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ABSTRACT

The paper presents an analysis of the problem how the density of the 
localized states clL0C can be deduced from field effect data. A simple model
is adopted with gL0C = constant in energy and in space. Precise computer
solutions serve as data; approximate procedures generalize the findings and
emphasize the essentials. Explicit formulas are derived which enable the
direct calculation of g from data. In addition, a new possibility isLUC
pointed out how the trap-free value of the mobility may be measured even in 
the presence of deep traps.

АННОТАЦИЯ

Работа посвя'и«мл анализу проблемы определения плотности локализованных 
состояний (д ) на данных эффекта поля. Обычная модель адаптирована при 
помощи выбора определенной плотности состояний g = const, которая явля­
ется постоянной в пространстве и энергии. Из тео08$ической модели с помощью 
вычислительной машины получено точное решение - семейство кривых. Обсуждае­
мое в статье решение с помощью приближенных аналитических методов выражает 
зависимость между параметрами модели и обобщает решение проблемы. Определены 
явные выражения, позволяющие вычислить g непосредственно из данных. В даль­
нейшем указано на новую возможность измерения подвижности, свободной от влия­ния ловушек.

KIVONAT

Megvizsgáljuk, hogy miként határozható meg a 9L0C lokalizált állapotsü-
rüség a tér-effektus adataiból. Evégett tanulmányozzuk egy modell (g =LUL
kontans térben és energiában) elméleti viselkedését. Explicit képleteket ve­
zetünk le a közvetlen kiszámítására. Rámutatunk egy uj lehetőségre,
amely szerint a mozgékonyság csapdamentes értékét a mély csapdák jelenlété­ben is meg lehet határozni.



INTRODUCTION
The term "field effect" is associated with changes in the conduc­

tance of a piece of semiconductor under the influence of a capacitively 
applied electric field perpendicular to the direction of the conduc­
tance considered. Since the operational principles appear so simple it 
is tempting to think of the possibilities to make use of this technique 
for the exploration of the electronic properties of the semiconductor.
We are interested in wide gap (E^ i 1 eV) semiconductors such that the
forbidden zone.contains a sufficient density of localized states 

1 5  _3 _1gT„„(£ 10 cm eV ), distributed broadly in energy over the gap. Wide 
gap amorphous semiconductors are agreed to embody these features [1]. 
Indeed, amorphous silicon prepared by the glow discharge method was the 
subject of the pioneering work to apply the field effect for the deter­
mination of gL0C [ 2] . Although several papers have been published on this 
topic, the present author is convinced that there is still room for 
precise model calculations. All the more so since there is a need for 
formulas based on careful studies so that any researcher inexperienced 
as yet in this type of evaluation should be able to make use of them in 
his attempts to interpret experimental findings without himself getting 
involved in the details of the numerical analysis.

Our strategy is to proceed from simple to more elaborate models 
of gap states and to examine in each case how the features of the band 
diagram are reflected in the observable quantities. Particular attention 
will be paid to develop procedures by which the opposite task, i.e. the 
fitting of a model to experimental data can be carried out. The present 
paper is but the first of an intended series and it will be restricted 
to the simplest model: to a thin film of a wide gap semiconductor with 
negligible surface states, containing acceptor and donor states dis­
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tributed uniformly in energy over the gap, the system being in thermal 
equilibrium at not too low temperatures (T > 100 K) and conductance 
being due to mobile carriers in the conduction and the valence bands.
We adopted a twofold procedure: First, computer solutions were genera­
ted, using everywhere the fomulas encountered later in this paper in 
their more precise forms. Second, in order to understand the signi­
ficance of the results and to convey a feel for the problem, a parallel 
procedure of more approximate nature was developed and is described in 
this paper.

Description of the model
To simplify the treatment, as much symmetry as possible will be 

built into our model. In Fig. 1 is seen a thin strip of a semiconduc­
tor film GHMLPQRS, prepared in planar gap-type configuration, where 
the two metal contacts ("source" and "drain") are represented by EFGH 
and JKLM. Our attention will be focussed onto the central piece of 
the semiconductor marked by ABCDArBr CrDr . The system of spatial coor­
dinates is positioned at the centre so that the axes x, у and z are 
parallel to a ’a , AB and CB.

