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ABSTRACT

Dynamic normalization group analysis of the complex time-dependent 
Ginzburg-Landau model with infinitely many component order parameter is given, 
with emphasis on the limiting case, representing a Bose gas model, when the 
kinetic coefficient is treated as pure imaginary. The fact that dynamical 
scaling behaviour holds for the Bose gas model in a region of small fre­
quencies (containing the critical mode) with boundary proportional to the 
wavenumber is shown to be the consequence of that that a well-behaved fixed 
point can be achieved in this region.

АННОТАЦИЯ

Методом динамической группы ренормировок исследована комплексная, за­
висящая от времени модель Гинзбурга-Ландау, в которой число компонент пара­
метров порядка бесконечное. Отдельно рассмотрен предельный случай, соответст­
вующий модели Бозе-газа, когда кинетический коэффициент является чисто мни­
мым. В модели Бозе-газа поведение динамического подобия наблюдается в области 
малых частот /критическая мода находится в этой области/, граница которой 
пропорциональна волновому числу. Показано, что этот факт является следствием 
того, что в этой области можно найти фиксированную точку хорошего поведения.

KIVONAT

Megadjuk a végtelen rendparaméter-komponensü komplex, időfüggő Ginzburg- 
Landau-modell dinamikai renormálási csoport analizisét külön vizsgálva azt a 
határesetet, amikor a kinetikus együttható tisztán imaginárius, ami egy 
Bose-gáz modellnek felel meg. Kimutatjuk, hogy az a tény, miszerint a Bose- 
gáz modellben dinamikai skála-viselkedés egy kis-frekvenciás tartományban ta­
lálható (mely tartalmazza a kritikus módust), s melynek határvonala arányos a 
hullámszámmal,annak a következménye, hogy ebben a tartományban jól viselkedő 
fixpont érhető el.



I. INTRODUCTION AND SUMMARY

The time-dependent Ginzburg-Landau (TDGL) model (or model A in the 
usual classification [1]) describing a simple relaxational dynamics has 
played an important role in understanding critical dynamics. Studying this 
model in the limit when the number of components of the order parameter goes 
to infinity has proved to be a useful theoretical laboratory in connection 
with several aspects of critical phenomena [2-9]. Our purpose in this paper 
is to further extend the investigations in this, limit especially from the 
point of view of the properties of the dynamic renormalization group (DRG).

We consider the relaxational model for a complex, non-conserved, m-com- 
ponent order parameter field and take the kinetic coefficient L also com­
plex. In this framework a classical field description for the m-component4Bose system can be obtained (m = 1 corresponds to liquid He) by treating 
L as pure imaginary (see e.g. [1]). It is important, however, that the model 
with Re L = 0 and those for which Re L ф О do not belong to the same uni­
versality class and exhibit quite different critical dynamics. The reason 
behind this lies in the fact that in the former case there exist a number 
of conserved quantities in the system and this is not the case if Re L / 0. 
While this statement holds independently from whether m is finite or we have 
1/m = 0 , the behaviour changes appreciably in this limiting case, especially 
when Re L = 0. Although we are interested here in the properties of the 
1/m = О systems, it is worth summarizing also the main features character­
izing the situation for finite m for the sake of comparison. Let us consider 
first the case Re L / 0, 1/m / 0. Then by the repeated application of the 
DRG a fixed point is reached with a zero fixed point value for Im L [10] 
and the model exhibits the same critical behaviour as model A of Halperin, 
Hohenberg and Ma [11]. On the other hand when Re L = 0, 1/m / O, it is ex­
pected that by integrating out the field variables with large wave-numbers 
one arrives at phenomenological models with mode-coupling terms among the 
order parameter and the densities of the conserved quantities.*
Although this procedure has been demonstrated in detail only in case of a 
lattice dynamical model by Bausch and Halpering [12] the conclusion as 
sketched above can be expected to apply also here [1, 13].
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In the case of the multicomponent Bose system (m z 2) examples for such con­
served quantities are the infinitesimal generators of the symmetry group 
U(m) [14].

Let us turn now to the case 1/m = 0. Taking Re L / О the only differ­
ence as contrasted with the situation with finite m is that Im L becomes a 
marginal parameter so the temporal oscillations during the relaxational 
process are present also in the critical region. When L is treated as purely 
imaginary, however, the dynamic critical behaviour changes in a significant 
way in comparison with the finite-m case. The reason behind this dissimi­
larity lies in the fact that the collision-dominated hydrodynamic region 
(and its continuation into the critical one) shrinks to zero for 1/m = О 
[15 ]. (Note that we consider wave-numbers and frequencies of order unity and 
not of 0(1/m) as in refs. [15, 16, 17].)Therefore one must realize that no 
information concerning the critical behaviour taking place just in this 
collision dominated region of an m-component Bose system with finite m can 
be deduced from the results obtained in the limit 1/m = 0. In spite of this 
fact, however, the 1/m = 0, Re L = О model deserves attention, having in­
teresting features from several points of view including the unusualy pro­
perties of the DRG. We shall call this model the Bose-gas model in the fol­
lowing .

