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ABSTRACT

A rigorous mathematical extension of the buckling method is provided.
The solution of the neutron transport equation is given as a power series of
the buckling. The leading term of the solution has the well-known product
form: it is the product of two functions, one determined by cell calculation
/microflux/, the other by the solution of a diffusion equation /macroflux/.
The microflux occurring in the second and third member is derived from a cell
problem with heterogeneous boundary condition. The macroflux of the second
and third member is the gradient and Laplacian of the macroflux occurring in
the leading term. The coefficients of the diffusion equation for the macro-
flux are determined by the cross-sections of the transport equation averaged
over the cell in the same manner as is given with asymptotic analysis.

AHHOTALNA

B pa6oTe onucaH MeTog 0606lUeHMs nannacuaHa. PeleHue ypaBHeHWsl nepeHoca
JaeTcs nanfacvaHom B BuAe CTeneHHoro psiga. [lepBbiM 4/leHOM 3TOro psifa sBnAsieTcs
yacTo BCTpeyawlasics Npu BbYUCAEHUM HEBO3MYLEHHLIX peweToK (opmyna BurHepa-3eiiua
MUKpPOMOTOKN onpefensioTca M3 3afgaym CO6CTBEHHOro 3HaudyeHusl, OTHocsllerocss K siyeiike
MakpornoToKu onpeaensioTca M3 efMHCTBEHHONO ufieHa KakK peleHue Aupiy3HOro ypaBHe-
HUSE C FOMOTFEeHHU3MPOBaHHLIMU uYsieHamuM. Cnoco6 romMoreHusauum COOTBETCTBYET MeToay
acyMNTOTUYECKOro aHa/msa.

KIVONAT

A dolgozat a buckling médszer altalanositasat adja. A transzport egyenlet
megoldasat a buckling hatvanysoraként allitja el6. E sor els§ tagja a nem per-
turbalt réacsok szamitasaban gyakran felbukkané Wigner-Seitz formula. A mikro-
fluxusok cellara vonatkoz6 sajatérték feladatbdl hatarozhatok meg. A makro-
fluxusok egyetlen tagbd6l hatarozhaték meg egy homogenizalt egyutthatokkal fel-
irt diffuzids egyenlet megoldasaként. A homogenizalas modja megegyezik az
aszimptotikus analizis altal megadott médszerrel.



And here, according to Trout, was the reason human
beings could not reject ideas Dbecause they were bad;
‘Ideas on Earth were badges of friendship or enmity.
Their content did not matter. Friends agreed with

friends, in order to express friendliness. Enemies
disagreed with enemies, in order to express enmity.
K. VONNEGUT

1. INTRODUCTION

From the earliest days of reactor physics, difficulties in
providing a neutron physical description for a complex power re-
actor were expected. What is really astonishing is that possible
ways of overcoming these difficulties were also outlined™". It
was proposed that the problem be separated into two and that the
neutron flux be expressed as a product of two functions :

- the first giving a detailed picture of energy but a rough

spatial description

- the second providing a fine description in space but a

coarse picture of energy.

Today the best programs compete for the fourth and fifth
digit 1in and a few tenths of a percent in power distribu-
tionz- For this reason there is abounding interest iIn knowing
how well the great old recipe works . lts most common modern form
is known as the buckling method ™ The main point iIs the re-
placing of the transport equation by a diffusion equation that
contains coefficients depending on the cross sections in the

transport equation averaged over a cell. So far, no satisfactory



mathematical justification for this approximation has been pub-
lished. Although the validity of the approximation iIs accepted,
the nearly a dozen prescriptions for the coefficients in the
diffusion equation have shown the lack of a firm theoretical
foundation. The derivation of the diffusion coefficient involves
hypothesized relationships between various quantities averaged
over a cell. The obtained diffusion coefficients have sometimes

been nonphysical iIn one sense or another.