The thickness of the semiconductor film d = AAr is of the order 
of 1 micron, while AD = AB are greater by at least an order of magni­
tude. (The assumption AD = AB is merely because we want to make use of 
the notion "square conductance" in (6)). The faces ABB'a ' and DCCrD* 
are imaginary: the purpose of their introduction is to set apart the 
edge regions where the physical conditions deviate from those inside 
ABCDArBrCrDr . They are supposed to be displaced from the respective 
edges EF and JK by about d.

The external electric field modulating the conductance acts in the
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x direction. To be more precise, the important quantity which is con­
tinuous upon crossing the boundaries ABCD and A'B'C'D'is D, the x com­
ponent of the dielectric displacement vector at ix| = d/2:

D e e0F. =o 2 s ьоГо (1 )

- 1 4 -1 -1where eQ = 8.8542*10 A*s*V «cm is the vacumm permittivity, e2 is 
the relative permittivity of the semiconductor (e2 = 12 is taken in 
numerical examples), and

F = F( lxs 6-+o d/2-б) (2 )

is the surface field strength in the semiconductor, and Fq is the 
equivalent vacuum field strength; F =s 1.2*10^ V/cm was chosen

О f I t i a X

arbitrarily. (Of course, the establishment of D in practice requires 
insulator spacers and gate electrodes, not shown in Fig. 1.) It is 
assumed further that the condition of homogeneity in D

Э0
ЗУ (3)

is fulfilled along ABCD and A'B'C’D 1 to a reasonable degree; the 
problem is thus reduced to the single dimension of x.

The steady state of the model system can be described fully by 
the electric potential 0(x). Obviously 0(x) must obey the boundary 
conditions:

-  -Fs -  - V е 2
lim d0|
6-*+0 dx|lxl= d/2-6 (4)
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and must be a solution to the Poisson equation:

- e e 0‘ о 2.
d 0(x,gLOC,Fo ,PARAMETERS) 
------------ 1? = p(0(x,gLOC,Fq ,PARAMETERS)) (5)

In (5) we have chosen the form of the argument lists deliberately in 
order to emphasize the mutual dependences of 0 and p on each other. 
gLoc and Fo are promoted from the rest of variables due to their im­
portances. The denomination PARAMETERS is a group name for such pa­
rameters as T, d, Eg and the effective masses me and m^.

The square conductance Gz of the slab ABCDA'B'C'D' in the z di­
rection will be, as a rule, of the form

d/2
Gz (gLOC,Fo ,PARAMETERS) = S a(0(x,gLOC,FQ ,PARAMETERS))dx (6)

where a represents the (local) conductivity. The desired end is the 
knowledge of Gz in dependence on its arguments, since then an experi­
mental Gz versus FQ relationship could, in principle, be used for the
determination of g . We admit that the rather involved nature ofJLUC
equations (4)-(6) may appear to be dissuasive at this stage, not to 
mention the further difficulty that Gz is not equivalent automatically 
to the conductance GgD between EFGH and JKLM.

(One might be led first to believe that should it be possible to 
make contacts directly to ABB'A' and DCC'D' , this latter difficulty 
would be eliminated. Then, however, ABB'A' and DCC'D' would have to 
become equipotentials themselves, which surely would destroy the sym­
metries leading to the one-dimensional treatment.) Further remarks on 
the amenability of Gz will be among the conclusions following 
eq.(38).
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Our model semiconductor has parabolic conduction and valence bands 
with effective masses equal to that of the free electron. Localized ac­
ceptor and donor states are distributed homogeneously in space and 
uniformly in energy over the gap:

gA gD gL0C/2 (7)

15 -3 -1g was varied in computer simulation in the range of 10 cm eV LUL
19 -3 -1to 10 cm eV by 0.2 steps in the decimal exponent. Surface states 

may be present only in negligible amounts compared to the dominant 
charge supplying states. Not too low temperatures (e.g. 195 К and 295 K) 
are considered.

Such a structure if left in thermal equilibrium and in zero elec­
tric field would possess not only zero overall charge but as a con­
sequence of the symmetries local charge neutrality would prevail every­
where. Hence the electron energy diagram is horizontal, and the Fermi- 
level coincides with the medial line of the gap. The band edges are 
at Ec = Eg/2 and Ev=- Eg/2, respectively. (Eg = 1.6 eV in numerical 
examples.) This zero-field position will be the reference in our dis­
cussion.