The Bose gas model can be obtained also by starting from the quantum- 
mechanical Hamiltonian for an m-component Bose gas and taking the limit 
m -> ■ as well as the classical (small frequency) limit of the Matsubara 
diagrams. In this way critical properties, including the dynamical ones, of 
the model have been determined in refs [18, 19]. The most notable feature 
found there is that the longitudinal correlation function obeys dynamical 
scaling only in that frequency region where the critical mode lies. This re­
gion terminates for a given wave number near the frequency of a second, 
non-critical excitation branch proportional to the first power of the wave- 
number. Similar conclusion applies for the four-point correlation function 
below as well as above the critical temperature.

In this paper we are going to present the RG background of this beha­
viour. For this purpose besides the Bose gas model (Re L = 0) the case 
Re L ф 0 will also be discussed since comparison of their corresponding fea­
tures helps elucidating the problem in question.

Similarly to the model with a purely real kinetic coefficient studied 
previously [7, 8, 9] it turns out that the couplings local in space and time 
form an invariant subset of the parameter space and their transformation 
under DRG can be followed in a global way applying the path probability 
formalism. In this manner the transformations and the fixed point values of 
an infinite number of static and dynamic parameters are given. It is shown 
that the fixed point values of the dynamic parameters tend to infinity when
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taking the Bose gas limit (Re L = 0). This indicates at least some restric­
tions on the dynamical scaling properties in the model in agreement with the 
results of the direct solution [18, 19] discussed above. To clarify the na­
ture of this singularity we study next with the help of a perturbation me­
thod the transformation of some frequency- and wave-number-dependent coup­
lings. It is found that due to the singular nature of the bubble diagram for 
small frequency and wave-number transfer in the limit Re L = 0 a finite
well-behaved fixed point function can be achieved only in the region 

-2 -1I о IЛ /Im L<<kA where ы and к denote the frequency and wave-number, respec­
tively and Л stands for the cut-off in momentum space. Then it follows that 
dynamical scaling is also restricted to the above region in the framework of 
the Bose gas model, a result in accord with that of refs [18, 19].

From the point of view of the RG technique it is of importance that such 
singular behaviour does not prevent its application and it can correctly 
account for the consequences of the singular behaviour. It would be interes­
ting to see how the field theoretic technique based on the Callan-Symanzik 
equation could describe such a behaviour. For this purpose it would be ne­
cessary to extend investigations made for the two-point function in ref.[10] 
to the four-point one in the 1/m = 0 limit.

The organization of the paper is as follows. In Section II the model is 
introduced. The limit 1/m = 0 is discussed in Section III along with the 
presentation of a number of explicit results. The RG procedure is outlined 
in Section IV The transformation and the fixed point values of the parame­
ters local in space and time are given in Section V using the path probabi­
lity formalism. Section VI contains the RG treatment of frequency and wave­
number-dependent couplings and the discussion of the dynamic scaling pro­
perties of the Bose gas model. Some of the mathematical details are relega­
ted to the Appendix.
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II. THE MODEL

We consider a d-dimensional system of volume unity which in the critical
regime can be characterized by an m-component complex slowly varying order
parameter field: i(x,t) = {i>.(x,t)lj = 1,2,...,m} with momentum cut-off Л.

1 (1) (2)We shall use the notation for complex numbers z : R e z = z  , I m z = z  ,
l.e. = Ф j ̂ 1  ̂ + i*.'2>. The dynamics of the system is specified by a TDGL
equation with a complex kinetic coefficient L. Only the case of non-conserved 
order parameter will be considered. In coordinate representation the equa­
tion of motion reads

Ф^(х,Ь) = -L(-aV2 + r (I Ф I 2) ) 4>j (x,t) + 5j(x,t),

Ф
1 m

(2 .1)

(2 .2)

where r stands for a real function and a is a real number. The complex noise 
5 is assumed to be a Gaussian white noise with zero mean value and correla­
tion functions as

<5.(1) (x,t)£.,{1)(x',t')> = 2L(1)6(x-x')6(t-t')6. 1 1  1 * 1

<5,(2) (x,t)‘c., (2) (x-,t')> = 2L(1)ó(x-x’)ó(t-t')6. 1 1  1 * 1

(2.3)

and are independent random variables. The parameters specifying
r can be defined for example by the power series

oo
r(IФ I 2) = Y1 u2n (2|ф|2)а_1• (2.4)

It is assumed that

u, = T - T , (2.5)z о

where T is the temperature of the system, while TQ denotes its critical value
in the mean-field approximation. To keep terms of powers up to infinity in
(2.4) is required by the RG treatment (see Section V.).

The stationary probability distribution of the process (2.1) reached
for t - ”, P {Ф.^,Ф.^2^}, can be written as eq 3 3

P { Ф . (1' (2) } ocexp(-F) , (2.6)

where F is given by the Ginzburg-Landau form
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F = Jdd x {a IV*I2 + U( 1Ф12)} (2.7)

with

and

IV* I 2
2

ш j
E  iv*,r
1=1

и (I Ф i ) r(x)dx
J22. U« Q
1  ^ ( 2 !.12)“.

(2.8)

(2.9)

Thus F is interpreted as the free energy functional of the system in units 
of kT. It can easily be seen that (2.6)—(2-9) represent indeed the time-in- 
dependent solution of the Fokker-Planck equation associated to the process 
(2 .1) :

P = £ j d d x[— ^-Tyr-ííM-aA^+rt 1Ф12)Ф.))(1)Р} + 
j = 1 6*.Ш  1 3
J J

- m 1 +
(2 .10)

62P
6Ф.J 6Ф\

0
*]•

The large-m case is defined by taking the limit m - °°. In order to en­
sure the existence of this limit (e.g. in (2.9)) we assume u0 to be of 1 2a order m . For the dimensionality of the system 2 <d < 4 w .be
assumed.