In this paper the buckling method is derived in a mathemati-
cally rigorous way. The method is based strictly on the analysis
of the neutron transport equation and on the symmetry properties
of the core. The solution is given as a power series of the
buckling. The Tfirst three members iIn the series are given expli-
citly. The first member is the product of two functions: the
spatially periodic microflux is determined by a cell eigenprob-
lem; the other term, the macroflux, by a diffusion equation
whose coefficients depend on the result of cell calculations.
The second member is the product of the macroflux gradient and
a new microflux determined by a cell problem /not eigenproblem/
with §nhomogeneous boundary conditions. The boundary condition
is given by the cell eigenproblem®s solution. The third member
is the product of the Laplacian of the macroflux and a micro-
flux that is determined by the solutions of the previous cell
problems. The eigenvalue ke” 1is expressed also as a power

series of the buckling. It is shown that this power series may



not contain odd powers of the buckling components provided that
the cell is symmetric. The zeroth and second order coefficient
of this series can be expressed by the microfunctions and cross
sections. Finally the coefficients of the diffusion equation
are expressed by the microfunctions and by the coefficients in

the transport equation.

Our method makes use of the trivial analogy between the
sturcture of a reactor core and that of a solid material. In
the case of the latter the Schrédinger equation is considered”.
As both the neutron transport equation and the Schrédinger equ-
ation are eigenvalue problems they are closely related. TE is,
however, a boundary value problem where boundary conditions have
a vital role. In this paper only such boundary conditions are
considered that can be fulfilled using "buckling constraint"12
The similarities of the two problems are summarized iIn Table 1.
Making use of this remarkable similarity it will be shown in the
following pages that several theorems /viz. Theorems 1,2,3,4/,
valid for the Schrodinger equation”™ hold also for the TE not-

withstanding that here only the TE is investigated. The theorems

for the SE can be found in Ref.11.



2. THE PROBLEM TO BE SOLVED

The scope of our investigation is a core in which fuel
pins and absorber rods are arranged in a regular way as for
example in the simple core of Fig.l. We are looking for the

neutron distribution in the core governed by the TE:

where the source 1i1s composed of downscatter and fission and
is given by

«X3

Uir o ur

where the symbols need no explanation. Equation /1/ is often

expressed as an eigenvalue problem. If the cross-sections-like
A

operations are contracted into one X operation as 1Is custo-

marylz, we have

(-ay vE(E,en<*)) 44r.=_.*) = o0

where
tit,e,4) =2 U £) + 11 2,(r, £->8 ,«fum&”)
o ur
+ r/r,e) .
UT - lufc

0 (Gt



The boundary condition fixes the entering neutron density on

the outer boundary of the core. Let R denote a point on the

boundary/R € 1VI1 , then

where n is the outward normal to the boundary of the core, T

is some given fTunction.



3. SYMMETRIES AND THEIR CONSEQUENCES

The fundamental problem In reactor physics is the follow-
ing: given the TE of the core, fTind its highest eigenvalue and

eigenfunction with given boundary conditions.

The neutron distribution in a finite core can be calculated
by extending the core to infinity and finding the neutron dist-
ribution iIn this iInfinite systemlg. Most of the cores show note-
worthy symmetry properties: they contain some symmetry planes

14- The core ex-

or they have some rotational symmetry or both
tended to infinity /in brief the infinite core/ possesses not
only these kinds of symmetries but translational symmetry as
well. Translational symmetry means that there are some vectors -
the so called lattice vectors - shifting the infinite core into
itself. The neutron density, 4 , iInherits these symmetry pro-
perties to some extent as will be shown below. The extension of
the core to infinity is carried out by its periodic repetition

thus the cross sections iIn the TE are extended in the following

way :
/5/

where TL is any cross section in /1/ and a®, a" and a" are the
so called elementary translations joining the fuel rods iIn
neighbouring cells; n®, M2 and n™ are integer. A common hexa-
gonal cell is shown in Fig.2. A simple symmetric core made up

from the cells of Fig.2. is shown in Fig.l.



1. Definition: A symmetry transformation with respect to the
TE is a coordinate transformation such that the
form of the TE is the same iIn the old and the

new coordinate system.

