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ABSTRACT
Mobility of charge carriers in certain liquid systems is controlled by 

temporal fluctuations in local conductivity. Fast transport proceeds along 
high mobility regions similarly to traditional percolation with the differ­
ence that these regions form and fade away with fluctuations. By making use 
of the idea of waiting time distribution of continuous time random walk, 
formulae for relative mobility as a function of the expectation value of 
proportion of high mobility regions are suggested. The results compare rea­
sonably well with experimental data. Under the experimental conditions given 
quasi-percolation theory and the effective medium theory of traditional perco­
lation do not differ too much numerically.

For site percolation threshold in non-fluctuating systems the expression 
[(e-1)/ez]l/2 is suggested where e is the base of natural logarithm and z is 
the coordination number.

АННОТАЦИЯ
Подвижность носителей заряда в некоторых жидких системах контролируется 

временными флуктуациями местной проводимости. Быстрый транспорт протекает по 
областям высокой подвижности, как и в обычной перколяции, разница состоит 
только в том, что эти области образуются и распадают в итоге флуктуаций. Ис­
пользуя идею распределения времени ожидания из теории "continuous time random 
walk" /непрерывного блуждания/ предложены формулы для описания относительной 
подвижности в зависимости от ожидаемого значения доли областей высокой под­
вижности. Результаты расчета удовлетворительно совпадают с экспериментальными 
данными. В данных экспериментальных условиях цифровые величины квази-перколя- 
ции и теории эффективной среды обычной перколяции не отличаются значительно.

Предлагается выражение для порогового значения перколяции в нефлуктуиру­
ющих системах:t(е-1)/ez]1/2, где е - основа натурального логарифма, a z -  ко­
ординационное число.

KIVONAT
A töltéshordozók mozgékonyságát egyes folyékony rendszerekben a lokális 

vezetőképességben fellépő időbeli fluktuációk szabják meg. Gyors transzport 
csak nagy mozgékonyságot megengedő tartományok mentén játszódhatik le, hason­
latosan a hagyományos perkolációhoz, azzal a különbséggel, hogy ezek a tar­
tományok a rendszer fluktuációinak hatására állandóan keletkeznek és eltűnnek. 
Felhasználva a "continuous time random walk" /folytonos idejű bolyongás/ el­
méletének egy fogalmát, a várakozási idő eloszlását, meghatároztuk, hogy ho­
gyan függ a relativ mozgékonyság a nagy mozgékonyságu tartományok részarányá­
nak várható értékétől. A számított eredmények meglehetősen jól egyeznek a kí­
sérleti adatokkal. Az alkalmazott kísérleti körülmények között kvázi-perkolá- 
ció és a hagyományos perkoláció effektiv közeg elmélete numerikusán csak ke­
véssé különböznek egymástól.

Nem fluktuáló rendszerekben végbemenő hely- perkoláció küszöbértékére az 
[ (e-l)/ez]l/2 kifejezést javasol juk, ahol e a természetes logaritmus alapszáma, 
z pedig a koordinációs szám.



INTRODUCTION
Percolation theory has been developed for the description of transport 

processes in spatially disordered systems like random networks, amorphous 
solids or composite materials /for reviews see Refs. 1-5/. In order to 
visualize the basic problem let us imagine a network of ohmic resistors with 
randomly distributed missing elements or a random mixture of conducting and 
isulating balls. Current can flow across such a system only if the proportion 
of conducting elements is high enough to form at least one contiguous channel 
along which the charge carriers can pervade the entire /infinitely large/ 
system. The most obvious common feature of all such models is the existence 
of a non-zero lower limit of the proportion of conducting elements below which 
no current can flow. This limit is called the percolation threshold.

Percolation theory deals with spatial fluctuations only, all the proper­
ties and parameters being regarded as independent of time. Hence it was an 
important intuitive step forward that was made by Kestner and Jortner6 who 
applied one of the description of percolation, effective medium theory7, to 
charge transport in hydrocarbon liquids. Here, conducting and insulating 
regions were thought to form due to thermodynamic fluctuations, this meaning 
that a conducting region can turn into an unsulating one and vice versa. Thus 
local conductivity changes with time at any given site.