In the next Section we present the solution of (2.1) with an arbitrary2function r ( I ФI ) in the large-m limit.
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III. SOLUTION FOR 1/m = О

Symmetric phase

The simplifying feature of the large-m limit appears in that, since m2is large and 1Ф1 is a sum of m terms, that the relative fluctuations of
2 21Ф1 are small [4]. Therefore r (IфI ) in (2.1) can be replaced by r(N),2where N denotes the average value of IФ I in equilibrium. Thus we arrive at

a linear equation of motion, which in terms of the Fourier components
Ф. , (t) and £. . (t) reads:

J f *  J / *

•j,klt) * "ь“к*1Д |Ы +

with
ak = (ak2 + r(N))

(3.1)

(3.2)

where N is to be calculated self-consistently. In this Section we shall set 
a = 1 (see also Section V.).

One can easily check that the transition probability of this linear 
process is given as follows:

Р((ФН t > 11 {Ф . } ,0)oc
J f t J / *-

La, t 2
- *j,k e k 1r_ hjA

* eXPl -2L (1)a t2(1 - e 2L акЬ)
}•

(3.3)

Consequently the average of Ф . . reads3
O -L(1)c4t -iL(2)a t

<$j,k(t)> = $j,k 6 ‘ 6 (3.4)

(2)which exhibits a temporal oscillation with frequency L during its re­
laxation to the equilibrium value.

The equilibrium distribution is generated by taking the limit t - °° of 
expression (3.3):

Peq(<*j,k})oceXP<- 1 f. V * j , k |2}3
(3.5)

and is of course, independent of L. As a consequence of (3.5) and (3.2) the 
equal time correlation function in equilibrium is obtained as

2 2< I Ф . . I > = -«--=-- — .3 »k , 2к + r (N)
(3.6)
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For the (time dependent) correlation function in the equilibrium state one 
gets

exp(-Lakt) ,t>0 ,
C(k,t) = <Tj>k(t)Ф^fk(0)> = 2

к +r(N) exp(Lakt),tC O,
(3.7) •

where and in the following complex conugation is denoted by a bar. Note the 
oscillatory behaviour of C(k,t) too. From (3.6) the self-consistency equation

N = j L < I Ф
j/к j/k - »I 1

к к +r(N)
e 1m /  ~2-----
о к +r(N)

(3.8)

is found. At the critical point the relaxation rate of Ф. vanishes. Con-2 3r° 2sequently, if we denote r (lФI ) and N at the critical point by (|ф i ) and
Nc , respectively, it follows from (3.1) and (3.2) that rc (Nc) = 0 should be
fulfilled. This makes straightforward to calculate Nc from (3.8) [4]:

Nc = m
К .Л d

d-2
d-2 (3.9)

where К^(2п)^ is the area of the d-dimensional unit sphere. The condition 
rc (Nc) = О together with (2.4), (2.5) determines the critical temperature:

Tc = - Гa=2 U2a (2Nc)
a-1 (3.10)

The solution of the self-consistency equation (3.6) for T close to Tc 
is given as

N - Nc TC " T
V(NC) (3.11)

where the notation

v( I Ф I dr(IФI 2) 
dl Ф I 2

(3.12)

has been introduced. The static critical behaviour of the system is the same 
as that of the usual TDGL model in the spherical model limit, therefore the 
critical indices v and n are 0 and 1/(d-2), respectively [4], while the 
dynamic exponent z turns out to be 2 for any L <1) as it follows from (3.7).
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Symmetry-breaking phase

The order parameter of the system is the average of the filed variable, 
in general a complex m-component vector. However, we can always choose the 
order parameter to point in the direction of the j=1 axis and to be real 
by making use of the isotropy of the system in the component space and the 
gauge invariance of the free energy (2.7), respectively. We introduce a 
constant external field, h, coupled to the j=1 component. Then the equation 
of motion is as follows

Ф . = -L(-aV2 + г(|ф|2))ф. + Lhó • . + 5-i- (3.13)
J J J f 1 J

We separate the order parameter M a <®^(x,t)> by writting

4>.(x,t) = ф1. (x,t) + Мб ■ .. (3.14)3 3 3' 1
1 / 2 2It will turn out that M is of order m , therefore when calculating iф i , 

defined by (2 .2), the term М(ф  ̂ + T}) can be neglected as compared to terms 
of order m, and thus we can use the approximate relation

IФ I2 = IФ'I2 + M2/2. (3.15)

2If N' denotes the average value of lФe l , it follows from (3.15) that the
2average value of IФ I is given as

N = N ’ + M2/2. (3.16)

2Finally we use the fact, that lФ' | can be replaced by N' in the large-m 
limit. After these steps we arrive at an equation of motion of Ф̂  for com­
ponents j i 2, the Fourier transform of which is of the same form as (3.1), 
(3.2) but now N is defined by (3.16). Then similarly as in the previous sub­
section we obtain the self-consistency equation:

N 1 = m / -5------------ 5----- . (3.17)
о к + r (N1 + M / 2) (2n)

Furthermore from the equation of miton of Ф̂  the following condition is 
found for a stationary solution

r(N1 + M2/2) = h/M (3.18)

which is the equation of state of the system. It is easy to check that 
(3.17) and (3.18) in the critical region yield the exponents ß = 1/2,
6 = (d+2)/(d-2) known for the spherical model [4].
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As a consequence of (3.18) one obtains for the correlation function of
Ф'. (j S 2) in the equilibrium state:3 г к

, exp(-L(k2+h/M)t) , t > 0 ,
(t) Ф\ ,(0)> = ----I (3.19)

J »K + h/M / 2К п/м L exp(L(k2+h/M) t) , t > 0.

