIs that we used
(implicitely) the smallness of H at two points. One point is,

that the solution of Eq. (3.5) describes the density of the

-s satisfying (3.1) only if S5'(U+ is poistive
for all , that is
Siryk (j (T-2,6) ~  @-TH) |,
Isink (T-0) coikojo % © dw * §j m * o (3.28)

One can be sure of the validity of (3.28) only if the number of
excitations is small, otherwise the ~/M)e ) term (which
can be negative) may make the whole expression negative for
some -s. The other point where we used the smallness of H
was when we argued that in order to satisfy Egq. (3.13) the set
of complex ~ -s with must consist of pairs of the
form (3.16). If the number of excitations (the number of terms
on the r.h.s. of (3.13)) is comparable to N , the imaginary
part of the r_h.s. of (3.13) can be of the order of N even if
no term in itself is of the order of N , thus we cannot argue
that we must have a term (3.14) with an argument satisfying
(3.15). Thus to generalise our results for the case of large
(macroscopic) H , one can do the following: after solving
Egs. (3.22) (3.25) for the -s and 1i]™-s one should check
wether (3.28) 1is satisfied. ITf i1t is, than one should calculate

the S -s (see Appendix B) . If they are of the order of e t
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then the solution of (3.22) (3-.-25) indeed corresponds to a

solution of (2.7), otherwise it does not.

The original Eq. (2.7) is expected to have solutions 1in

which some of the complex -s can be arranged into series

of the types P+ i2m+H)0 and * I i ,

w,*0\ .z, ...,R) e These sorts of 'strings"™ correspond to
series of 1IM"-s of the form @ +tZm0” and i(Eh M0

It is not hard to see, that such string solutions of
Eq. (3.22) can exist only if the number of
sufficiently large. If H is small, there is no reason for

having terms with large imaginary parts on the r.h.s. of (3.22).

In this case, however, we may have 17°-s with |1 |* O which
correspond to quartets of the form +
3.5 Energy and momentum of the states with complex -S.

The energy is calculated according to the formula (2.8)

which iIn our case takes the form

_ Sit-0 o aft
@ tosk”-cosd -2 o$kKi|+-co%$6 coskNi'-coso ) B
1/4u 6
_ (3.29)
_E snl®
tOSk”-C0OS©
1/M>®
IT the first term is evaluated by means of G6CY ; (3.29)
yields
U sin0 |
- , 3.30
E*Eot j a0 E cosk(urr/i0) (3-30)
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with EO given by (2.12).

The momentum, using (2.9), (3.2), (3.3), ((3-23), (3.24),

(3-25) and (3.27) is

pas$S t stgtvtpK) + (3.31)

0 C. pk* i - f£arctan. (tank X (3.32)

Comparing (3.30) and (3.32) and finds that

E-ELo-C £.i%®..siiv,pk ; P-Po - £ -p4 (modtirj (3.33)

The form (3.33) of the energy and momentum suggests that
the states with complex -s can be iInterpreted as states
with some sort of quasi-particles present. Interestingly, the
number of these quasi-particles is not the number of complex
N -s, but the number of holes in the real ~ distribution,
i.e. H . These quasi-particles are, however, Iinteracting
ones, this is expressed by the fact that the momenta are not
free parameters, they are coupled to the quantum numbers

( and 3» ) by the system (3.22) (3.25).
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4. THE SIMPLEST EXCITED STATES: THE STATES WITH TWO HOLES

IN THE REAL 2 DISTRIBUTION

4.1 States with one real W

For H«2. the numbers of wvp"-s iIs one, this means that v/
must be either real or of the form p"KIT . Now we treat the

first case. For a real o™cp” Eq. (B-22) takes the form

Zorcto™(cot | "tank 9 + Zarctcux (cot | tank - 2X31 “.1)

This equation has a solution only if 3"-0, then

+ ;4 ek, + M)/ (4.2)
which corresponds to a complex and K pair
Vo -(Uk+X) /M 00 (4%3)
k4 - arctan (cot© *+ -i-In cosftf ~ *----- (4.4)
" 1 *  coskip-cosZ0

with 1 given by (4.2) Eq. (3.25) can be solved numerically

for and if and 3N are two different numbers

between HWZIN2-~1) . The number of possibilities is
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The energy-momentum dispersion, according to (3.33) is

T silko T sch.0
E-E-*  y * o " 0 SE° Pkt (4-5)
that is, the continuum of this excitations in the (6;p) plane

