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ABSTRACT
A self-consistent phonon theory of lattice dynamics based on the 

thermodynamic double-time Green's function method is reviewed. The theory 
is applied for the investigation of the simplest model, the anharmonic 
linear chain with nearest neighbour central force interaction.

АННОТАЦИЯ

Теория самосогласованного фононного поля сформулирована на основе мето­
да двухвременных термодинамических функций Грина. Теория применена для рас­
смотрения простейшей модели - ангармонической линейной цепочки с централь­
ным парным взаимодействием ближайших соседей.

KI VONAT

A self-consistent fonon-tér elméletet a kétidős termodinamikai Green- 
függvények módszerének a felhasználásával foglaljuk össze. Az elméletet ez­
után a legegyszerűbb model, az anharmonikus lineáris lánc tárgyalására al­
kalmazzuk, a közvetlenül szomszédos atomok párkölcsönhatását feltételezve.



1. INTRODUCTION

The theory of lattice dynamics founded on the classical 
works by Debye, Born and Kármán in its most simple approximation 
/in the harmonic approximation/ is considered to be a well 
established theory capable to describe many of the physical 
properties of the crystals in terms of independent normal modes- 
-phonons. For more precise description the anharmonicity of 
lattice vibrations or the interaction between the phonons should 
be taken into account and usually the ordinary perturbation 
theory, considering the cubic and quartic interaction is quite 
appropriate for this purpose /see e.g. [1J, [2], [3], [4]/.

The investigations of the past years showed, however, that 
this approach cannot be applied in certain cases: near the phase 
transition points, e.g. melting point; for the quantum crystals 
with large zero-point energy; for the light impurities with 
small binding energy etc., when the anharmonic effects are not 
small /see, e.g. [5]/.

Thus some modification of the well established Born-Kármán 
theory of lattice dynamics is needed in considering the highly 
anharmonic crystals: the quantum crystals and the crystals at 
high temperatures, T > (0,3-0,5) Tm , where T^ is the melting
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temperature. In order to obtain a theory which is convenient 
for these highly anharmonic crystals it is necessary to take 
into account all orders of the anharmonic interactions applying 
a self-consistent method. This very natural idea of introducing 
the self-consistent collective modes was already proposed by 
Born [6].

In recent years Born's idea was rediscovered and the self- 
-consistent phonon theory (SCPT) of anharmonic crystals was 
elaborated simultaneously and independently by several authors 
by a variety of techniques. In one of these approaches the SCPT 
is based on the variational principle, the most elegant treat­
ment of which is given by Werthamer [7]. A selective resummation 
of diagrammatic perturbation theory was used in another group 
of papers, the most detailed description of this approach being 
presented in Choquard's book [8]. The SCPT based on the thermo­
dynamic double-time Green's function method was proposed 
independently in [9] , [10]. It was shown in [7], [11] that
all of these three variants of the SCPT are equivalent.

Today the SCPT is considered to be a well established 
theory and it has been applied for the investigation of dynami­
cal, thermodynamical and elastic properties of various crystals 
/see e.g. [5 ] /.
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In the present paper the SCPT is formulated in general 
briefly using the thermodynamic double-time Green's function 
method (12]. In the next Section the Hamiltonian and the 
equilibrium conditions for an anharmonic crystal are discussed 
and the method of Green's functions is introduced. In Section 3 
the SCPT is formulated in a rather simple but general way on 
the basis of the irreducible Green's function. In Section 4 
the SCPT is applied for the investigation of the properties of 
an anharmonic linear chain in the first order of SCPT. Some 
conclusions are presented in the last Section.