Also (3.19) exhibits an oscillatory behaviour. The singular nature of
(3.19) when k and h/M go to zero is a manifestation of the Goldstone theorem. 

The evaluation of the quantities characterizing the longitudinal (j = 1)
component is much more complicated. For convenience we shall discuss only 
the properties of the response function

<Ф1 v >G (k , о) = - , (3.20)
k,G)

where h, is the Fourier componetn of the real external field h(x,t) coup-
YL t (Si

led to the j=1 component. It has been calculated for the Bose gas model in
[18.19] and for the TDGL model with a complex kinetic coefficient in [20].

Here we quote the result taking into account the slight modifications due, 
to the fact that our model (see (2.1)) contains an infinite power series in 
IФ I 2 . We obtain

rí]_ V _ (-io/L + k2) (1 + mv(N) п(к,ы))_________________________________
- 2 2 Ml 2 2 ? • (3.21)(-ico/E + k ) (-iu/L + k ) (1 + mv(N)n(k,co) )-(iuLu VILI - k )v(N)fT

where N and the function v have been defined by (3.16) and (3.12), respec­
tively, furthermore n(k,u), the contribution of the bubble diagram for small 
k values, is given as [20] :

n(k,u.) = k_eK^B(e/2,d/2)/(2-е) { ХТТ(~^Т^Т~) 2 F(f'1 ~ f ' 2 “ f' ~ Г Г Г ------T ~  > "2L 1 ' 2L ' 7 2 2 2 2L(1)(1-iw/(k2L))

___ L /L-iai/k2\~ 2 e c 2 _e _______ L 1 (3-22)
2L^1) 2L<̂ ) (2' 2' 2' 2L(1>(1-W(k2L))

where В and F denote the beta and the hypergeometric functions, respectively; 
с = 4-d and Kd (2n)d is the area of the d-dimensional unit sphere. In the 
limit - О it goes over to [19]

г 1-d -ЬЁ ^  -ln(d_3) d-3 d-3
-k 4 ■ 2 r<¥> iwHi/fi - Щ ?  + » - (г ш л - 1' !• <3-23>Li К L  К
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Investigating the poles of G in the Bose gas model it was found in2[18,19] that the critical modes beeing proportional to к comes from the re­
gion where mv(N)n(k,w) is much more larger than unity. A non-critical mode 
has also been found, the frequency of which is proportional to k. Whether 
it can be interpreted as a sound excitation or an overdamped mode depends 
on the strength of the bare coupling constant. It turned out that the res­
ponse function G(k,u>) obeyed dynamical scaling around the excitation branch 
of the critical mode in a region between the ш = 0 line and the excitation
branch of the non-critical mode, that is besides the usual conditions

- ?  -1 - 2  (21 -1I шД /LI «  1 , кл << 1 also liol A << L kA should be fulfilled. On the
(11contrary, in models with finite values of L there is no restriction on the 

ratio of the frequency and the wave number in the asymptotic region for 
dynamical scaling to hold.

Before turning to the renormalization group analysis we note that
9instead of (2.4) an other representation of r (iФ l ) turns out to be more 

convenient in the large-m limit, namely the power series
OO

r ( I Ф I 2) = Z  U2a 2[2(IФ I 2 - Nc)]a_1, (3.24)
a=1 '

where N is given by (3.9). The introduction of the second index of U0 , 
is here entirely formal, but in the next Section we shall introduce an even 
broader parameter space the elements of which will be the parameters 
U0 (ß ё 1) (see (4.8)). The present notation indicates the relation of
the set of parameters defined by (3.24) to the broader space. The connection 
between ~ and the parameters specified by (2.4) is given byZ OL f Z

/a "̂  ̂\ eU~ 0 = u~ + J_ u0, (2N 1 , (3.25)2a, 2 2a 2 (а+6)\̂  & / c

as can be checked easily. In the language of a digaram technique this means, 
of course,an appropriate resummation of diagrams. For а = 1 one obtains

U2,2 = u2 + £  u28{2Nc )S_1 = T " Tc (3-26)ß —2
where the second equality follows from (2.5) and (3.10).



IV. RENORMALIZATION GROUP (RG) PROCEDURE

In order to describe the dynamic renormalization group it is convenient 
to use the response field formalism [21-24, 7-9] and then the transformation 
is to be carried out on the path probability functional W=exp J. For the 
action associated to equation (2.1) we obtain in the large-m limit

J = J + fdtfddxfj~ 1(Ь(-Ф . Ф. + К) + с. с . ) г ( I Ф I 2 ) ] . (4.1)о ■' I 2 j j 1

where с.с. denotes complex conjugation and Ф^ represents the m-component 
complex response field, furthermore