If a non-zero external field is switched onto this structure and 
is left there for a time long enough so that a new steady state may be 
reached by the rearrangement of the internal charges (no carriers may 
cross the boundaries ABCD and A'B'C'D'), then a distorted band diagram 
will result as shown schematically in Fig. 2. Since no current flows 
in the x direction, the Fermi level has kept its previous horizontal 
position. It will be useful to denote by U(x) the difference
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U(x) = (Midgap energy at x) - (Fermi-level) (8)

and to introduce its dimensionless counterpart u(x) by

U(x) = u(x)*kT (9)

-5where к = 8.617*10 eV/К is Boltzmann constant. The relation of U and 
u to the electric potential 0 is:

-0(x) = - ■ = —  u(x) (10)
q q

If 0 and U are to be measured in [volts] and [electronvolts], respec-
tively, then q is of the units [electronvolts/volts], and has the
numerical value 1. The latter fact justifies its distinction from the

1 9elementary charge q = 1.6022*10 A*s.

The charge density PLQC
Let us first express the charge contribution from the occupied 

acceptor states:

E
-KJ(x)

pn (U(x))= -q* I дд*кТ 1

E “ 1 + exp(r™)
- -3- -KJ(x)

dE r„ 1 +exp (2]д1

E 4 kf = - 49a - [V m n  --------
+ u)

1+exp(u - g ) 
2kT

(11)

Empty donors give a charge contribution in an analogue way:
/ЕE

Y  -KJ(x), 1 л; 1 + expi-Sp + u)PD(U(x) )= q* J gD*kT*(1 - — Ё- ) -f = q g ^ l n  V2kT
Eq 1 +eXp(kT)- f- +U(x) KT

E
1 + - 2kT>

(12)
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Then, by taking use of (11),(12) and (7):
E

1 + eXp(2kT + u) Ea
pLOC*U X̂^  = gLOC‘kT’q * ̂ ln Ё " 2kT ̂

1 + exp(u - 2^p)

It will be sufficient to restrict ourselves to the study of p (u)LiUU
for u О only, since from (13):

pLOC ̂ U  ̂ = “ ?LOC^~U^‘ *14^

E
Typical orders of magnitudes are e.g. at T = 29 5 К я 31.5 and 
exp(- ^ p )  ~ 2-10 14. By this:

E
pL0C(u(x)* ~  q *gL0C*kT* “ ln(1 + exp(u “ гкТ^} ]• (15)

As long as the induced potential shift remains limited from above by

E
u (x) < 2kT ~ 2 (1 6)

eq.(15) can be simplified further:

pl o c (u(x)) “ q ‘gLoc‘kT‘u(x) (17)

The simple form of (17) was one of the chief reasons to select the 
type of localized states distribution described in the preceding sec­
tion. Computer solutions based on the more precise (15) form confirmed 
the validity of (16) for all practical circumstances.

Note in particular that the simple form of (17) is not a conse­
quence of the Fermi-function being replaced by a step-function, even 
though that is frequently claimed for.
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Mobile carriers
The delocalized carriers are important in two respects. First, 

the conductance Gz is by them. Second, one has to know the limits below 
which their share in the charge density becomes negligible since it is 
then that a reliable estimate on gL0C may be hoped for.

For electrons, the function of the density of states is [3]s

,2m 3/2 1/2
g (E) dE = 4if{^) • (E-E ) *dE

n
(18)

By this, the electron concentration at x where the potential energy 
is displaced by U(x):

n(x) = J 5L<E)dE
1+ехр(^) Nc * ̂ 1/2(“ 2kT “ u(x) J (19)

E.
23 + U(x)

Here [4] Nc = 2 .(2кткТ) 3/2
(20)

and .^ ̂  (n) is a member of the more general set of Fermi-Dirac integrals [ 5]

GO ,

f  (n) = __3___  / Y3dYj ln; Г (j+1) 1 1+extexp(y-n) (2 1 )

where Г(j+1) represents the gamma function [6]. It is of particular 
interest to us that for л ä О ^(n) can be expressed in a series ex­
pansion [ 6 ] :

T . U )  ■ E l-1)k'">xp(kn)
k=1 j + 1 (22)