Example: It is easy to see that JI1V is invariant with res-
pect to rotations and reflections thus the symmetry operations
are determined mostly by the space dependence of the cross sec-
tions in Eq./1/. The core of Fig.l. has the following symmet-
ries: rotations by n 4r/3, n=0,1,2,3,4,5 about the z axis and
reflections through 6 planes denoted by S*,...,Sg in Fig.-l1. Al-
though we do not intend to deal with cells or cores without
symmetries the considerations presented here are valid for most
of the PWR, BWR, LMFBR and HTR reactor types14

Symmetry operations are denoted by B and P stands for the
matrix of this transformation, that is,

r-=Pr
where r i1s the coordinate in the old, r" in the new coordinate
system. A function is transformed according to the relation
Pf/r/ S f/P-1r/

First the infinite core solution is considered. Assume that a
solution 4 of the TE is given. This solution is not necessa-
rily iInvariant with respect to the symmetries of the TE. If
this is the case new solutions can be obtained from " as is

shown below.



Theorem 1. If P is a symmetry of the TE and is a solution
of the TE then pVY is also a solution of the TE.

Proof: Apply P to Eq./3/: PE tE)tj ™ VthUrV+i)?*
n .

and P is a symmetry thus P + + £ and we have
\ A
JIv4-1)) P4 =0 as was stated. Q.E.D.

It follows from Theorem 1. that the infinite core solution has
translational invariance. Let %:rbe a translation by a lattice
vector 1. According to Theorem 1. the operation *_n com-
mutes with S . Thus the eigenfunctions of (JI.V U g ] are eigen-
functions of the translation operation too. The eigenproblem for

A
is expressed as

Tr*=0C, =tin
If 1= ]~+ 12 then
tU+L)> t U + +«,)= cu -Yilr*-Y) = CE,"Cn,-t(s:).

Thus the eigenvalues of the translation are related as C#=C,*C.
The translation may be repeated any integer times and the solu-
tion remains finite only if |Cj] =1 Choosing

«SL
ci - 7

where B i1s a real, so far undefined , vector we have the follow-

ing result:

Theorem 2. The operator of Eq./3/ commutes with the translation
operation pA so there exists a common eigenfunction
system. This system consists of Bloch functions cha-

racterized by

ib 1
e« "Ne (£) /6/



For our purposes the following representation of the Bloch

function 1is useful:
CBr
-UBQ) /4

where n/r/=ci, /r+1/ if 1 is a lattice vector.

Several authors ~ have assumed that the source in Eq./1/
has a Bloch form. It is an interesting fact that the solution
of the SE has been sought in Bloch from since the 50"-s while
the existence of such a solution was only assumed but not veri-

fied for the TE.

Before making the core finite let us consider the k~"/B/
and Ug/r/ functions. Substituting Eq./7/ into Eq./3/ we have:
Theorem 3. The ul3/r/ fTunction and the eigenvalue k""/B/ are

obtained from the following eigenproblem:
GLV+ZU~4k) UjU,S-a) = b¥CIC,EyT Y34

The boundary condition for this problem is that u,/r/ must be
periodic in r. There is an infinite number of k™" values with
which a nontrivial solution exists. For calculations the largest
eigenvalue 1iIs of outstanding importance™": from now on only the
largest eigenvalue is condisered. The solution for the finite
core is to be a combination of infinite core solution31% i.e.

of the Bloch functions. It is advantageous to select those iIn-

finite core solutions which belong to the same eigenvalue.
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Theorem 4. The inverse function of the eigenvalue ke”™ in the
TE /3/ as a function of B is not a single valued
function. A given Kk ~ value belongs to those B
vectors which can be transformed into each other by
one of the symmetries of the TE.
Proof: Apply a symmetry of the TE on both sides of Eq./8/. The
operator on the LHS is invariant, the only change is that B-*B-
and r->r". Thus Eq./8/ has the same form both in /B";r*/ and
/B;r/. Remembering that ke~=ke~"/B/, it is possible only if
keff"®"=keff"S""-
Q.E.D.
Thus the finite core solution is obtained as a linear combina-
tion of those Bloch functions which belong to the same vectors
determined by a constant k ~ value. Let us denote the set of

admissible B vectors by _R then the solution is given by

={vl]) - 4B 79/

R
The W/B/ function has to be chosen so that the boundary conditi-

on, Eq./4/, i1s met on the boundary of the finite core. To get
rid of the transport boundary condition it is usual to assume