Jq =Jdt[ddx [ ^  {L(1*l$jl - -j ( Ф j ( Ф ̂ - a L V ^ )  + c . c . ) } ] , (4.2)

and
л a 1К s K, [ r ' d k .  (4.3)

d о

When calculating averages by means of the path probability №{Ф.(Ф.} integra-
(1) (2) ~ (1) ~(2) 3 3tion is to be performed over Ф . , Ф . and i4. and i4. . Note that3 3 3 3

the dependence upon Ф_. in J-Jo appears only through the (real) combination

1 \~Ф (x ,t) = 7 (Ы-Ф.Ф. + К) + с.с.). (4.4)
j = 1 3 3

The dynamic RG transformation is defined by integrating the path pro­
bability over field variables with wave numbers in the shell л/b < к < л 
and by rescaling of the remaining variables. The new action is determined 
by the equation.

exp J' -J г dФi1 j* dфf2’ d(i?P* )d(i?!2[ )3 , tyű 3 , к/л) 3 > fy) 3 / H“
j,^<к<Л,ш

exp J Ф(x,t) 

Ф(x,t)

b1-n/2-d/2í(x/bt/bZ) 

b-1+n/2-d/2 i(x/bit/bz,

(4.5)

Here the quantities with subscript к,ш stand for the Fourier components of 
the field variables. The quantities n and z are the static correlation func­
tion exponent and the dynamic critical exponent, respectively.

Before turning to explicit calculations let us discuss first the struc­
ture of the parameter space. If we start with (4.1), after the dynamic RG 
transformation an infinite number of new couplings arise in the new action 
which are non-local in space and time. The non-local (k and ш dependent)



couplings can be treated only by perturbative methods. However, the coup­
lings which are local in space and time transform among themselves si­
milarly as in the case of the usual TDGL model with a real kinetic coef­
ficient [7,8]. Even this part of the parameter space contains an infinite 
number of parameters in the large-m limit. They are specified by the fol­
lowing action

J = JQ +/dt/ddx L (1)Y( |Ф|2,Ф/1,(1)) (4.6)

where Y is a real valued function and JQ and ф are defined by (4.2) and
(4.4), respectively. Note that (4.6) corresponds to a general equation of
motion the vertices of which are delta-correlated random variables with
non-Gaussian distribution (see also [8 ]). We then define the parameters
U0 0o associated to Y by the power series z a f z p

L (1)Y( I Ф 12) ,ф/Ь(1) =2. E  U, |ф|2 " NJ  I“’3 • (4.7)
a=l ISBSe Za'ZB C

Conversely U0 is given asZ OL / Z p

и2a , 2 ß (L' 7 )
where the notation '

j 1+1
Yij(z1,Z2} 2

Y ( Z 1 , Z2 )
д z. 1<3г

(4.8)

(4.9)

has been introduced. The physical significance of the parameters U, ~ isZ (X f z 3
given by the fact, that, similarly as in the case of the large/-m limit of 
the usual TDGL model [8 ] U2a 2g ^or ß > 1 are those parameters which are 
directly related to the cumulants of random vertices appearing in the equa­
tion of motion. Some of the parameters U2a 2g are related to frequency de­
pendent ones via fluctuation-dissipation theorems in the parameter space 
(see for example (6.3)). It corresponds to the usual Langevin equation if one 
takes

Y(1Ф|2,Ф/Ь(1)) = (ф/Ь(1))г(|Ф|2) (4.10)

as can be seen from (4.1).
The transformation of the local parameters specified by (3.6) can be 

treated in a global way using the simplifying features of the large-m limit. 
In the next Section we discuss this non-perturbative method.
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V. TRANSFORMATION OF THE PARAMETERS LOCAL IN SPACE AND TIME

In order to perform the multiple integral (4.5) the fields are decompo­
sed into two parts

>1 + Фз Ф Ф . + Ф . 3 3 (5.1)

where Ф . and Ф . on the right hand sides involve only wave numbers smaller 3 3 *• £
tahn Л/b, while Ф. and Ф . contain the large wave number components. In the 3 3 _ _
large-m limit cross terms like T. Ф.Ф. are negligible as compared to 1Ф.Ф..

D J D D
Consequently we can write J J

I Ф I' <P + (5.2)

Since IФI and <p are sums of m terms and m is large the relative deviations 
» 2of them from < IФI and ^^Respectively are small, where <...>^ denotes

the average over field variables with wave numbers between Л/b and Л. Thus 2 - 2 ~Y (J ФI + 1Ф1 ,ф+ср) in (4.5) can be replaced by the first few terms of its
A  A  A  2 A  A

Taylor series expanded in powers of f - <ф>ь and I Ф l - < I Ф i >b reducing the 
multiple integral to Gaussian integrations. The calculation is a straight­
forward generalization of that followed in [7,8] therefore we shall skip the 
intermediate steps and turn directly to the recursions. We obtain

= ab = Lbz-2 + n (5.3)

indicating that a finite fixed point can be achieved only if

n = О , z = 2. (5.4)

This means that both a, and L^ ^  are marginal parameters. Therefore we
can put a = 1 but we do not fix the value of i/1 ̂ since the limit i/ ^  ~ 0
will be interesting for us.2Furthermore Y (lФ l ,0) can be proved to be a constant after the trans­
formation which plays no role and will not be regarded as a parameter. Thus 
Yq 1(IФ I 'ф/Ь ) defined by (4.9) specifies all the parameters besides a 
and L. Its recursion couples to that of Y1 Q . Starting with (4.10) we find:

Y0,1 (1Ф|2'ф/ьП)) = b2r(b2_dQ + Nc) , (5.5)

