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ABSTRACT

Dynamic normalization group analysis of the complex time-dependent
Ginzburg-Landau model with infinitely many component order parameter is given,
with emphasis on the limiting case, representing a Bose gas model, when the
kinetic coefficient is treated as pure imaginary. The fact that dynamical
scaling behaviour holds for the Bose gas model in a region of small fre-
quencies (containing the critical mode) with boundary proportional to the
wavenumber is shown to be the consequence of that that a well-behaved fixed
point can be achieved in this region.

AHHOTALNA

MeToAoM AMHaMUYECKOW rpynnsl peHOPMMPOBOK WCC/iefoBaHa KOMMJEKCHasl, 3a-
BUCSAWasi OoT BpemMeHW mogenb [MH36ypra-/laHgay, B KOTOPOW 4YWC/IO KOMMAOHEHT napa-
MeTpoB nopsigka 6eckoHeuHoe. OTAe/IbHO paccMoTpeH npefenbHbiii cnydali, COOTBETCT-
ByWWNA Moaenn Bo3e-rasa, Korga KuUHeTuyeckuii KoadhhuuMeHT SIBNSeTCS UUCTO MHU-
MbiM. B Mogenu bose-rasa noBefeHVWe AUMHAMMUYECKOro nofo6usi HabnwgaeTcs B o6nacTy
ManbiX 4YacToT /KpUTuueckass Moga HaxoAuTcss B 3Toil o6nacTtu/, rpaHuua KOTOopoii
nponopuuoHasibHa BO/HOBOMY uucfy. [loka3aHo, 4UTO 3TOT (akT sBAseTCcs cneAcTBUEM
TOro, 4YTO B 3TOW 06/1ACTU MOXHO HaWiTM (GUKCUPOBAHHYKW TOYKY XOpPOWEro MNOBeAeHNs .

KIVONAT

Megadjuk a végtelen rendparaméter-komponensi komplex, id6fiuggé Ginzburg-
Landau-modell dinamikai renormalasi csoport analizisét kildn vizsgalva azt a
hataresetet, amikor a kinetikus egyutthatdé tisztan imaginarius, ami egy
Bose-gaz modellnek felel meg. Kimutatjuk, hogy az a tény, miszerint a Bose-
gaz modellben dinamikai skala-viselkedés egy kis-frekvencias tartomanyban ta-
lalhatd (mely tartalmazza a kritikus médust), s melynek hatarvonala aranyos a
hullamszammal ,annak a kovetkezménye, hogy ebben a tartomanyban jol viselkedd
fixpont érhetd el.



1. INTRODUCTION AND SUMMARY

The time-dependent Ginzburg-Landau (TDGL) model (or model A in the
usual classification [1] describing a simple relaxational dynamics has
played an important role in understanding critical dynamics. Studying this
model in the limit when the number of components of the order parameter goes
to infinity has proved to be a useful theoretical laboratory in connection
with several aspects of critical phenomena [2-9]. Our purpose in this paper
is to further extend the investigations in this, limit especially from the
point of view of the properties of the dynamic renormalization group (DRG).

We consider the relaxational model for a complex, non-conserved, m-com-
ponent order parameter field and take the Kkinetic coefficient L also com-
plex. In this framework a classical field description for the m-component
Bose system can be obtained (m = 1 corresponds to liquid He) by treating
L as pure imaginary (see e.g. [1]- It is important, however, that the model
with Re L = 0 and those for which Re L ® O do not belong to the same uni-
versality class and exhibit quite different critical dynamics. The reason
behind this lies in the fact that in the former case there exist a number
of conserved quantities in the system and this is not the case if Re L / O.
While this statement holds independently from whether m is finite or we have
1/m = 0, the behaviour changes appreciably in this limiting case, especially
when Re L = 0. Although we are interested here in the properties of the
/m = O systems, it is worth summarizing also the main features character-
izing the situation for finite m for the sake of comparison. Let us consider
first the case Re L /7 0, 1/m / 0. Then by the repeated application of the
DRG a fixed point is reached with a zero fixed point value for Im L [10]
and the model exhibits the same critical behaviour as model A of Halperin,
Hohenberg and Ma [11]. On the other hand when Re L = 0, 1/m / O, it is ex-
pected that by integrating out the field variables with large wave-numbers
one arrives at phenomenological models with mode-coupling terms among the
order parameter and the densities of the conserved quantities.*

Although this procedure has been demonstrated in detail only in case of a

lattice dynamical model by Bausch and Halpering [12] the conclusion as
sketched above can be expected to apply also here [1, 13].