Thus for potential modulations not approaching simple expressions
result:
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n(x) * n e о
-u(x) (23)

P (x ) » nQeu (x) (24)

PDEL0C(X) * 2qno -sinh(u) (25)

In (24) — (25) , the expressions for holes were taken by analogy, and

E
nQ = Nc-exp(- 2 ^ ) (26)

stands for the intrinsic concentration.
With the help of (17) and (25), eq.(5) can be rewritten:

°q-2 ^  d U 2 'X ~̂ = 9ьОС*кТ’и х̂  ̂ + 2n0* sinh(u (x) ) " q dx

together with the boundary conditions from (4):

(27)

kT
2 * •u;q

limu ' = s 6-*- +o = d/2-6

(28a)

(28b)

The symmetry properties of the sought u(x) in (27)-(28) reveal that 
it should be an odd function of x:

In particular,
u (X) = -u(-x)

u(x=o) = 0.

(29)

(30)

Then it will be enough to solve (27) with respect to (30) and to (28)
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only for 0 S x á d/2.

Conduction In delocalized bands
It is well established in solid state physics that the influence 

of different scattering mechanisms on the resulting drift mobility can 
be best described by a characteristic exponent r in the energetic de­
pendence [7]. Thus the conductivity formulas for electrons and holes:

a(u(x) )= qyc*
» 1/2+r, . T 2 
У dyNc*VT

/ + E \ о 1+exp(y+u- 2 ^)
qMc-Nc*

Г(r+3/2) 'f 
Г(3/2) r+1/2 (_U + 2КГ> (31)

where the upper sign stands for electrons, and ц is the mobility of 
carriers with kinetic energy kT. Accordingly nc ~ Tr . The probable 
value for r is 3/2 when scattering is dominated by the numerous charged 
imperfections like in our proposed model. Now the (22) series expansion 
is applicable to (31), too. We want to point out that the exponent 
j+1 of к in the denominators of (22) will be about 3, thus reducing 
further the relative importance of higher terms. In other words: the 
plot of the log-^(ri) as function of n (Fig. 3) is an even better straight 
line than log ^ ^ ( n )  VSm n' and t*ie f°rmer resists degeneracy up to 
higher values of n.

The conclusion is that both conductivities can be safely used by 
retaining only the first terms:

oa (u(x)) = q*uav*no *e“U ^  (32)

ah (u (x) ) = 4*JJav*no *eu(x) (33)

d/2 d/2
Gz = 2- f (°e+0h) ‘dx * / cosh (u (x)) *dx (34)о о

where av
„ Г (r+3/2) 
Wc* Г(3/2) ' (35)

is the mobility averaged over a band.



Upper limit to the conductance increase
Before proceeding to solve Poisson equation and then evaluate the 

(34) integral, we would like to demonstrate in a simple yet efficient 
way how an upper limit can be set to the increase in G^. We are con­
sidering cases when there are already more delocalized charges than 
localized ones. If we denote by the field at x = 0, and by 1=AB=BC 
the length of edges of the slab, them by Gauss law for 0 áx Sd/2:

e e0 (F -F.) о 2 s i = QTOTAL ^Majority 4 * n
d/2 
■ I
о

exp(u(x))dx (36)

since the majority carriers are holes in the half-slab concerned for 
u(x) SO. At the same time the square conductance G = Gz/2 in the same 
half of the slab is approximately:

d/2
G K q-Pav-no - / exp(u(x))dx 

о

Division of (37) by (36) yields then:

l2eoE2<Fs-Fi>

(37)

(38)

Obviously the maximum in G would be obtained for F^=0. As we shall see 
in Fig. 4, whenever screening is by mobile carriers in films of about 
1 micron thickness, then F^ remains at a fairly substantial proportion 
of F . Nevertheless, we drew the dashed envelope curves in Figs 5-6 on 
the assumptions that F^=0 and 1=1 cm. They demonstrate how easily the 
ultimate limits to the conductance increase can be predicted. Note in 
particular, that a number of parameters such as T, d, Eg or the effec­
tive masses, are absent in (38) .
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The most important lesson drawn from (38) and from the dashed 
lines in Figs 5-6 is for the interpretation of field-effect conduc­
tance measurements: that the slope of the logarithmic conductance 
plots may show a decrease with increasing surface field, and that this 
does not imply an increase in the density of the localized states.