Y ^ 0 ( I Ф|2,Ф/Ь(1 ] ) = b4_dv(b2_dQ + Nc) , (5.6)



14

where v and Nc have been defined by (3.12) and (3.9), respectively, further­
more

R = „/L(1) - m J {(q2 + Y' )/S - 1}, 
q

(5.7)

Q = IФ 12 - Nc + m J (1/S - 1/q2}, (5.8)

s = [ (q2 + - 2y ;,0 ]1/2 (5.9)

where the notation
> Ab
/ = К / dq qd-1 (5.10)

has been introduced. It follows from (5.5), (5.6) that Yq  ̂ and Y^ 0 can
approach a finite fixed point expression for b ■* °° only if Q and R tend to
zero in this limit. Then the fixed point expressions Y* ., Y* are de-U f I I /U
termined by

Q* = О R = О , (5.11)

■К- *where Q and R are given by (5.8) and (5.7), respectively with the only 
change that Y^ 1 and Ŷ  Q are to be replaced by Y* 1 and Y* Q . Furthermore 
from (5.6) a necessary condition for the existence of this fixed point is 
found, namely

rc (Nc> = U2,2 = °' (5.12)

i.e. U2 2 must vanish at Tc in accordance with the results of Seciton II.
Note that in the special case of a real L the relations (5.5)-(5.10) 

coincide with the recursions of the usual TDGL model with real order para­
meter in the many-component limit [7,8].

It is easy to deduce from (5.5)— (5.10) the recursions for the parame­
ters U2a 2̂ß defined by (4.7). Here we give as examples the first few of them:

U2,2 = л2°2,2 = b2r(Ib (1)), (5.13)

П ' = A4~dU rU4,2 - л u4,2
b4‘dv (Ib (1l|/2

1 . b1-dmv(Ih (" 1Ib <2);b b
(5.14)

U4,4 S  Л2 dfi' 1
4,4 L (1) 2 m T (3)m .2(1) m Ib U4,2 '

i

%

(5.15)
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*

Ф

>

where Ű' ~, Ul and Ül . are dimensionless parameters, the function v is 2,2 4 f 2 4/4
defined by (3.12), and

Ib (1) = b2_dQ(Nc ,0) + Nc, (5.16)

(2) - г 1, "" J 2 2q (q2 + U - 2)

(3) _ 1>
I ~2 3q (q2 + U2,2)

(5.17)

(5.18)

At Tc , of course, = Nc and U2 2 =
The fixed point values are generated by taking the limit b - °° at T . 

For the above parameters we obtain

4-d
U4,2 - Ш Г  'd

(4-d)2 .
U4,4 2mKd (6-d) '

(5.19)

(5.20)

(5.21)

An important feature of equations (5.5)-(5.10) is that at q> = О for any
finite value of they describe the transformation of the static parame-2ters. Indeed for q> = О the function Yl _ = О and in fact for Yl , ( I ФI ,0)I / CJ U / I
we recover the expression first obtained by Ma in the framework of static 
critical phenomena [4,5].

The limit, however, when i/ 1 ̂ - О must be taken with care. As one can 
see from (5.5)-(5.7) the static parameters of the system are recovered only 
if we take the limit <p - О first and the limit L ̂  ̂ •* О only afterwards.
At the same time the dynamic parameters U0 with ß > 1, generated by theZCt/Zp (1)
RG exhibit singular behaviour: they blow up for L ' ■* 0. (See for example
Ul . given by (5.15).) This reflects a non-analytic behaviour of the model 
4,4 (1)reached for L - 0, i.e. of the Bose gas model. In the next Section we 

discuss also non-local couplings in space and time in order to get more in­
sight into the nature and origin of this singular behaviour.



VI. TRANSFORMATION OF PARAMETERS NON-LOCAL IN SPACE AND TIME

As we have mentioned previously the space and time (or equivalently к 
and ы) dependences of the couplings generated by the RG transformation can 
be investigated only by means of perturbative methods. The perturbation 
evaluation of the multiple integral (4.5) is to be performed in a similar 
way as in the case of the usual TDGL model [8 ]. We do not discuss here the 
technical details but give the recursions for the two simplest к and о de­
pendent couplings, namely for 2 <k,w) and U4 4 (^,0). The results are plau­
sible generalizations of (5.14) and (5.15). We obtain

U4,2 (k' “) =  A4-dU ^ 2 (k,u) =
b4_dv(Ib (1))/2 

1 + b4-dmv(I, *Ml (k,o)
(6 .1)

where 1.^^ is given by (5.12) and

Ib (2)(k,o) = i ,d_d_q 1
A<q<Ab H 712"

L(q2 + U ^ 2) + L((k-3)2 + U^_2)

(2it) (q + 0 *2f2)((k-g)-+D^ 2)

2,2<
-io + L(q2 + 2) + fK(k-g)2 + V'2 )

(6.2)

The variables к and со in (6.1) and (6.2) denote the rescaled wave number and
frequency, respectively. The meaning of the quantities I, ^  and I, ^  can
be given in the language of diagrams as follows: I, ' - b aN and 4 “d (2) D Cb Ib denote the contributions of the Hartree loop and the bubble graph,
respectively, in which the integration over wave-numbers runs in the interval
(Л/b,Л).