In the case of the multicomponent Bose system (m z 2) examples for such con-
served quantities are the infinitesimal generators of the symmetry group
um) [14].-

Let us turn now to the case 1/m = 0. Taking Re L /7 O the only differ-
ence as contrasted with the situation with finite m is that Im L becomes a
marginal parameter so the temporal oscillations during the relaxational
process are present also in the critical region. When L is treated as purely
imaginary, however, the dynamic critical behaviour changes in a significant
way in comparison with the finite-m case. The reason behind this dissimi-
larity lies in the fact that the collision-dominated hydrodynamic region
(and its continuation into the critical one) shrinks to zero for /m = O
[15]- (Note that we consider wave-numbers and frequencies of order unity and
not of 0(1/m) as in refs. [15, 16, 17].)Therefore one must realize that no
information concerning the critical behaviour taking place just in this
collision dominated region of an m-component Bose system with Ffinite m can
be deduced from the results obtained in the limit 1/m = 0. In spite of this
fact, however, the 1/m = 0, Re L = O model deserves attention, having in-
teresting features from several points of view including the unusualy pro-
perties of the DRG. We shall call this model the Bose-gas model in the fol-
lowing .

The Bose gas model can be obtained also by starting from the quantum-
mechanical Hamiltonian for an m-component Bose gas and taking the limit
m > m as well as the classical (small frequency) limit of the Matsubara
diagrams. In this way critical properties, including the dynamical ones, of
the model have been determined in refs [18, 19]. The most notable feature
found there is that the longitudinal correlation function obeys dynamical
scaling only in that frequency region where the critical mode lies. This re-
gion terminates for a given wave number near the frequency of a second,
non-critical excitation branch proportional to the first power of the wave-
number. Similar conclusion applies for the four-point correlation function
below as well as above the critical temperature.

In this paper we are going to present the RG background of this beha-
viour. For this purpose besides the Bose gas model (Re L = 0) the case
Re L ® O will also be discussed since comparison of their corresponding fea-
tures helps elucidating the problem in question.

Similarly to the model with a purely real Kkinetic coefficient studied
previously [7, 8, 9] it turns out that the couplings local in space and time
form an invariant subset of the parameter space and their transformation
under DRG can be followed in a global way applying the path probability
formalism. In this manner the transformations and the fixed point values of
an infinite number of static and dynamic parameters are given. It is shown
that the fixed point values of the dynamic parameters tend to infinity when



taking the Bose gas limit (Re L = 0). This indicates at least some restric-
tions on the dynamical scaling properties in the model in agreement with the
results of the direct solution [18, 19] discussed above. To clarify the na-
ture of this singularity we study next with the help of a perturbation me-
thod the transformation of some frequency- and wave-number-dependent coup-
lings. 1t is found that due to the singular nature of the bubble diagram for
small frequency and wave-number transfer in the limit Re L = 0 a finite
well-behaved fixed point function can be achieved only in the region

| oIJ_'I2 /1m L<<kﬂ' where b and kK denote the frequency and wave-number, respec-
tively and /1 stands for the cut-off in momentum space. Then it follows that
dynamical scaling is also restricted to the above region in the framework of
the Bose gas model, a result in accord with that of refs [18, 19].

From the point of view of the RG technique it is of importance that such
singular behaviour does not prevent its application and it can correctly
account for the consequences of the singular behaviour. It would be interes-
ting to see how the field theoretic technique based on the Callan-Symanzik
equation could describe such a behaviour. For this purpose it would be ne-
cessary to extend investigations made for the two-point function in ref._[10]
to the four-point one in the I/m = 0 limit.

The organization of the paper is as follows. In Section Il the model is
introduced. The limit 1/m = 0 is discussed in Section 111 along with the
presentation of a number of explicit results. The RG procedure is outlined
in Section 1V The transformation and the fixed point values of the parame-
ters local in space and time are given in Section V using the path probabi-
lity formalism. Section VI contains the RG treatment of frequency and wave-
number-dependent couplings and the discussion of the dynamic scaling pro-
perties of the Bose gas model. Some of the mathematical details are relega-
ted to the Appendix.



1. THE MODEL

We consider a d-dimensional system of volume unity which in the critical
regime can be characterized by an m-component complex slowly varying order
parameter field: i(x,t) = {i>.x,)lj = 1,2,...,m} with momentum cut-off /.