Although having proposed an alternative description of charge mobility
Оin liquid hydrocarbons we made use of these ideas in the understanding of9electron and hole mobility in certain liquid mixtures . In these mixtures 

the charge carriers are in a high-mobility state only if they are surrounded 
exclusively by the molecules of one of the components or, in brief, if they 
are in a pure subsystem. Examples of such mixtures will be given in a later 
section.

Whatever the chemical nature of the mixture, pure conducting subsystems
are brought about by temporal fluctuations of concentration. While our attempt
to describe mobility as a function of concentration by making use of effec-9tive medium theory seemed to be successful for a number of mixtures the 
conceptual problem of how to reconcile percolation with temporal fluctuations 
remained, though tacitly, unresolved.
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The aim of the present paper is to give a simple description of charge 
carrier motion governed by temporal fluctuations in conductivity. To this 
end some notions of continuous time random walk theory"^0 "*"2 will be made ' 
use of. Whereas classical random walk is characterized by a constant waiting 
time between two subsequent jumps this theory applies a continuous distribu­
tion of waiting times the function Y(t)dt being the probability of a jump 
taking place between t and t+dt.

A two-state model will be adopted, i.e. a fluctuating subsystem will be 
thought to be either in the conducting or in the insulating state. The results 
will be compared both with experimental data and with effective medium theory. 
By developing an analogy between the present treatment and percolation in 
non-fluctuating systems an expression for percolation threshold will be 
proposed.

MOBI LIT Y IN FLUCTUA TI NG SYSTEMS
Let the macroscopic system be divided into subsystems. Perennial fluctua­

tions change their properties in such a manner that they are either in the 
conducting or in the insulating state. A charge carrier can progress if both 
the subsystem in which it resides and one of its neighbors are conducting.
If either or both of the subsystems in question are insulating the carrier is 
trapped. The existence of more than two adjacent subsystems is disregarded.

Let the average waiting time in a conducting subsystem be denoted by т . 
If the system consists exclusively of conducting subsystems and the diffu- 
sivity has no dispersion the waiting time distribution is exponential,

V t )  = TÖ’L exp(-t/TQ). (1)

In this case Einstein's expression holds for any frequency"*-0,

D0 = L2/2to, (2)

where L is the mean displacement for a single jump.
On the average a charge carrier, moving in a system of fluctuating 

conductivity, is imagined to make an attempt to leave the subsystem in which 
it resides at each tq instant. Let W denote the probability of the first 
attempt to be successful. The probability of a jump taking place between t 
and t+TQ is given by

t/ToY(t) = (1—W) °W. (3)

The quotient t/т equals the average number of unseccessful attempts /cf.13 °Chandrasekhar /. The series Y(t) can be replaced by the continuous function
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У (t) = т 1 exp (-t/т) , (4)

where т is defined as

T = -TQ/ln(l-W). (5)

Here Y(t) is a waiting time distribution function which, if integrated 
between t and t+т , renders V(t) as given by Eq.(3).

The integration of Vit) between О and tq should yield the probability 
of the first jump being successful. Integrating Y(t) one indeed finds

To
/ 44t) dt = W, (6)
о

and
Tо
f У (t)dt = (e-l)/e = n * 0.6321. (7)
о

Thus, n is the probability of a jump taking place between О and tq in a 
system which consists of conducting subsystems only.