The coupling ^(k,o) can be expressed by the formula

u4,4 (k'“) = - § ImUj 2(kfu) (6.3)

representing a fluctuation-dissipation theorem. Thus 2(k,u) determines 
Ul . (k,co) uniquely.' (21In order to calculate 2(k,o>) one must know Ib '(k,w). After per­
forming the integration over the angle variables in (5.2) we can write

Ib (2)(k,o) = I b (S)(k) + I b (D)(k,co), (6.4)

(S )where Ib '(k) represents the contribution of the static bubble diagram (and
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»

#

consequently does not depend on L), while the dynamic part reads

(D) (к , о) = io
>
!
q 2,2

s) q-6 (6.5)

Here the notation (5.10) has been used, Ul, 2 given by (5.12) and f stands
for an infinite series of hypergeometric functions. Explicit expressions are
given in the Appendix. It will play a crucial role in determining the ana-

12)lytic properties of the function 1^ (k,w), that f depends on the frequency
and the kinetic coefficient only through the combination:

s = 2kqL
(1 ) 2  _ 2iw - 2L' ' (q^ + 2) - Lk

( 1) , ,

(6.6)

As far as L is finite s is a small quantity near the origin of the 
k,o plane and as a consequence of it (6.1) can be expanded in a power series 
as

Uj,2 (k,o) = 0^ 2 + С ' 0 (к2/Л2) + 1(io/A2L (1)) + ..., (6.7)

where 2 =  0^ 2(0,0) is given by (5.13) and the dimensionless quantities

d-1
C1,0 ' C0,1 read

Cl „ = 2m(Uj, ,) 2 / Kdq
'1,0 4'2' Í (q2 + U^ 2)3

1 _i£L
d(q + U'f2)

----)dq•  ̂/

and
C ’ = - — U ’L0,1 2U4,4 *

(6 .8)

(6.Э)

Equation (6.9) follows from the fluctuation-dissipation theorem (6.3). Öl ,
~  z f z

and U( . have been determined by (5.12) and (5.14), respectively. Note that 
(2 ) 'L does not appear in (6.7)-(6.9).

In the limit - О s becomes a singular function of к and

lim
T П ) О

-2L 
+ L

(2)
(2) (6 . 10)

whose value at the origin depends on whether к or о goes first to zero. This
causes a similar singularity in U( ~(k.o), namely lim U ’ „(0,o) is in-

4'2 L(1>-o 4,2
creasing as b - <°, while Ul _(k,0) , which is a static quantity (and there-

(1 ) 4 ' Afore independent of L ) approaches a finite expression for b - °». All that 
indicates that the constant part of the four-point vertex can not be defined 
uniquely when l/^ -* О in contrast to the case of a finite (In some
sense this fact is reflected in the singular behaviour we have found in the 
transformation of the parameters being local in space and time: there the 
limit <p •* О and L ̂  ̂ ■* О were not interchangeable.)



A more detailed investigation of 2(k,o) in the limit L ^  - О shows
that we must distinguish between two regions where the properties of this

- 2  (2 ) -1function are entirely different. Region I corresponds to I о IЛ < h kA ,
- 2  (2 ) -1while region II corresponds to I о IЛ > L кл .In contrast to the unusual

features of the transformation in the latter regime, Ul 0(k,o) approaches a
*1 r z 2

finite fixed point in region I. Here it can be expanded in powers of к /Л, 
u/Л L v and (о/Л L 1 )/(к/Л). For the dimensionless coupling 2(k,o>) one 
obtains in region Is

U4,2(k'“> = U4,2 (I) + c*f0 (I)(к2/л2) + (I)(<o/A2L (2))

+ C ’1
2'

(I) i(o/A2L {2) ) Лк/Л) + . . .
(6 .11)

where Öi and C' ^  coincide with the corresponding coefficients of
the case of a finite L v , i.e.

n '  ̂1) = n'U4,2 U4,2' r- (I) = ?■U 1 ,0 1,0 ' (6 .12)

where Ui _ and Cl _ are defined by (5.13) and (6.8) ( respectively, while
cl,
V г \ I л

2'1

C* ^  ̂ = 2m(U' )2i_0 ,i zmiu4j2) i -4 £
(q

:■ (I) = - S(u- )2 Í
-^,1 * 1

b „ d-1
Í ?.1 (qZ + UI „) v

d-2 1
. x 4 ~Z 2

2,2 q q ' ~ 2,2
-Ц:— )dq *+ ui '

Kd-iq
d-2

(q2 + ö 'f2)2
dq .

(6.13)

(6.14)

A novel feature of (6.11) lies in the presence of the third term, a trace of 
the singular behaviour, giving, however, only a small contribution in re­
gion I. Note also that Cl .^  is a real number as it is expected in theU , I
Bose gas model.

The fluctuation-dissipation (6.3) remains valid also in the limit 
- 0, consequently we obtian in the region I:

U4,4 (к,ш> = "(Л2 d/L(2))2(A/k)C'1
- 2 ,1

(6.15)

indicating that the к - О limit of ^(к,0) is singular in accordance with
our previous finding when having treated-the parameters local in space and
time. Then Ui . эк ui .(0,0) turned out to be proportional to 1/l/ 1  ̂ (see 

4,4 4 (1)(5.13)) which was also singular for L - 0.
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All parameters defined by (6.11) have finite fixed point values, for 
example:

r* (!) = r* = (4-d)34 , 0  1,0 2mKdd(6-d) ' (6.16)

~* (I) _ (4-d)3
0,1 8mKd '

8mKd (5-d)

(6.17)

(6.18)

and the deviations from them turn out to be small for large values of b. 
This means that the recursion of the parameters associated to region I can 
be linearized and consequently dynamic scaling is fulfilled in this region.