(in the reduced Brillouin-zone) 1is bounded by the curves

X ST ~a(Ipi /1) (4.6)

The states corresponding to the above solution of Eq. (3.22)
in the ((0-~-0) isotropic limit go over into singlet states
with one complex «k pair. (In this limit the ratio remains
finite, thus both the real and imaginary parts of the k* remain
finite.) Earlier Ovchinnikov (1969) presented a calculation
for the singlet excitations of the isotropic antiferomagnetic
Heisenberg chain. He claimed that these excitations have the
dispersion 6 (@ * X-1 Sirv,@2| with Ipl X/2. . Fazekas and
Suté (1976) diagonalized Iq of (1.1) with pMU in the singlet sub-
space numerically for finite chains and extrapolated their results
for NI-*oo. They found that the lower edge of the singlet
continuum is described by the dispersion 6 @ s (T12.)\sin, p|

Our analitic result coincides with that of Fazekas and Sut6.

It is also Interesting to examine the above states in
the $*0 (0-»Th) planar limit. At first sight it is sur-

prising that the imaginary parts of the complex k-s do not
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vanish, which would indicate that we have some sort of bound
states, even if the interaction part of (1.1) vanishes. A closer
look, however, shows that there are no bound states iIn this
limit. The easiest way to describe these states 1is iIn the equiva-
lent fermion picture ( S eexp [il’f—(SjA -<DI ; |P «vacuum) j,

It Is not hard to verify, that the limiting form of the states

with one complex «k pair of (4.4) is

| »Im N c C —

“-n
lcothip —cosp™ T+Hx ootki™  cos Pn

where p< and pr stand for pk* and pK™ of (3.33) respec-

tively, Gk is the Fourier transform of Cw , and 10> is

the ground state i.e. the state with all modes between X/Z

and SX/Z filled in.

4.2 The states with one complex ¢V of the form iIp+ift

The second class of the solutions of Eq. (3.-22) 1is the one

with a complex = . In this case Eq. (3.22) is

larcta—fc(cotS cotk €L.3*wJ + Za"c’Ki/(cot S totk «Z T @ .8)

which again has a solution only if 3"0
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W-0c\Vy/z. ; »>(x tUuk a9

Now the complex ~ is

v ylLii§>e o ¢ i0/i + « U-Ic

corresponding to a real K
K- Tr(f-sigruj>) + ia,ri.t<xn,(b,n-!| ta-ak (4.11)

which falls into one of the regions (O;® and @E)@;2X) . With
y 1 given Eq- (3-25) can be solved if ~ and are
two (different or equal) numbers between +(*/Z)(N/Z-1) . The. number
of different solutions is NI(N+<)/E . The energies of these

states are given also by (4.5).

We note that the above described class of states involve
(treated iIn a more accurate way) the Sam0 excitations
found by des Cloizeaux and Gaudin (1966). Their excitation can

be obtained by taking pk< or equal to zero (or T ).

The states with one complex + go over into the S*=0
triplet excitations (k of (4.11) becomes equal to 0 or 10 )

described by Yamada (1969) as g->4

It is not hard to verify that the states discussed in this
subsection in the planar limit go over into the states (expressed

in the equivalent fermion representation)
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_________ - ———,—_—— i >
T+aK.K’\-COSp, Cti'f-p.iC i +pi tarvKep -cbspLClj~P.C-|j- +R<]JO (4'12)
if and y.” are different, and, into the states

¢t x [0 4.13

f-p '+p
if 3y .grlt ( e The states of (4.12) and (4.7)

with the same t pA pailr are, as they should be, orthogonal.
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5. SUMMARY

In the present work we have studied the $4*0 excited
states of the anisotropic antiferromagnetic Heisenberg chain
for values of the anisotropy parameter Oi 8§t < . Our study

has been based on- the secular equations for the problem
Ea- (2-7))-

It has been argued, that to describe the S**0 excitations
complex parameters should be introduced. From the original
Eq. (@2.7) a simpler system (Egs. (3-22) (3.-25)) has been deduced.
This system contains only the parameters of the excitations:
the 2~ -set which represents the complex -s and the posi-
tions of the holes in the real distribution. The energy-
-momentum dispersion is also determined. Its form is p«TIK-pk >

KA/DX$Ih.0)g.i\py  , where the momenta are determined
by the holes in the real o distribution (Eq. (3.32)).
It is remarkable, that the complex -s do not appear
explicitely in the energy expression. The form of the energy
and the momentum suggests, that the states in question can be
regarded as states with quasi-particles of momenta pK present.
This quasi particles are interacting ones, since their momenta
are not free parameters, they are determined by the system of

equations (3.22) and (3.25).