In view of 4* (t) being a simple exponential the diffusion constant in a 
fluctuating system is given by Einstein's expression for any frequency,

D = L2/2t . (8)

The task is now to determine W through the properties of the system.
A limiting value can immediately be established. Let the expectation value 
of volume fraction of conducting subsystems be denoted by C /for the sake 
of brevity C will be called conducting concentration from here on./
The relationship

W(C = 1) = n (9)

must hold in view of Eqs.(6) and (7) whatever the functional form of W(C).
Two different cases will be discussed: /а/ Unlimited fluctuation: 

the presence of a charge carrier does not influence the fluctuation of the 
subsystem by which it is withheld. This is the case when interaction between 
charge carrier and subsystem is weak. /Ь/ Limited fluctuation: a subsystem 
which has obtained a carrier by having become conducting cannot turn again 
into the unsulating state. This happens if the interaction between charge 
carrier and environment is strong enough to stabilize the conducting state.
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U N L I M I T E D  FLUCTUATION
The charge carrier on the average investigates the state of the subsystem 

at intervals x . Let Wcc and Wi;L denote the respective probabilities of find­
ing a conducting or an insulating subsystem in the same state by two subse­
quent investigations whereas V?ci and Wic denote the respective probabilities 
of a conducting subsystem to be found insulating or an insulating to be found 
conducting from one attempt to the next.

The charge carrier which landed in a subsystem at moment t can move on 
at the first attempt if both the subsystem in which it resides and its neigh­
bour are conducting at t+x . With unlimited fluctuation present this can 
happen in four different ways: /i/ both subsystems are conducting at t and 
t+xQ; /ii/ the first one is conducting at t and t+xQ while the second one 
is insulating at t and conducting at t+xQ; /iii/ the first one is insulating 
at t and conducting at t+xQ while the second one is conducting at t and 
t+xQ; /IV/ both are insulating at t and conducting at t+x .

Hence W can be written as

w  = w uf = n [ c V c + 2 C ( 1 - C ) w icw cc + (1-C )2w j c ] f (lO)

where the subscript uf refers to the mode of fluctuation. This expression 
also caxplies with Eq. (9) .

Assuming an equilibrium to prevail the formation and disappearance 
probability of a certain state must be equal, thus the equation

c w ci = (l-C)Wic (11)

must hold. Since only two states are available a simple relationship prevails:

Wci + Wcc = Wic + Wii = 1. (12)

/For Eqs.(11) and (12) cf. Ref. 13./
By combining Eqs.(10-12) one finds

W = nC2. (13)

Inserting Eq.(13) into Eq.(5) one obtains the concentration dependent time- 
-constant of the waiting time distribution function as

Tuf = " To/ln(1_nc2)* (14)

and Eqs.(2), (6) and (14) yield

Duf/Do = »uf^o = - ln(l-nc2). (15)
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Here iJuf and yo denote charge carrier mobilities at conducting concentrations 
C and 1, respectively. The proportionality between D and у is assumed to 
prevail. The function Eq.(15) is plotted in Fig. 1.

-I----- ■__I________ I________ I_______
•2 4 -6 8 C

Fig. 1. Relative mobility as a function of C for unlimited /lower 
curve/ and limited /upper curve/ fluctuations, Eqe.(lS) 
and (17), respectively. Dotted line: effective medium me­
dium theory. For all cases, r = 0.

Until now it was assumed that уц  ̂= О if С = О, that is, if the con­
ducting concentration is zero no current can flow. If this is not the case 
and a non-zero mobility, ym , can be observed also across insulating subsystems, 
Eq,(15) must be modified to become

yuf/no = 1п(1-лС2) + r (15a)

where r = ym/yQ .

LIMITED FLUCTUA TI ON
The subsystem in which the charge carrier landed at moment t is in the 

conducting state with certainty at t+TQ . Thus W depends only on the probabil­
ity of the neighboring subsystem being conducting at t+TQ . By recalling 
Eqs.(9), (11) and (12) this can be expressed as

W = W lf = n[CWcc + (1~C)Wic] = nC' (16)



where the subscript If refers to limited fluctuation. Combining Eqs.(2),
(5) , (8) , and (16) one finds

Dlf/Do = Pif/P0 = -ln(1_r'c) (17)

if p = О at C = О and - similarly to Eq.(15a) - if pm ^ О

Plf/PQ = -d-r) ln(l-nC) + r. (17a)

The graph of Eq.(17) is given in Fig. 1.