@ @)
z »

We shall use the notation for complex numbers z:Rez=2z ,Imz-=
l.e. = oM™ + 1*."2>. The dynamics of the system is specified by a TDGL
equation with a complex kinetic coefficient L. Only the case of non-conserved
order parameter will be considered. In coordinate representation the equa-

tion of motion reads

or(x,b) = -L(-av2 + r (1o 12))H (x,) + 5j(x,t), .1
1 m
) .2)

where r stands for a real function and a is a real number. The complex noise
5 is assumed to be a Gaussian white noise with zero mean value and correla-

tion functions as

2L (1)6(x-X")6(t-1")6,

<5; MW -OE-{D T, 17)> 1
2.3)
<SICD (é,t)t” @ x-,t")> = 2L(1)(’)(x—x’)é(t—t')6:[*l
and are independent random variables. The parameters specifying

r can be defined for example by the power series

()]
r(lo12) = Y Lﬁ'k2|cp|2)a_1- Q.9

It is assumed that
u, =T - T 2.5

where T is the temperature of the system, while TQ denotes its critical value
in the mean-field approximation. To keep terms of powers up to infinity in
(2.4) is required by the RG treatment (see Section V.).

The stationary probability distribution of the process (2.1) reached
for t - 7, Peq-{qg",¢.3A2”}, can be written as

P {o.0d" (O }ocexp(-F) , (2-6)

where F is given by the Ginzburg-Landau form



F =Jdd x {alv*12 + U( 1012)} @.7D

with
2 U J
v=1 > E iv*,r 2.8)
1=1
and
2 U« Q
n(19i ) r(x)dx 1~ (21.12)~. 2.9)

Thus F is interpreted as the free energy functional of the system in units
of kT. It can easily be seen that (2.6)-(2-9) represent indeed the time-in-
dependent solution of the Fokker-Planck equation associated to the process
.1):

P=£jdd x[- A-Tyr-fiM-aA™rt 1012)0.))(1)P} +
=1 6. "1 3

(2.10)
' 62P
*
60~ m 1 60\ .
¥ \ ]

The large-m case is defined by taking the limit m - °. In order to en-
sure th% existence of this limit (e.g. in (2.9)) we assume uQ to be of
order m . For the dimensionality of the system 2<d <4 w _be
assumed.

In the next Section we present the solution of (2.1) with an arbitrary
function r (101') in the large-m limit.



I11. SOLUTION FOR 1/m = O
Symmetric phase

The simplifying feature of the large-m limit appears in that, since m
is large and 191 1is a sum of m terms, that the relative fluctuations of
101° are small [4]- Therefore r(lmlz) in (2.1) can be replaced by r(N),
where N denotes the average value of 101 in equilibrium. Thus we arrive at
a linear equation of motion, which in terms of the Fourier components
CDj p (® and £j/*' (t) reads:

<j.KID * "br1f] [bl + G-b

ak = (ak2 + r(N)) 3.2

where N is to be calculated self-consistently. In this Section we shall set
a = 1 (see also Section V.).

One can easily check that the transition probability of this linear
process is given as follows:

PC(OH t> 1140 },0)c
La, t 2 G-
r_ hjA - hke k1 }.
* exPl 21 - e_%t(l)gKE)

Consequently the average of ¢§ . reads

0] -L()c4t -iL(@)at
<$j.k(®> = $j,k 6 “ 6 G.4)

which exhibits a temporal oscillation with frequency L(z) during its re-
laxation to the equilibrium value.

The equilibrium distribution is generated by taking the limit t - < of
expression (3.3):
Peq(<*j,kPocexP<- 1 £ V*j, k[Z (3.5)

and is of course, independent of L. As a consequence of (3.5) and (3.2) the
equal time correlation function in equilibrium is obtained as

_ 2
<My 1> = S (3.6)



For the (time dependent) correlation function in the equilibrium state one

gets
exp(-Lakt) ,t0,

Ck,t) = <Tj>k(D)o~fk@)> = 2 @G.7) -
K +r@\) exp(Lakt),tC O,

where and in the following complex conugation is denoted by a bar. Note the
oscillatory behaviour of C(k,t) too. From (3.6) the self-consistency equation

N = j L <105 -»| 1 m /e~2——1——— (3-8)
J/K J K K +r(N) o K +r(N)
is found. At the critical point the relaxation rate of o. . vanishes. 2Con—
sequently, if we denote r (101 ) and N at the critical po:i}'rqt by (Joi ) and
Nc, respectively, it follows from (3.1) and (3.2) that rc (Nc) = 0 should be
fulfilled. This makes straightforward to calculate Nc from (3.8) [4]:
K 92
Nc =m d-2 (.9
where K~(2n)” is the area of the d-dimensional unit sphere. The condition
rc (Nc) = 0 together with (2.4), (2.5) determines the critical temperature:

- a-t (3.10)

Tc = 2=2 U2a (2Nc)

The solution of the self-consistency equation (3.6) for T close to Tc
is given as

TC " T
N - Nc V(NC) (3.11)

where the notation

v(Io | dr(1012) (3.12)
diol2
has been introduced. The static critical behaviour of the system is the same
as that of the usual TDGL model in the spherical model limit, therefore the
critical indices v and n are 0 and 1/(d-2), respectively [4], while the
dynamic exponent z turns out to be 2 for any L<l) as it follows from (3.7).