It has been a general opinion, that the complex o"-s
obtainable as solutions of the secular equations (2.7) can be

arranged into strings of the form gh)- 4>+x12m 0 , (the n-s being
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integers or half odd-integers). A simple argument based on the
form of Egq. (3.22) shows, however, that string-solutions
(except the ones) can exist only iIf the number of
holes in the real distribution is sufficiently large.

IT the number of holes is small, iInstead of the longer strings
complex configurations of the type +i@i0) (WA *-8)

can appear.

Solutions for the system (3.22) (3.25) are obtained in the
simplest case, when the number of holes is two. In this case
two classes of solutions exist. In one of them the wavenumber
set consists of Kift-X. real kK-s Tfalling into the region
and a pair of complex wavenumbers. These states in the ¢ *\
isotropic limit coincide with the simplest singlet excitations
of the chain. They are characterized by two parameters, and
their continuum in the (@p) plane is bounded by the curves
726 NO)-1Strupl  and A (sdc. QO JBK@M)] - in the planar
limit the same excitations can be regarded as perticle-hole

type ones.

In the other class of excitations of two parameters N/1-4

real wavenumbers fall into the region (©; 20>0) while one
wavenumber is in one of the regions ©; 0 ; @10 ;2.5 - In
the isotropic limit these states go over into the 0 triplet

states of the chain, while in the planar limit they also form

a set of particle-hole type excitations.
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APPENDIX A: EXISTENCE OF A SOLUTION FOR Eq. (3.1)

We write Eq. (3.1) in the form

M.Zarc.toc(cct  tank - £ arcfan, (cot(C+|l N
T-NOEX,,£-N1 * ot
-A* Xkr=20
- £] orc-bx, (¢ (0 ek, K/ « BN +
-TTcV 1-T+.z9 *-D
20c XnETT
—+ 2 2arc (cur, ( cot® ItL "k arcftuv (@6 hm,k
R A -20£X,,z.F-20

4. 2 archur(c<?£(0 -?) (K, 2HI1E3J

-FHO6X4C20 A
At Tixed values of the complex (Ma uu+ny » this
summations involve all o -s , N-S and -s)

both sides of (A.l1) are monotonically increasing functions of

This property of (A.l) enables us to regard this equa-
tion as a transformation: substituting an set into the
r.-h.s. we can define a new U4 set by inverting the function
on the l.h.s. and taking it at the value of the r._h.s. This

transformation i1s continuous and i1If the n set 1Is such that

i nil < /rdgm/r +1ru*n,-n (A-2>

the transformation has the properties
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N wW*U=*o (A.3)
Y- * n« @ n. (A*4)
where the and are TfTinite numbers defined by the
equations:
Lki. o at =+ ]| X (M/Z +anL+n,jH) 4 (T-&)(ti/i-Znr Zht-hi)+
(A.5)

+ E (7/L-&-JCH/Z) t £ (T/Z-&+ %Jz)J
-ZQt-XvCT-110 =T+00 r:Xue.ro

and d is the reciprocal of the maximum of the derivative of
the l.h.s. of (A.1) multiplied by DC . Thus the transformation

maps the

YRR A )

closed convex and bounded set onto itself. If so, according to
Brouwer®"s theorem (American Mathematical Society Colloquium
Publications, Vol. XXVIIl. p. 243.) the transformation must have
at least one fTixed point 1.e. (A.1) and so (3.1) have at least

one solution.
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APPENDIX B: EQUATIONS FOR THE U~-S AND THE <£-S.

Eq. (3.13) for an "jJ* using the ~ variables introduced

by (3.19) and (3.20) takes the form

00

N.Zarcio.K.(tar\,Iv + ATt~
_OO
* + + 2 Z&rchxK (aotO hmk ((1),+10)—((1)K,—‘0)'2) G-D
o
+ £] la,rekx,ib(cot0 bxnk (dx+i®jj + Zxirchxh,(cot@ ta.nA (iQ+8h)J
hi © z .