COMPARISON WITH EX PERIMENTS AN D WITH EFFECTIVE M E D I U M  THEORY
Charge migration in certain liquid mixtures depends greatly on concentra 

tion fluctuations. Three such systems, in which radiation-produced electrons 
or holes move faster than conventional ions, were discussed previously in9terms of effective medium theory . Now we re-examine these experimental 
results.

Similarly to Ref. 9, there are two ways to compute C from the mole frac 
tion of the component enhancing charge motion, x. If the charge is localized 
and hence interacts with one single subsystem only, C is given as

C = Cs = xn (18)

where n is the number of molecules with which the charge carrier is in direct 
interaction - this being taken for the size of the subsystem. If, however, 
the charge is delocalized and interacts with a large number of subsystems 
the entropy of mixing, ASm , defines C by

C = Cr = x exp(-ASm/k) = x exp{n[xlnx + (1-x)ln(l-x)]} (19)

TRANS-D EC AL INE - CYCLO-H EX AN E
A trans-decaline+ positive ion can donate its charge to a neighboring

14trans-decaline but not to a cyclo-hexane molecule . The positive charge 
interacts with one molecule only, hence n=l. The interaction energy being the 
ionization potential of the molecule the interaction between charge carrier 
and molecule must be regarded as strong thus the case of limited fluctuation, 
Eq.(17a), is expected to prevail. The charge carrier is localized which 
demands the use of Eq.(18). Experimental data and the quasi-percolation 
theory curve are given in Fig. 2. For comparison the effective medium theory9curve is also plotted. The agreement between experiment and both theories is 
reasonable.
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1 4Fig. 2. Relative mobility in trans-decaline - oyolo-hexane mixtures 
as a function of the mole fraction of trans-decaline,
XTD' ---- present3 using Eqs.(17a) and (18); .....  Ref. 9:
both with n=l and r=0.09.

HEXAFLUOROBENZENE - B E N Z ENE
Radiation-produced negative charge carriers in pure hexafluorobenzene

have a mobility some 50 times higher than that of ordinary ions. The addition
of an inert diluent, e.g. benzene, reduces the mobility drastically'*'’’. There
are strong indications that the charge carrier is an electron delocalized9over a number of CgFg molecules . Charge motion consists in the migration of 
an electron from a group of CgFg molecules to a similar neighboring group.
With a second, inert component present concentration fluctuations procure 
for the formation of groups consisiting exclusively of CgFg, i.e. of pure 
subsystems. The electron was shown to be bound to the group by an energy of 
some 3eV thus the energy per molecule is much higher than kT if the number 
of molecules in a group is not larger than 20. These facts compell one to use 
the limited fluctuation expression and the Cg (x) function, Eqs. (17a) and (18).

The curves calculated by the present quasi-percolation method and by the 
effective medium theory are plotted in Fig. 3. together with experimental 
data. The agreement seems to be good it should be noted, however, that quasi- 
-percolation was computed with n=15 whereas in the effective medium treatment 
n=12 was used. At present no experiment can tell which of the two figures is 
the more realistic one nor can we comment upon the reason of this disagreement.



8

Fig. 3. Relative mobility in hexafluorobenzene - benzene mixtures 
ae a function of the mole fraction of hexafluorobenzene,
xr „ . ----- present, using Eqs. (17a) and (18) with n=16
C6F6

and r=0.025; ---  present, with n=12 and r=0.026;
.... Ref. 9 with n=12 and r=0.025.

N-HEXANE - ETHANOL
Electron mobility in n-hexane is by some two orders of magnitude higher

than that in ethanol. Excess electrons in saturated liquid hydrocarbons are
partially localized, i.e. a fraction P of them is localized, (1-P) is quasi-
-free. With mobilities for the localized and quasi-free states yT and8 16 ^ *respectively, the experimental mobility is given as '

yo = pPL + (1-P)Ур • (20)

The presence of ethanol slows down electron motion because either of the two 
states can form in pure subsystems only. The lower limit of mobility in the 
mixtures equals that measured in pure ethanol and is denoted by um .