Symmetry-breaking phase

The order parameter of the system is the average of the filed variable,
in general a complex m-component vector. However, we can always choose the
order parameter to point in the direction of the j=1 axis and to be real
by making use of the isotropy of the system in the component space and the
gauge invariance of the free energy (2.7), respectively. We introduce a
constant external field, h, coupled to the j=1 component. Then the equation

of motion is as follows

0. = -L(-av2 + r(1$12))p, + Lh6 = , + 5ii- G-13

We separate the order parameter M a <@™(x,t)> by writting

4>3.(x,t) = (p%(x,t) + M6§_ (3.1%)

3

It will turn out that M is of order mllz, therefore when calculating imiz,

defined by (@.2), the term M(¢”™ + T}) can be neglected as compared to terms
of order m, and thus we can use the approximate relation

1012 = 1012 + M2/2. (3.15)

2 .
If N* denotes the average value of l1¢vel , it follows from (3.15) that the
2 - .
average value of 191 is given as

N = N” + M2/2. (3.16)

Finally we use the fact, that I¢'|2 can be replaced by N* in the large-m
limit. After these steps we arrive at an equation of motion of ¢ for com-
ponents j i1 2, the Fourier transform of which is of the same form as (3.1),
(3-2) but now N is defined by (3.16). Then similarly as in the previous sub-
section we obtain the self-consistency equation:

N1=m / -Bommmmmmmmem 5o . S
oK +r(NL+M /72 ()

Furthermore from the equation of miton of ¢ the following condition is
found for a stationary solution

r(N1 + M2/2) = h/M (3-18)
which is the equation of state of the system. It is easy to check that

(3.17) and (3.18) in the critical region yield the exponents R = 1/2,
6 = (d+2)/(d-2) known for the spherical model [4].



As a consequence of (3.18) one obtains for the correlation function of

dfé (g S 2 in the equilibrium state:
rK

,exp(-L(k2+h/M)t) , €t>0,

® N ,0)> = -—1 (3.19)
J>K K * HfM{exp(L(k3+h/M) ©, t>0.
Also (3.19) exhibits an oscillatory behaviour. The singular nature of
(3-19) when k and h/M go to zero is a manifestation of the Goldstone theorem.
The evaluation of the quantities characterizing the longitudinal (=2
component is much more complicated. For convenience we shall discuss only
the properties of the response function
<Pl v >

Gk,o) = - O , (3.20)

where h’tha s the Fourier componetn of the real external field h(x,t) coup-

i
led to the j=1 component. It has been calculated for the Bose gas model in
[18.19] and for the TDGL model with a complex kinetic coefficient in [20].

Here we quote the result taking into account the slight modifications due,
to the fact that our model (see (2.1)) contains an infinite power series in
ol 2. We obtain

il V_ (io/L + k%) a + mv(\) E(K,bl))

G + K)GIwL + KD @ + mdntk,c) )-Giutu viLrs - iveorr ~ G20

where N and the function v have been defined by (3.16) and (3.12), respec-
tively, furthermore n(k,u), the contribution of the bubble diagram for small
k values, 1is given as [20] :

n(k,u.) = k eK"B(e/2,d/2)/ 2-¢e XTT(-NTAT~) 2F(E"L~fF" 2 «“F ~ITTT1N—————— T~ >"
(.u-) - ¢ YV @eXl 2L 1 £2L " % (2 2 2 2L @-iwkD)y)
L A-iai/kk\~ 2 e c 2 _e L 1 G2
2LMD) 2L < 2° 27 2L@>(1-w(k2L))

where B and F denote the beta and the hypergeometric functions, respectively;
c = 4-d and Kd (2n)d is the area of the d-dimensional unit sphere. In the
limit - O it goes over to [19]

rid -bE ~ -In(d_3) d-3 d-3
-k4 m2 r<¥>iWHi/fiu_-uF5 2 +» —(’LLIJQ—l' le 323>



Investigating the poles of G in the Bose gas model it was found in
[18,19] that the critical modes beeing proportional to éz comes from the re-
gion where mv(N)n(k,w) is much more Hlarger than unity. A non-critical mode
has also been found, the frequency of which is proportional to k. Whether
it can be interpreted as a sound excitation or an overdamped mode depends
on the strength of the bare coupling constant. It turned out that the res-
ponse function G(k,u>) obeyed dynamical scaling around the excitation branch
of the critical mode in a region between the w = 0 line and the excitation
branch of the non-critical mode, that is besides the usual conditions
Wl "/l « 1, k1t << 1 also NddA? << L@ kAl should be fulfilled. On the
contrary, in models with finite values of L_(]“L there is no restriction on the
ratio of the frequency and the wave number in the asymptotic region for
dynamical scaling to hold.