2. DESCRIPTION OF ANHARMONIC CRYSTALS

2.1 The Hamiltonian

Let us consider a crystal in the adiabatic approximation 
[1] when it can be described by the Hamiltonian:

i2
H - E Ж 7  + U < V  1 1

/2.1 /

with the local potential energy U(R^) depending only on the 
coordinates R^=R^=Ra (^) of the atom of type к=1,2,...,г in the 
unit cell i; a=(x,y,z); p^=p^=-itiv” is the momentum operator 
and M.=M is the mass of the к-th type of atom. For the 
anharmonic crystal the equilibrium positions of atoms 
x^=<R^>=x (k ) are temperature dependent and should be obtained
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from the equilibrium conditions. Let us apply an external static 
field with forces F± acting on atoms at R±

H, - - E F R. - - E F“ r \  /2.2/
1 i 1 1 sa 8 8

From the equation of motion for the momentum operator in the 
Heisenberg representation

p ^ t )  “ ei>3Ct р±е 1L - H + /2.3/

one gets the equilibrium conditions in the form

as < Pi(t)»-<6i.iPi]> -  щ /2.4/

From thermodynamical considerations and Eq. /2.4/ follows an 
equation for the stress tensor

°CXÍ3 “ V I X8 FS - I £ x“ < V» u<*t) >

or for the pressure

P - - * E a3 aa a - 17 E o(»i) >.as

/2.5/

/2 .6 /

where V is the volume of the crystal of N unit cells. The 
statistical average in Eqs. /2.4/-/2.6/ is taken over the 
canonical ensembles



< A > = Sp{e"ß^A}/Sp{e'ß^}> 8 - A; • /2.7/

The lattice parameters can be obtained also directly from the 
partition function:

R > = i Ri > ß 9 F. £n Sp<e“ **}. / 2 . 8 /

Now introducing the dynamical displacements of the atoms 
ví^=R^-x^==ua (^) , the Hamiltonian /2.1/ can be written as

H = li 2M.l
U (x. ) o' i' ln=l

_1_
nl 1. 1. ,n u r ■ u , n /2.9/

where the coefficients of the Taylor expansion

a. an= 7. . . . V U (x.) = ф /  0.n 1 n О' 3/ A. к.... x, кi 1 n n
/2.9а/

are symmetric functions of the index (l...n) and satisfy several 
conditions which follow from the invariance of the lattice under 
translations and rotations [l].

2.2 The Green's functions

Various dynamical and thermodynamical properties of the 
enharmonic crystal can be discussed in terms of the Green's func­
tion /GF/. Following [9], [10], [l2] let us consider the thermo­
dynamic GF [1 3] :
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с±1' (t“t/)—<<u±(t), u±'(t')»-j §£ e“±U)(t“t ')<<íi/ V >>(1)
—  00

/ 2 . 10/

in usual notations [l4] . The spectral representation for it 
has the form

x2TT ^  (ев“ '-1)а.Л»'),
w-ш J

/2 .11/

where the Fourier transform J , .(w) for the correlation*3
function

<ui (t) Uj> “ dto io)t _ / \e Ji;j(w)2 ТГ /2 .12/

is real and has the properties

J ±j(w) = = e*"ßU)jij (“w) =

“ (е0а,-1) 1 [-2ImGi;. (w+ie)] , /2.13/

(e-*-0+ )

since the displacement operators u^ are hermitian. The GF
/2.11/ obeys the sum rules [l4] :

codw[- -■ Im Gi;j(w+ie)]» 6 £ ,
•  CO 

00

w3da)[- i im Gij (w+ie)] - V ^ U  (R^ >.
— 00 1 3

/2.14/

/2.15/

In the discussion of the anharmonic properties of the lattice 
an ( п /пО“point GF of the type <<An (t)j An /(tf)>>, where
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An (t) - { ^ ( t ) . . .un (t) - <u1 ...un>} and
An '(fc') = í u ^ C t ' ) . . . ^  (ti) - .un,>) will appear for
which the representations similar to Eqs. /2.11/ - /2.13/ hold.

In the translationally invariant lattice the GF /2.10/ 
depends only on the difference of the coordinates and the 
Fourier transformation for it can be written in the form:

0) “  IN L
$jj'

*a / v
e<5j K> , , ( < ■ ) -i 3 /2.16/

Here for each wave vector q = {q^„..,qN } the set of polarization
vectors e+.(<); j = {l...3r} satisfying the orthonormality and 43
closure conditions:

I SS.(k )L q3 a / \ e-* .,(k ) 43'к , a

I
3

/2.17/

are introduced.
The physical meaning of the retarded GF /2.16/ follows 

from linear response theory [.14]: the energy of phonon-like 
excitations at given (5,j) measured by inelastic neutron scat­
tering, are defined by the imaginary part of the GF:

e “ - Im Gj_j,(q,w+ie) . /2.18/

The position and the width of the maximum of /2.18/ give the 
energy and the inverse life-time of the excitations respectjvel- 
ly. The long-wave length (q-*-o) limit of the static (w=o) solf- 
-energy of the GF defines the isothermal elastic constants [15] .
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Therefore the dynamical properties of the lattice 
are well defined by the GF /2.16/ and a direct comparison be­
tween theory and experiment is possible.