In order to apply quasi-percolation to the present case one has to recall 
the physical differences between localized and quasi-free states. The interac­
tion between a localized electron and the environment is strong and is limited

Оto one molecule only hence formulae (17a) and (18) with n=nL=l refer to this 
state. A quasi-free electron, however, being delocalized interacts with a 
large number of molecules and the interaction is weak hence Eqs.(15a) and



(19) must be used with n=nF which is to be determined by parameter fitting. 
The concentration dependent mobility in the mixture is of the form

\i/v0 = -P(rL-r) ln(l-nCg) - (1-P) (rF-r) ln(l-nC^) + r, (21)

where
r = ^m^o' rL = V wo and rF - V * V

gThe curves calculated by Eq.(21) and by the effective medium theory
17together with experimental points are given in Fig. 4. The agreement 

between both theories and experiment seems to be acceptable.

Fig. 4. 1 7Relative mobility in n-hexane - ethanol mixtures as a func­
tion of the mole fraction of n-hexane, XRex" ---- present,
using Eq.(21); .... Ref. 9: both with Пр=1, np=26, r=0.022,
rL=0.0S63 rp=290.3 and P=0.9967 /cf. Ref. 16./.

CONCLUDING REMARKS
A theoretical description was developed and a word coined for charge 

transport through media in which local conductivity fluctuates with time. 
Quasi-percolation differs from traditional percolation in the non-existence 
of any percolation threshold. This marked difference, however, is blurred if 
charge carriers have a finite mobility even in insulating subsystems. In that 
case effective medium theory and quasi-percolation coincide reasonably when 
using the same parameters and both of them describe the experiments adequately. 
This shows how good the intuitive idea of Kestner and Jortner6 was.
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Mobility as calculated by the above treatment does not have any disper­
sion. This is so because fluctuations were regarded to be extremely short 
lived, a subsystem was thought to change its state many a times during the 
passage of a charge carrier. This enabled us to use equilibrium assump­
tions on fluctuations which, in turn, made W independent of time. It must 
be remembered, however, that this simplification is due to an approximation 
which might break down at mobilities much higher or fluctuations much slower 
than those which prevail in the systems treated now.

A more general treatment must involve time-dependent fluctuations and 
must make Vi depend on time. Such a calculation might predict a frequency 
dependence of mobility, an effect not yet observed.

APPENDIX. PERCOLATION THRESHOLDS IN NON-FLU CT UA TIN G SYSTEMS
In this Appendix a simple method, analogous in spirit to the foregoing 

discussion of quasi-percolation, is suggested for the estimation of percola­
tion thresholds in space structures of different coordination numbers.

It is generally held"*", though - to the best of our knowledge - it has18been strictly proven for the infinite square lattice only , that if the 
proportion of conducting subsystems is equal to or higher than the threshold 
there is only one infinitely large cluster in the system. It is as if a 
backbone of conducting subsystems were formed.

Let the structure of the backbone be simplified as an array of conducting 
subsystems which has the form of a space curve without branching or loops.
The probability of finding pairs of conducting subsystems along any such 
space curve can be determined. We regard the concentration where this probabil­
ity diverges, i.e. where an epidemic growth of conducting pairs sets in, as 
the percolation threshold.

19The idea is somewhat resemblant to that of Sykes and Essam who defined 
threshold by the concentration where functions of the mean number of clusters 
exhibit singularities. The reduction of the backbone to a simple space curve 
and the definition of the threshold in terms of conducting pairs along a
space curve are rather arbitrary approximations the validity of which we have •
failed a priori to justify.