Before turning to the renormalization group analysis we note that
instead of (2.4) an other representation of r (i¢l ) turns out to be more
convenient in the large-m limit, namely the power series

00

r(loi2) = z U2a 2[2(1912 - Nc)]a_1, (.29
a=1 '

where N is given by (3.9). The introduction of the second index of U0 ,
is here entirely formal, but in the next Section we shall introduce an even
broader parameter space the elements of which will be the parameters

uo @® & 1) (see (4.8)). The present notation indicates the relation of

the set of parameters defined by (3.24) to the broader space. The connection

between 707 and the parameters specified by (2.4) is given by
Us. = Us + J 7% ™ on_1® 3.25
52,9 = U337 - Weaeyn g s @1 - (3-25)

as can be checked easily. In the language of a digaram technique this means,
of course,an appropriate resummation of diagrams. For a = 1 one obtains

U2,2 = u2 + £ ,u28{Nc)S1 =T " Tc (3-26)

where the second equality follows from (2.5) and (3.10).



IV. RENORMALIZATION GROUP (RG) PROCEDURE

In order to describe the dynamic renormalization group it is convenient
to use the response field formalism [21-24, 7-9] and then the transformation
is to be carried out on the path probability functional W=exp J. For the
action associated to equation (2.1) we obtain in the large-m limit

3 = 3y + Fdrfddxfi~ Lb(-0.0; + K + c.c)r (1012)]. “.1)

where c.c. denotes complex conjugation and ¢ represents the m-component
complex response field, furthermore

Jg =Jddt[ddx [~ {L@*I1$jl - 4@j@™ - aLv™r) + c.c.)}, “4.2)
and

K s K, lirqdlk. “4.3)

d o
When calculating averages by means of the path probability N{¢.¢.} integra-
tion is to be performed over CD3.(1), ¢3.(2) and i~43.(1) and iZg_Z)_S 3Note that

the dependence upon ¢. in J-Jo appears only through the (real) combination

o, ) =7 ¥ (G-0.0. + 10 + c.c). 4.4

J=1
The dynamic RG transformation is defined by integrating the path pro-

bability over field variables with wave numbers in the shell n/b < k < n

and by rescaling of the remaining variables. The new action is determined
by the equation.

exp 7 =J T dojif ddf2 0 d (i 2P Id(i242L.) (4.5)

J <K<,
exp J o (x, ) bl-n/2-d/2i(x/bt/bZ)

o (X, 1) b-1+n/2-d/2 1 (x/bit/bz,

Here the quantities with subscript k,u stand for the Fourier components of
the field variables. The quantities n and z are the static correlation func-
tion exponent and the dynamic critical exponent, respectively.

Before turning to explicit calculations let us discuss Tfirst the struc-
ture of the parameter space. If we start with (4.1), after the dynamic RG
transformation an infinite number of new couplings arise in the new action
which are non-local in space and time. The non-local (k and w dependent)



couplings can be treated only by perturbative methods. However, the coup-
lings which are local in space and time transform among themselves si-
milarly as in the case of the usual TDGL model with a real kinetic coef-
ficient [7,8]. Even this part of the parameter space contains an infinite
number of parameters in the large-m limit. They are specified by the fol-
lowing action

J = JQ +/dt/ddx L Q)Y( |9]2,9/1,(1)) 4.6)

where Y is a real valued function and JQ and ¢ are defined by (4.2) and
(4.4), respectively. Note that (4.6) corresponds to a general equation of
motion the vertices of which are delta-correlated random variables with
non-Gaussian distribution (see also [8]). We then define the parameters
UQan% associated to Y by the power series

L@Y(1012),0/b@ =2. E U, 012 " NJ 1°73 - @.7n
a=l 1SBSe Za"ZB C

Conversely UQQ/Zp is given as

W2a 20 (L 7) 4-8)

where the notation

B J¥y (21, 22) 4.9
Yij(zl,z22}2 nz. 149
has been introduced. The physical significance of the parameters UZQﬁfs is

given by the fact, that, similarly as in the case of the large/-m limit of
the usual TDGL model [8] U2a 2g “or B > 1 are those parameters which are
directly related to the cumulants of random vertices appearing in the equa-
tion of motion. Some of the parameters U2a 2g are related to frequency de-
pendent ones via fluctuation-dissipation theorems in the parameter space
(see for example (6.3)). It corresponds to the usual Langevin equation if one
takes

Y(19]2,9/b(1)) = (@/b@))r(l®12) (4.10)

as can be seen from (4.1).