15 as the sum of a tran-

that the neutron density can be taken
sient member decaying rapidly from the boundary of the core and
an asymptotic member which 1is considerably greater than the

transient almost everywhere:

'‘HC|C, 4-) = 4V (c,e,n) + SV U.e.-sJ
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In this case the asymptotic member is a good approximation for
most of the cells and it obeys some nicer boundary conditions,

e.g.it vanishes on the boundary:

4) = o ec w
We shall return to the boundary condition in the next section.
It is obvious that Eq./9/ gives a good approximation for the
asymptotic member as it was built from infinite core solutions.
Let us again emphasize that the set of admissible B vectors in
Eq./9/ was determined by a cell eigenvalue problem, thus any

B G IR is a possible material buckling.
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4. APPROXIMATION FOR LARGE CORES

The parameter B in Eq./9/ has to be such that the boundary
condition should be met, thus the admissible B vectors are
determined from geometrical considerations. Each B is a possible
geometrical buckling. A core is critical if the material buck-
lings and geometrical bucklings are the same. It can be seen
that B=0 corresponds to an infinite core. Practice has proved
that B<<1l is a good approximation for large reactors. This app-
roximation means that a finite core can be considered as an iIn-
finite core and finiteness may be taken iInto consideration as a

12'15. This approximation is formulated by taking

perturbation
into account the B dependence as a power series. Let us begin

with According to Theorem 4. it may be written as

The expansion of the ufR/r/ function /r=(xx,x2,x3)/ 1is
3

UoUC)- tB. U4U) +2 u*")  +0Ne) ‘1111

where only the space variable is written explicitly. If we
substitute Eq./10/ and Eq./11/ into Eq./8/ and compare the co-

efficients of B powers, the following is obtained:

112a/

(=4V+£,Uo0)) nnm.Ar.c.n) /12b/
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[&4Y4 + T OUo))wzilr,e,4)="¢€ud(c,Ela) +" /12c/
L« (,2,3
where the X cross section are written as
EU,e,”) =I1(r,e/0) + 1Sr,e) z ~ *0tf) /13/
1 i™M
it and
+j]rstr,"s,#4")- _uMe”’
) 2.nm,E,U)= 2 U, f)
oLT
/14a/
/14b/

The boundary conditions belonging to Eq./12/ are determined from
the symmetry properties of the functions , 1=0,1,2, and from
the fact that each is periodic. Applying the symmetry opera-
tions of the TE to Eq./12/ we obtain the following for a cylind-

rical cell /vectors have only a radial component/:

MIfrc,*)«* UO(,L)gf ™) /15a/
U<( « ~4 Um g,t ) /15b/
uz21s& *= lib 1P| "VJ /15c/
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where £c denotes the boundary of the cell and is the angle
variable in the cylindrical coordinate system. Equation /l15a/
is the usually used white boundary condition, Eq./15b/ pres-
cribes a cross-flow through the cell and Eq. /15c/ leads again
to the white boundary conditionfi . From Eq.-/12a/ and Eq./15a/
the uQ function and the £ Q eigenvalue are to be determined.

Equations /12b/ and /15b/ do not represent an eigenvalue problem.

The source in Eq./12a/ is known so it can be solved for u~(r,E,/1. )

and the solution shows how a cell 'responds"™ to a cross Tlow.
Equations /12c/ and /15c/ again present an eigenvalue problem.