Even some experimental application of (3C) may not be entirely 
ruled out. It is tempting to think of the possibilities to determine 
Mav directly with the help of (38): such a yav would be immune from 
the limitations imposed by the trapping/releasing processes known to 
operate in the presence of deep level traps, just because G is an 
equilibrium property. For this purpose, of course, G should be deter­
mined in such a way that the equilibrium, once achieved via rearran­
gement of charges in the x direction, should not be disturbed by 
either injection or depletion of the mobile carriers in the z direc­
tion (see Fig. 1); i.e. G should be measured by an appropriate small- 
-signal AC method.

Solutions of Poisson equation when dominated oy the localized
charges
If we introduce

as the so called Debye lengths due to the localized states and the 
mobile carriers, respectively, then (27) can be rewritten:

(39)

and (40)

u + sinhu (41)



Typical magnitudes for L are displayed in Fig. 7. Note that L is in­
dependent of T. On the other hand varies strongly with T, because 
nQ in the denominator of (30) is of activated type (see (26)):

= 1418.84 cm for T = 195 К and = 0.4 cm for T = 295 K. Owing
2 2to the great difference in the magnitudes of L and , there will be 

a range for 0 á u á ucr when the second, non-linear term in (41) may 
be neglected. The critical ucr values are given by the solutions of 
the transcendental equation

P
sinh ucr

(42)

and are shown in Fig. 8 for p = 0.01, 0.1 and 1. From this it is 
apparent that quite substantial modulations are allowed even for 
p = 0.01, and comparison with the precise computer results convinces 
that the neglect of the non-linear term will be felt in most cases 
only for p > 1.

The solution of the linear second-order differential equation is

u(x)
u's
cosh xg/L

• sinh x/L (43)

where xg = d/2. From this a further criterion

u ' L'tanh x /L = u á и„^ s s s cr (44)

may be developed. (44) sets upper limit to the inducing field strength; 
its dependence is plotted in Fig. 9. The quantity of L •tanh|xg/bjis 
seen of importance; plots of it are given in Fig. 7.

Now an appropriate expression for Gz in (34) have to be found.
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If we denote the conductance increase by aG and

0o = q . u • 2 >n M Mav о (45)

then AG =
X s

0  • j (cosh u(x)-1) .dx 
о

(46)

From (43) dx du (47)L /и + b

where b =
и'L s 

’cosh xs/L (48)

so AG =
и

T . coshu-1 , о • L • Г --------  du
° u=° /и2+Ь2

(49)

The difficulty in evaluating (49) is connected with the possibilities 
of very wide variations in the value of b (see Fig. 10).

The method of the logarithmic slope
One possible way out of the difficulties is suggested by the ge­

neral impression gained from the close inspection of Figs 5-6 that 
there exists a domain in gLOC and Fq where the plots of the logarithm 
of G/Vav against Fq are apparently straight lines with slopes cha­
racteristic of g . (Figures 5 and 6 themselves may immediately beJ-iUU
used for the determination of gL0C if the parameters of an actual ex­
periment happen to agree with those of our numerical examples. We would 
like, however, to devise procedures whose applicability is more general.)

Since in the range concerned

AG >> G = o  *d/2 о о ' (50)
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then
G G

logG = log (AG) + log (1 + — ) « log(AGj + ^ (51)

i.e. by 150) logG ~ logAG (52)

On the other hand; with the help of (44)

du 1 dAG
• ■ ■ • -

AG d u . (53)

Since by virtue of (49)

diG . COSh “s’1
=  ,, L --------------------------

S / 2 , ,2 /u + b
(54)

u.then . __cosh u„ “s . „ л -1/2
I я У„..( J - du) = R(us ,b)s Г 2 . ,2 n=o / 2 2/u_ + b /u + b

(55)

Numerical experience shows that for ug>8 values (see Fig. 11), encoun­
tered in the regime of the present interest, R(ug,b) can be expressed 
approximately as

5 u к
R(u ,b) * t E k! (-— — 2 > I 

k=o ug + b

-1
(56)

Fig. 12 shows the behaviour of the R(ug,b) function. Since the average 
value of R(u ,b) for u >20 is about R„ “ 0.975, it follows then fromS S cl V
(55),(28a) and (4) that

1 ~ e~•kTl.áLqag.-g___ s rL dF * avо q
(57)

Finally, with the help of (39) :
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С С п л с.о 2 1 „ оЕп'Ч*
’LOC [-

R 2av |
qq * L2 e2,q kT----^íi г kí dp

о
(58!