The transformation of the local parameters specified by (3.6) can be
treated in a global way using the simplifying features of the large-m limit.
In the next Section we discuss this non-perturbative method.
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V. TRANSFORMATION OF THE PARAMETERS LOCAL IN SPACE AND TIME

In order to perform the multiple integral (4.5) the fields are decompo-
sed into two parts

0] O, + O 5.1
> + 03 3 3 G-
where ¢_. and ¢_ Qn the Eight hand sides involve only wave numbers smaller
tahn /I/b, while 093 and CIJg contain the large wave number components. In the
large-m limit cross terms like T 6603.3 are negligible as compared to 166¢b-
Consequently we can write J J

o1 ® + G.2)

Since 191 and pare sums of m terms and m is large the relative deviations
of them from <I3? and "™ Respectively are small, where <...>" denotes
the average over field variables with wave numbers between /1I/b and /1. Thus
Y (Jo I2 + 1512,¢)+cp~) in (4.5 can beA replf\iced by tt\ez
Taylor series expanded in powers of f - <p>b and 101 -<I10i >b reducing the

first few terms of its
A A

multiple integral to Gaussian integrations. The calculation is a straight-

forward generalization of that followed in [7,8] therefore we shall skip the

intermediate steps and turn directly to the recursions. We obtain

= ab = LpZ2*N (5.3)

indicating that a finite fixed point can be achieved only if

n=20, z = 2. G-4)
This means that both a, and L™ are marginal parameters. Therefore we
can put a = 1 but we do not fix the value of 1/1” since the limit i/~ ~ 0

will be interesting for us.

Furthermore Y (10 I2 ,0) can be proved to be a constant after the trans-
formation which plays no role and will not be regarded as a parameter. Thus
Yg 1(101 "¢g/b ) defined by (4.9) specifies all the parameters besides a
and L. Its recursion couples to that of Y1 Q. Starting with (4.10) we find:

Y0,1 (10]2°¢/bM))

b2r(b2_dQ + Nc), G.5)

Y A0 (19]2,0/b(@]) = b4 _dv(b2_dQ + Nc), (5.6)
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where v and Nc have been defined by (3.12) and (3.9), respectively, further-

more
R=,/L@® -m J {(@2 + Y )/S - 1}, G-7D
q
Q= 1912 - Nc +m J (/S - 1/92}, (5.8)
s = [@2+ - 2y;,0]1/2 5.9

where the notation
> _ Ab d-1
/ = K / dg q (5.10)

has been introduced. 1t follows from (5.5), (6.6) that Yq ™ and Y» O can
approach a finite fixed point expression for b & < only if Q and R tend to

zero in this limit. Then the fixed point expressions Yﬁfl’ Y’i/U are de-
termined by
Q* =0 R =0, (5.11)

*

[ 2
where Q and R are given by (6.8) and (5.7), respectively with the only
change that Y~ 1 and Y» Q are to be replaced by Y* 1 and Y* Q. Furthermore

from (6.6) a necessary condition for the existence of this fixed point is
found, namely

rc (N = U2,2 = °F G-12)

i.e. U2 2 must vanish at Tc in accordance with the results of Seciton II.

Note that in the special case of a real L the relations (56.5)-(5.10)
coincide with the recursions of the usual TDGL model with real order para-
meter in the many-component limit [7,8].

It is easy to deduce from (5.5)-(5.10) the recursions for the parame-

ters U2a”2R defined by (4.7). Here we give as examples the first few of them:

U2,2 = n2°2,2 = b2r(ib (1)), (5.13)

B badv (1b (11]/2 (5.14)
4.2-n UE,Z 1 . bl—di(IB(" lIBQ); |

. 1 2 T (3 .2
Ug,a S 12d1, 1 7 B T2 - (5-15)
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where U.Z,f’ U!lfz and U!1/4' are dimensionless parameters, the function v is
defined by (3.12), and

Ib (@) = b2 dQ(Nc,0) + Nc, (5.16)
@) = 1 G-17)
’ q5 (q% + U- 2)2
>
-y L 3 (5-18)
qg (@ + U2,2)
At Tc, of course, = Nc and U2 2 =

The fixed point values are generated by taking the limit b - “at T
For the above parameters we obtain

(5.19)
u4,2 - Lu4Fj . (5.20)
“-dy2 . .21

U4,4 2mKd (6>d) *

An important feature of equations (5.5)-(5.10) 1is that at ¢ = 0 for any
finite value of they describe the transformation of the static parame-
ters. Indeed for ¢ = O the function YI|/8= 0 and in fact for YEJ/1(|¢ I2 ,0)
we recover the expression first obtained by Ma in the framework of static
critical phenomena [4,5].