The direction-dependent eigenvalu%% E,.,i=1,2,3 2§n be determin-

21
ed from the solvability condition . Denote by UQ/r,E, -Nl. / the

solution belonging to the adjoint of Eq./12a/. The Fredholm
alternative states that Eq./12c/ has a unique solution only if

the RHS of Eqg./12c/ 1is orthogonal to u™/r,E, .£L /-
-©

iU cMr,e 4) *
ol

*

Introducing the (f,g/ notation for the integral

(hi)=2J J 4(r.e<e)-

we obtain for the A 21 ei19enva”™ues

Erc = (Ue ;Aj UtfJ 1=1,2,3 /17/
(u.”74 u°)
i.e. the second eigenvalue set 21" 3 can be obtained
from the averaged fission cross section and from the func-

tions, characterizing the behaviour of the cell in a flux gra-

*

Here vc is the volume of a cell.
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dient. As to the solution of the eigenproblem set Eqs./12/-/15/,
it seems that three equations have to be solved. Below, it

will be shown that this is not the case, u® and u2” can be ob-
tained from two solutions of Eq./12a/,,

Let us assume that ug has been determined. A particular solution
to Eq./12b/ is r-uQ/r,E, SL / and let us denote p as a solution
of the homogeneous part of Eq./12b/; or, what is the same, of

Eq-/12a/. Then

MEITEI-G:)« @[> /18/
A solution of Eq./12c/ is

n,- 1rje,n) = rl < Uo(r.E"N) + + /719/

as can be seen by substituting Eq./19/ into Eq./12c/. The func-

tion q/r,E,4/ satisfies the equation:

(-2.V tl1 . W) <\U,c,-a)= Iz 720/

This equation can be obtained by differentiating Eq./12a/ with

respect to L£ o /see Ref. 17/, therefore

thus the u2;. function can be expressed as
Uz2iliC,-a)=o.r. *cudtUic»E™)+* u /22/

According to Eqs./22/ and /18/ the solutions of the eigenprob-
lem set (Eqgs ./12/-/15/) are built up from uq /r,E,jZ. / and

£/r,E,-n_ /. The former is determined from the eigenproblem /12a/
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/15a/, the latter is a solution of Eq./12a/ so that Eq./15b/

should be fulfilled for u” that fixes an inhomogeneous boundary

condition for £. In cylindrical geometry

/23/

Now that we have determined the solutions of the cell prob-
lems we may turn back to the expression of the neutron density,
Eq./9/. Substituting Eq./11/ into Eq./9/ we have the following

expression for the solution of the TE over the whole core:

124/

where the macroflux is given by

/25/

According to Eq./24/ the flux can be given as a power series
of B. The first member in this series is the well known Wigner-
Seitz formula. Since the macroflux has been determined from the
translational symmetry of the core the macroflux has a diffusion
character: it does not depend on -12. . Actually it can be seen that
Theorem 5. The macroflux in the power series of the neutron
density satisfies a one-group diffusion equation.
This fact is independent from the energy dependence of

the TE.
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We have still to determine W/B/ in Eq./25/. For a core that 1is

invariant with respect to the symmetries of a cell, W/B/=I.

For a more complicated core the determination of W/B/ is a rat-
her complicated problem. These difficulties are often overcome

by the numerical solution of a diffusion equation the solution

of which i1s the macroflux.

All in all the rigorous foundation of the buckling method
has resulted in expressing the neutron density as a power series
of B. The derivation given here includes the former resultsS'lo'12
obtained by assuming a Bloch type source in Eq./1/. So far, the
only exact method, viz.asymptotic analysisl5, has given only
the fTirst member i1n Eq.-/24/. Our analysis gives not only two
further members iIn the power series of the neutron density but
Eqs./22/ and /18/ give the solution of the first and second
order cell problem by two solutions of the zeroth order cell
problem: UQ/r,E,.A / is a solution of a cell eigenproblem,
E/E,EQ / is a solution of a cell problem with an inhomogeneous
boundary conditions (see Eq-/23/). The derivation presented here
is applicable to 2D and 3D problems whereas most of the deriva-

8.10.12 are confined to one-group slabproblems. We have

tions
used only one assumption: the symmetry of the cell and the core.
Most of the cores and cells applied in power plants fulfil this

assumption*

*The authors of the cited papers gave only the first or the first

and second members in /24/.
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5. HOMOGENIZATION