The equation for the corresponding Tj* 1is

00

N.2archui(huUv — r £t4h+ J|Zatx)tx»v(cotO+at\.L A *
x@;(H)HAADXMI  + £ la.rchub(cotQ tmk N (B-2
<=tdamMcto fank, J + Z&rx/lobH cot&t’avioh™LQ-fib'jj

In both of the equations we kept the <t -s only if It was

necessary to avoid divergence. By summing up (B.1) and (B.2)
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and using the forms (3.7) and (3.8) for () and
gether with the identity
h&rchxn (cot© W h o f g
| o $CunA toX (to
( £ given by (3.10)) we get
—Staat/, * ﬁiﬁl{) NT NM20;M0) + MO N*-0) suvkwX-e ﬂl(‘.dw
T sinkioT ononyGO)askial  vio
o'—/ « =" TNjr 4 .1
v el Sink toT ' «ink io(7T-©) )]
N O Psi/*R+10)+~{(*0; N.-J71-0 +i(20, i o
Sink wX w
* sr N20;ynnt0) +i(Z0;/i,,-0j siKA WO
E>e_l Il SinK w t Cink to (X-Qj
«f(~0) An-/UK) = -10)3}J3~"~) do
Sink toTt J Y
E 0{O( f (x6;/In"™0) + J(*0;K-©) e Suvk wfc)
' SinkuT Siikok_to(X-0)
+ ~UQ; A5t pHo\"~") 4 N K
SOvktoTT i (1*3%

where we denoted by ¢, the discont. parts:

to-

®.- 9
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®.= £ T Ajib(~) +

-0C"rC. ©
U0« - 2,710

4 £, it Nk~ 4im) + 3N u-wm,) (& 5)
A%>0 / «Q0
-3j\*Z9c"N-",,c-2Q =2M+NC/ <S> k,r. O

+ £ T51MN(My-CN) + £
/M, *-0 A0
Vdcr-Mceil-ZQ 0 C /&5~/tuicll-1<@
Using the form of the function N ((3.10.a) or (3.100.b)) the
integrals can be evaluated leading to Eq. (3-22). The connection
between and the original 4* and parameters (3.24. a)

can be obtained by comparing the discontinuous part of Eq. (3.22)

and ¢un of (B.5) .

To obtain equations fot the -s with |74]-" © we have
to treat (3.13) in a similar way: writing up all terms but the
discount parts in Fourier-transformed form, collecting the terms
containing the same 44,- 421 differences and evaluating the

integrals also leads to Eq. (3.22).

The values of the <$-s appearing in the N—-s a3
r“ -s are also interesting for us. Equations for them are ob-
tained by subtracting (B.2) from (B.1). In a similar way as
their sum was treated, the difference of (B.1) and (B.-2) can be

brought to the form



bl.2. (0 xAr(ark - 0-K\b.K[bbKkk -TY (=9 -
Slakto (T-203/1" NKK© dw
-2 13" Sitk to(1T-©)coski00 (1Y)
(B.6)
+ £ Tiarcbuv(cot & (nk/ }— Zourdev*. {tit S buck 7?
**pL VA q /J
- . - N - 1~cW fotm.h i0 +J
5 sjwwx sivkoT-0) M0 cW(egfotm.h,Gio1J.)
-00
IT the Fh -s (thus the -s) and ~-s are known, with an

appropriate choice of the number 33, (B.6) can be solved

for < . Note, that for the sake of consistency, the parity

of the number 3 must be the same as that of the number
P+ 4+ Wi-4 . It 1s not hard to see that with this
restriction both the choice of Ay - A and the solution for
5., is unique.
The modulus of n is determined by the imaginary part
of Eq. (B.6):
©F -cosTT _ Siak to(If-20)sin,kto0  cos W-(/]‘io

Y - 7K _&h‘h,hto(F*O) C0S co® 60

Mb. *£ + cos

1<, €o&K(~A~") - cob@eY * Y A X c0N (U7 b) -co$ (20+1i-/a1.)| (B.7)
* («UU#-@P-cos™-"i)f

Q
¢ SEk*U>(T-26) Scab,to® o> 1531

1 wkwT siwk W SIkV20
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IT we have a small number of excitations (H N) then the
l.h.s. 1is dominated by the first term, which is negative and
proportional to N , thus |I<g is indeed of the order of e_N.
If, however, the number of excitations is comparable to N ,
then the other terms can contribute significantly, too. Since
the solutions of (3.22) and (3-25) correspond to solutions of
the original (2.7) equations only if the < -s are small, for
large H (B.7) provides a possibility to check whether or

not a solution of (3.22) and (3.25) defines a solution for (2.7).
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