The limit, however, when V¥ 1™ - O must be taken with care. As one can
see from (5.5)-(5.7) the static parameters of the system are recovered only
if we take the limit 9 - O first and the limit L™ »~ ¢ 0 only afterwards.

At the same time the dynamic parameters UQ with B > 1, generated by the
RG exhibit singular behaviour: they blow up for L* o 0. (See for example
Ul . given by (56.15).) This reflects a non-analytic behaviour of the model
ré’aéhed for L(l) - 0, i.e. of the Bose gas model. In the next Section we
discuss also non-local couplings in space and time in order to get more in-
sight into the nature and origin of this singular behaviour.



V1. TRANSFORMATION OF PARAMETERS NON-LOCAL IN SPACE AND TIME

As we have mentioned previously the space and time (or equivalently Kk
and b)) dependences of the couplings generated by the RG transformation can
be investigated only by means of perturbative methods. The perturbation
evaluation of the multiple integral (4.5) is to be performed in a similar
way as in the case of the usual TDGL model [8]. We do not discuss here the
technical details but give the recursions for the two simplest kK and o de-
pendent couplings, namely for 2<k,w) and U4 4(,0). The results are plau-
sible generalizations of (56.14) and (56.15). We obtain

b4 _dv(lb (1))/2

ug,2&k"“)= A4-du » 2, = 6-.1)
& e 1 + b4-dmv(l, *MI k,0)

where 1.~" is given by (6.12) and

d
: d 1

Ib@)(.0) = | a .
A<q<Ab e @ + 0*2F2)((k-g)-+D" 2)

L(g2 + U~2) + L((k-3)2 + us %2
6.2)
-io + L(q2 + 2) + fK(k-g)2 + V2 )

The variables kK and ® in (6.1) and (6.2) denote the rescaled wave number and

frequency, respectively. The meaning of the quantities I, » and I, ~ can
glven in the language of diagrams as follows: |, " - b aN and
b Ib( ) denote the contributions of the HartreeD loop and the bubble graph,

respectively, in which the integration over wave-numbers runs in the interval

Vb, n).

The coupling ~(k,0) can be expressed by the formula
ud,4k™) = - 8 Imuj 2(kfw (6-3)
representing a fluctuation-dissipation theorem. Thus 2 (k,u) determines
Ul , .(k,00) uniquely.
In order to calculate 2k,0>) one must know Ib(Z]' (k,w). After per-

forming the integration over the angle variables in (6.2) we can write

1b @) (k,0) =1b(S)E +1b(D)K,c0), (CRD)

where Ib(S)(k) represents the contribution of the static bubble diagram (and



»
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consequently does not depend on L), while the dynamic part reads

© .0y = io 1 $)q7° (6.5)
q 2,2
Here the notation (5.10) has been used, U, 2 given by (6.12) and f stands
for an infinite series of hypergeometric functions. Explicit expressions are
given in the Appendix. It will play a crucial role in determining the ana-
lytic properties of the function 1“12)(k,w), that f depends on the frequency

and the kinetic coefficient only through the combination:

2kqL

s =
iw - 209G+ 2y - w2

(6.6)
As far as LD is finite s is a small quantity near the origin of the

k,o plane and as a consequence of it (6.1) can be expanded in a power series
as

Uj,2(k,0) =0~ 2 + C"0(K2/N2) + 1(io/A2L (D)) + ..., 6-7)
where 2= 0™ 2@©,0) is given by (56.13) and the dimensionless quantities
C1,0" CO,1 read

d-1
) Kdq -
A g = 20U, )2/ 1 _EL ____ydq (6.8)
, 472" 1T (g2 + U™ 2)3 d(q + U=F2y7
and
£o,1 7 - Ha 4= (6.9

Equation (6.9) follows from the fluctuation-dissipation theorem (6.3). O%fz
and U( . have been determined by (5.12) and (5.14), respectively. Note that
L(z) does not appear in (6.7)-(6.9).

In the limit - 0 s becomes a singular function of k and

2L @

lim
0+L@

(6.10y

Tn)

whose value at the origin depends on whether kK or o goes first to zero. This

causes a similar singularity in U( ~(k.o), namely 1lim u~” ,,(0,0) is in-
" L@>-o0 4,2
creasing as b - <, while Ul _(k,0), which is a static quantity (and there-

fore independent of L(l)) éﬁéroaches a finite expression for b - . All that
indicates that the constant part of the four-point vertex can not be defined
uniquely when I/~ =0 in contrast to the case of a finite (In some
sense this fact is reflected in the singular behaviour we have found in the
transformation of the parameters being local in space and time: there the
limit <0 and L™ ~ & 0O were not interchangeable.)