The result can be interpreted as the RG background of the characteris­
tic features of the explicit solution of the Bose gas model found in[18,19] 
and discussed also at the end of Section III in the present paper.

4
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APPENDIX
EVALUATION OF THE DYNAMIC PART OF THE BUBBLE DIAGRAM

The dynamic part of the bubble diagram is given by

Ib (D) (k,u>) =

= /  iu.[(q2+ui ,)((k-g)2+Ui _) (-ia)+L(q2+Ui -)+E((к-g)2+UI ,)]-1
A<q<Ab 2,2 2'2 2,2 ~ 2,2 J (2n)d

It should be noted that the precise definition of I. ^  involves the re­
striction Л<I к-g I<Ab too. This would lead, however, to unnecessary compli­
cations which are unphysical and are consequences of the sharp cut-off, so 
we disregard it. By means of the identity

d-2. -1J cos1*? sin4' V  (1 + x COSi>) 'dd = 
о

■ {
В ( ^ ,  — -)F(1 ,

- X B ^ ,  5 ^ ) Г (1,±« Si™.,*’),

1 even 

1 odd

where В denotes the .beta function and F stands for the usual hypergeometric 
function,we obtain after integrating over angle variables:

Ib
(D) (k,u)

+ I -ics
2kqL

оО
L

} -i«s F (1 ,1/2,d/2,s2)J --- - -- 2-------  2-- 2-------  +q 2kqL (qZ+U^ 2) (qZ+k^+U^ 2) 

r(^já)r(i) (q2tk2+ U ^ 2)^1(q2+U^_2) ’

21+1 d+21 2 x( 2kq \. F (1 , — 5— , — 5— , s ) — * ---- - s ,
Vq +k +Uj 2

where the notation (5.10) has been used and s has been defined by (6.6).
Г denotes the gamma function. This formula specifies the function f appea­
ring in (6.5).

(1 ) 2(2)If L is finite and к and u are small (k<<A,u<<A L ) we obtain
(6.7) .

In the limiting case of L^1  ̂ - 0 Isl becomes large in region I, there­
fore we have to use the asymptotic expressions of the hypergeometric func­
tions. For the first few terms (6.11) is found.

»

»



21

REFERENCES
11] P.C.Hohenberg and В .I.Halperin, Rev.Mod.Phys. £9, 435 (1977)
[2] H.E.Stanley, Phys.Rev. 176, 718 (1968) 
f 3] F.J.Wegner and A.Houghton, Phys.Rev. A8, 401 (1973)
[4] S.Ma, Rev. Mod. Phys. 4_5, 589 ( 1973)
[5] S.Ma, J.Math.Phys. 1_5, 1 866 (1974)
[6 ] S.Ma, Phys.Rev. A10, 1818 (1974)
I 7] P.Szépfalusy and T.Tél, J.Phys. A 1_2, 21 41 ( 1 979)
L 8 ] P.Szépfalusy and T.Tél, Z.Physik В 36, 343 (1980)
[9] P.Szépfalusy and T.Tél, Z.Physik В 39̂ , 249 (1980)

[10 ] С. De Dominicis, E.Brézin and J .Zinn-Justin, Phys.Rev. B1 2, 4945 (1975) 
L11 ] B.I.Halperin, P.C.Hohenberg and S.Ma, Phys.Rev. B10, 1 39 (1974)
[12] R.Bausch and B.I.Halperin, Phys.Rev. B18, 190 (1978)
[13] B.I.Halperin, P.C.Hohenberg and E.D.Siggia, Phys.Rev. B1 3, 1299 (1975)
[14] B.I.Halperin, Phys.Rev. В1_1_, 1 78 (1975)
[15] S.Ma and L.Senbetu, Phys.Rev. A10, 2401 (1974)
[16] J.Sak, Phys.Rev. ЕГМ, 2932 (1976)
[17] G.S.Grest, Phys.Rev. ЕИ5, 2753 (1977)
[18] P.Szépfalusy and I.Kondor, Ann. of Phys. (N.Y.) 82, 1 (1972)
[19] P.Szépfalusy and I.Kondor, in Proceedings of the International School 

of Physics "Enrico Fermi", Varenna, LIX Course, eds. Müller К.A., 
Rigamonti A., pp. 806-818, North-Holland, 1976

[20] T.Tél, Diploma work (Eötvös University), 1975 (in Hungarian)
[21] P.C.Martin, E.D.Siggia and H.A.Rose, Phys.Rev. A8, 423 (1973)
[22] C. De Dominicis, J.Physique C 247 (1976)
[23] H.K.Janssen, Z.Physik В 23, 377 (1976)
[24] R.Bausch, H.K.Janssen and H.Wagner, Z.Physik В 2Л, 1 1 3 (1976)





t

A



Kiadja a Központi Fizikai Kutató Intézet 
Felelős kiadó: Kroó Norbert 
Szakmai lektor: Menyhárd Nóra 
Nyelvi lektor: Menyhárd Nóra 
Példányszám: 520 Törzsszám: 81-480 
Készült a KFKI sokszorosító üzemében 
Felelős vezető: Nagy Károly 
Budapest, 1981. augusztus hó