In the previous section a formula was obtained for the
neutron density iIn a symmetric core. The microfunctions occurr-
ing in Eq./24/ can be determined from cell calculations. The
macroflux (cf.Eq./25/) is determined from the buckling cons-
traint boundary condition. However simple the boundary condition
may be, an analytic expression relating W(B) in Eq./25/ to the
zig-zag like boundary of the core is out of the question even
for a core of high symmetry. The so far only way is to find a
diffusion equation with constant coefficients in a cell and to
solve it with the help of some numerical techniques. Several
authors have set out to create the homogenized coefficients with
ad hoc assumptions®™* **°. Hypothesizing that some basic property

- . - - - 3.8.9
1S preserved in a heterogeneous medium IS a common assumption

Because of the derivation which is based on the investi-
gation of the TE only we arrived at an explicit form of the
macroflux. According to Theorem 5. there is a diffusion equation
the solution of which s just the macroflux. Let us write this

diffusion equation as

r

/26/

where the coefficients are so far unknown, the corresponding

boundary condition is the buckling constraint:
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<(.«:i)= ° A4 e 9V

The eigenvalue in Eg./26/ can be expressed by the cross sec-

tions as

/28/

When solving the cell problems /12/ we found that the eigen-
value 1s determined by cell properties as given by Eq./17/.
is the multiplication factor in the infinite core and it can be

obtained from the cell balance with white boundary condition:

ic. - /29/

IT we compare Eq./28/ with Eq./10/ a relationship is obtained
between the sought homogenized coefficients of Eq./26/ and the

averages in Egs./29/ and /17/. The choice of

= (uj T*Uo) /7 (Uo }Uo) /30a/
= (UT in77U0)/Z (U~ ju.) /3067
5. - 1Uo ) -fiC /00 ; L - /30c/

is iIn agreement with Eqs./29/, /17/ and /28/. Equation /30/

shows that the cross-section-like quantities in the TE can be
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averaged by the neutron density of the infinite core but the
diffusion constant D®, as it has no counterpart in the TE, is
determined through the u” function. In other words the diffu-
sion coefficient is determined from the response of the cell to
a cross flow. The homogenization method /30/ is the same one as
obtained with asymptotic analysisl5. It is not our goal to

compare the homogenization methods here.
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6. CONCLUSIONS

We have shown that the buckling method leads to a solution
of the energy dependent, multidimensional TE. The solution is
given as a power series of the buckling, see Eq./24/. The Tirst
members in this series are formed from microfluxes and a macro-
flux. The microfluxes are: the solution of a cell eigenproblem
uQ with white boundary condition, see Eqgs./12a/ and /15a/, and
the vector solution p of the same equation with known eigenvalue
but iInhomogeneous boundary condition /23/. The microfluxes of the

second and third terms are available through Eqs./18/ and /22/.

The solution of the TE for a finite core is sought as a li-
near combination of the infinite core solution. It is shown that
the infinite core solutions are Bloch functions. The macroflux
is expressed by an integral, see Eq./24/. This macroflux always
satisfies a one-group diffusion equation. The coefficients in
this equation are given from the uQ and u™ microfunctions and

the space dependent cross sections iIn the TE, see EQq./28/.

The result derived here partly confirm asymptotic analysis
(the cel] eigenvalue problems, the leading term in Eq./24/ are
the same), partly generalize those results (the linear and quad-
ratic terms are also given in /24/). It is reassuring that such
different methods as asymptotic analysis and the buckling method

lead to the same conclusions.
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Schrodinger Equation Transport Equation
- w w

Equation VI T-FH {4*~2@W]t=0
Properties A
of the V-potential J] -~ cross section
medium
Eigen- _
value E - energy Kefr
Eigen- - .
function 4~ - wave function Zfl neutron density
Auxiliary K - wave vector B - bucklin
parameter 9

Table 1. Corresponding quantities of the Schrddinger

Equation /SE/ and the Transport Equation /TE/.
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Fig. L A simple symmetric core with hexagonal celts .

Fig. 2. A symmetric hexagonal cell.
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