Let C now denote the volume fraction of conducting subsystems in a rigid 
system and z the coordination number. The probability of finding two adjacent 
conducting subsystems, P', can be given as

P' = C[l-(1-C)z] = zC^ + higher order terms. (Al)

The exclusion of branching means that the possibility of more than two
adjacent conducting subsystems is excluded. We try to express this limitation
by disregarding higher order terms in Eq.(Al), i.e. we write the probability 2as P = zC .
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Let us consider a contiguous array of subsystems and evaluate the prob­
ability, 4* (k) , that no conducting pair can be found from the first through 
the k-th subsystem and the (k+1)-th is conducting and has a conducting neigh­
bor. Similarly to formulae of quasi-percolation, У(к) can be expressed as

У(к) = (1-P)k P = (1-zC2)k zC. (A2)

This can be replaced by the continuous function У (x) as

У (x) = к 1ехр(-х/к), (A3)

where x is a length measured along the array, [x]/L = 2k, L is the linear 
dimension of a subsystem and к is defined as

к = - 2L/ln(1-zC2). (A4)

The integration of У (x) between 2kL and 2(k+l)L results in У Ck) in complete 
analogy with Eqs.(3) and (4).

The expectation value of the length between two conduction pairs can be 
evaluated as

<x> = / xy(x)dx = к (A5)
о

Now we express the percolation threshold in terms of к. Finite subsystems 
and the limiting case L -*■ 0 are treated separately.

Subsystems of finite dimensions. The length of a pair of subsystems is 
2L. If к > 2L the array is insulating since this inequality means that con­
ducting pairs are held apart by insulating subsystems. The array becomes 
conductive, when the relationship к = 2L holds, i.e. when all the conducting 
pairs coalesce. This defines the percolation threshold, C , in view of Eq.(A4) 
as

- In(1-zC2) = 1. (A6)

Infinitely small subsystems. The number of pairs of subsystems per unit 
length is (2L)  ̂whereas the number of conductive pairs is к \  Hence the 
probability of a pair being conductive is 2L/k . The probability of all the 
pairs of subsystems per unit length being conductive is (2L/k )ly/2L. Let the 
limit L + О be investigated by considering also Eq.(A4),

' О if -In(1-zC2) < 1 (A7)

1 if -In(1-zC2) = 1. (A8)

There is a sudden change in the probability of an infinite conducting array 
to exist. It is zero until C is as low as for Eq.(A7) to be valid and becomes 
abruptly equal to 1 as C attains the value set by Eq.(A8). The concentration

lim [-In(1-zC2)]1/2L = < L-*-0
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defined by Eq. (A8) is recognized as the percolation threshold for L -*■ 0, Cc, 
and is seen to be the same as Cc defined by Eq.(A6).

Expressing Cc from Eq.(A6) one finds

Cc = [(e-l)/ez]1/2 5 0.79506z_1/2. (A9)

Several C values computed by Eq.(A9) are given in Table I. together 
c 3with the results of earlier numerical calculations . The agreement between 

Eq.(A9) and the Monte-Carlo values seems to be reasonable also as far as their 
dependence on z is concerned. The numerical data show an approximately 
z-0*55 dependence which compares well with the z dependence predicted
by the present treatment. Effective medium theory, which cannot account for 
any dependence on z, yields Cc(em) = 0.333.

Table I.
Percolation thresholds calculated by different methods

z 4 6 8 12

C (Ref. 3.) c 0.4253 0.307b 0.243C 0.204d 
0.195e

Cc (present) 0.397 0.325 0.281 0.230

adiamond, ^simple cubic, cbody centered cubic, ^hexagonally close packed, 
eface centered cubic, all referring to site percolation

The numerical computation refer to site percolation, i.e. a case where 
free passage is barred by certain sites becoming insulating. It is contrasted 
by bond percolation where the bonds which connect different sites of the 
system are thought to be broken. Our model of adjacent subsystems being 
either conducting or insulating is apparently better related to site percola­
tion.

Although coordination number appears to be important in our present 
treatment dimensionality plays here no role. The representation of the backbone 
as a space curve with no loops is due to this fact since such a curve can 
usually be folded out in a plane thus the difference between two and three 
dimensions disappears.
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