A more detailed investigation of 2(k,0) in the limit L~ - O shows
that we must distinguish between two regions where the properties of this
function are entirely different. Region 1 corresponds to lo II'I'2 < h(z)kA'1 ,
while region Il corresponds to Ilo II'I'2 > L(z)Kn'1 . In contrast to the unusual
features of the transformation in the latter regime, U!1r9(k’°) approacBes a
finite fixed point in region I. Here it can be expanded in powers of k /],
u/h Lv and (o/n L 1)/(k/N). For the dimensionless coupling 2 (k,0>) one
obtains in region lIs

U4,2(k™> = U4,2 @ + c*xfo)2/n2) + (D ®/A2L (2))
6.11)
+ C’l (M) i(o/A2L P HNk/N) +
>
where Oi and C* N coincide with the corresponding coefficients of
the case of a finite Lv , i.e.
- N = - — =
04,2™ = 0a,2- 1,00 =™ - (6 -12)

where Ui _ and Cl _ are defined by (56.13) and (6-8)(respectively, while

VN

I n
271
b ., d-
o . d-2 1
¢.i "~ = 2muaj2)2 | - - ~ U~ Ydg * (6.13)
1 gz + Uk,Z‘)- ¥4 qZ q2 Tu!"k,z) q
d-2
= @ =-swu- )21 Kd-iq dq . (6.14)
A1 - 1 @ + 6°F2)2

A novel feature of (6.11) lies in the presence of the third term, a trace of
the singular behaviour, giving, however, only a small contribution in re-
gion 1. Note also that C!J,'IA is a real number as it is expected in the
Bose gas model.

The fluctuation-dissipation (6.3) remains valid also in the limit

- 0, consequently we obtian in the region 1I:

U4,4 (k,w> = (12 d/LR))2(A/k)C"1 (6-15)
-2

’

indicating that the k - O limit of ~(k,0) is singular in accordance with
our previous finding when having treated-the parameters local in space and
time. Then Ui . =xul .(0,0) turned out to be proportional to 1/1/ 1™ (see

(5.13)) Whicﬁ"ﬁvas ailso singular for L(l) - 0.
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All parameters defined by (6.11) have finite fixed point values, for

example:
Fo® = "0° ZmK(é‘aE’&?’d) - (6.16)
~* | 4-d)3
0,1() B 8(mKd) . (6.17)
(6.18)
8mKd (5-d)

and the deviations from them turn out to be small for large values of b.
This means that the recursion of the parameters associated to region | can
be linearized and consequently dynamic scaling is fulfilled in this region.

The result can be interpreted as the RG background of the characteris-
tic features of the explicit solution of the Bose gas model found in[18,19]
and discussed also at the end of Section 11l in the present paper.
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APPENDIX
EVALUATION OF THE DYNAMIC PART OF THE BUBBLE DIAGRAM

The dynamic part of the bubble diagram is given by

Ib©® &w) =
= / iu.[(@2+ui ,)((k-g)2+Ui ) (-i1a)+L(@2+Ui -)+E((k-g)2+Ul ,)]-1
2 272 2,2 ~ 2,2 J @n)d

A<qg<Ab 2,
| A involves the re-

It should be noted that the precise definition of
This would lead, however, to unnecessary compli-
SO

striction /I<Ik-g I<Ab too.
are consequences of the sharp cut-off,

cations which are unphysical and

it. By means of the identity

we disregard
J cos1® sin®-%-@ + x (0SP) *dd =

B(~, - -)FQ , 1 even

I{ -XB”™, 5M)Ir(1,x« Si™_,*”), 1 odd
where B denotes the .beta function and F stands for the usual hypergeometric

function,we obtain after integrating over angle variables:

o) Cics F(L,1/2.,d/2,52)
I K, Ci«s FQ,1/2.,4/2,52)
SECOI TEUR D) (2 kA run 2y *

g 2kgL (q
@
+ I -ics
2kqgL - . s
r(rjar(i) (@2tk2+U~r2)M(g2+Un_2)
CF@, 28 dvel 2« ZKka____ g\

vg +k +Uj 2

where the notation (6.10) has been used and s has been defined by (6.6).
I denotes the gamma function. This formula specifies the function f appea-

ring in (6.5).
IfL ) is finite and Kk and u are small (k<<A,u<<A2£2) ) we obtain

(6.7) .
In the limiting case of L~1N - 0 in region 1, there-
fore we have to use the asymptotic expressions of the hypergeometric func-

is found.

Isl becomes large

tions. For the first few terms (6.11)

»

»
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