This is a most useful formula for the calculation of a mean density of 
the localized states from field effect measurements. It is interesting 
to point out that owing to the logarithmic derivative no knowledge of 
о (or E_.) is required. In principle, the gT __ values derived by (58)О У L U L
may be refined further in an iteration loop via (48),(56) and (58), as 
many times as desirable.

The method of finding a minimum (when qL0C is large)
Aware of the limitations to the applicability of the method of

the logarithmic slope, we would like to develop another equally useful
18 — 3 _ 1procedure devoted particularly to densities g___,>10 cm eV . One

possible way to attain this end starts with noticing that in this
range the parameter b in eq.(48) and in Fig. 10 becomes negligibly 

2small: b ~0. Then the critical integral in (49) simplifies and since 
the series expansion of the integrand is absolute convergent, it can 
be integrated by terms:

us
AG(us} = °oL 1 u=o

cosh u—1 
u du

CO
Öо • L • E

k=1 2k.(2k)! (59)

The plot of this AG versus u relationship is a smooth, featureless 
function. The crucial point is the realization that AG divided by u^, 
on the other hand, exhibits a minimum since then the first few terms 
in the new infinite sum

1 u u 3s , s
4ü^ + 96 + 432Ö (60)
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indicate clearly the existence of such a minimum for ug>0. Indeed, the 
function (see Fig. 13)

f (z)
“ . 2kE ___ 5____2k-(2k)! (61)

has a minimum point at

z , = 3.438447864min (62)

where f(z . ) = 0.1195937066min (63)

By finding, therefore, the minimum of on experimental data
F J

points, it can be expressed in terms of the characteristic Debye 
length L:

, AG. , min (— )̂ = (= ríiSLe2kT
. 3 . , AG .) -min (-- )̂

u kT
3

•0.12 (64)

From this, the final formula for gL0C can be expressed with the help 
of (39):

e 0.12o q 1/2
gL0C = ~q  ̂ . 3 7 7£g~ 7 ] (65)41 e~*(kT) *min(— )

V
We have found that the respective ranges of applicability of formulas 
(58) and (65) are overlapping. Thus they provide a means for checking 
accuracy. As regards our artificial data sets, the agreement between 
the two gTrir, values was in general better than 1 %.

LiU U
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Fig. 1. Model geometry of the field effect

Fig. 2. Steady state band bending by the field effect
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Fig. 3. Logarithmic plots of the Fermi-Dirac integrals
for some values of r
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I I ■ t- -- 1---- - ■ I ■----1----'---- 1-
0 .1 .2 .3 A  .5

X[micron] " >

Fig. 4. Field screening effect along the half-thickness of the
semiconductor film. The parameters are the decimal order
of magnitude of gL0C (in [cm 3eV-1]), and the flags in­
dicate the approximate take-over by the mobile charges.
(F = 1 . 0 6 Ы 0 5 V/cm, T = 295 K) s
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Fig. 5. Solid lines: Plots of log G/uav versus inducing field F .
Parameters are the orders of magnitude of 
gLOC* T = 295 K *

Dashed line: Envelope curve according to (38)
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Fig. 6. As in Fig. 5, for T = 195 К
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Fig. 7. Uppermost (dashed) line: Logarithmic plot of the Debye 
length L due to localized density of states gL0C
(in[cm 3eV ]; e~ = 12).
Solid lines: L-tanh versus ^ being the parameter

(in[microns]).
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Fig. 8. The critical potential modulations where the charge 
density from mobile carriers equals the indicated 
proportion of that from g c
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Fig. 9. Upper field limits below which Poisson equation is 
localized controlled everywhere

LOCFig. 10. Behaviour of the b values of eq.(48) against g
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Fig. 11. The maximum values of u vs. g for the domainsS .LUC
in Figs. 5-6 where the method of logarithmic slope 
works
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Fig. 12. The R(u ,b) functions

Fig. 13. The f(z) function
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