2.3 The free energy and the internal energy of the anharmonic 
crystal

To discuss the thermodynamical properties of the an- 
harmonic crystal its free energy should be calculated. The most 
elegant way for doing this is to integrate the GF over the 
formal coupling constant X [l6]. For the anharmonic lattice 
Hamiltonian, Eq. /2.9/ X can be introduced in the form:

Then for the free energy

F(X) - - I *nSp{e"0H(Xh  - - i AnZ(X) /2 .20/

one obtains the equation

W *  - ifa** <*-w W эх = <
3HL(X)
Э X X*

/ 2 .21/

To express F in terms of GF, Eq. /2.10/, consider an equation 
of motion for the GF with the Hamiltonian /2.19/
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I - »Jjl íjj, - « ±1.+
j

СО

+ 1 • П"2
Хп

(n-l)í I
2.

Ф12...п « и 2 ...ип |и±/ («)

= <$.^/ + I (ш) •
j

/2 .2 2 /

After integrating the imaginary part of it using Eqs. /2.12/ 
and /2.13/ one gets the right hand side of /2.21/ and the
free energy in the form

F - F (X=o)
ЭН.

dX ‘ г г  * \ "

, T  n  ( Í (“ Л г ^ К - 2 1 “  G i j ( “ +  i e > >Л oo •»

К  &  J 7 C Í  * (X*>о C i j

/2.23/

where in the last line the integration over the complex vari­
able z is performed along the contour C of two straight 
lines: (-oo+ic)-*■ (°°+ie) and (°°-ie)-*-(-°°-ie) . Deforming the 
contour C to circle the imaginary axes of z one obtains, 
by counting the residues from the poles of (e®z-l) 1 at 
zn=(2nin/3) , the same result as in [17] based on the imaginary 
time GF [lfi].
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The internal energy of the anharmonic crystal 
apart from being calculated thermodynamically from the free 
energy /2.23/ can be obtained in a more direct way by writ­
ing it in the form

E = <  H > * = < T > + < U  (x\+u±) > , /2.24/
where the average kinetic energy is easily expressed in terms 
of GF with the help of Eqs. /2.12/, /2.13/ ass

< T >

w dto coth №  у 
2 L i

l
i

M.

2M,
►2

[-ilm G (u+ie)] . /2.25/

The average potential energy can be written in the form of 
a cumulant expansion:

<U(x.+u.)> *» <exp{ Уи . V , } > и (x.) = i r '  r 6 i i o  x

” exp { I Ы  Í <V - V cV - - V uo<*i)'
/2.20/

n=2 1...n

where the cumulants <u....u >c can also be defined from thel n
GF as it will be shown in the next Section. Then from a 
given approximation for the self-energy П ^ (ш) and GF in 
/2.23/, /2.25/ and /2.26/ one obtains a corresponding ap­
proximate value for the thermodynamical functions.
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Therefore the dynamical as well as the thermodynam­
ical properties of anharmonic crystals can be investigated 
by means of G F . This procedure greatly simplifies the cal­
culation and allows one to perform them in a unified self­

-consistent manner.

3. SELF-CONSISTENT PHONON THEORY

3.1 Irreducible GF
Consider an equation of motion for the GF /2.10/ 

by differentiating it twice with respect to the time t and 
performing the necessary commutations. Then for the Fourier 
transform of the GF one gets

M . шi G ijLM i. +  У —■ У ф ., < < u , ,ii L nl u ll. . .n 1 
n=l 1. . ,n

-* . un I v »u, l l - 1 '

where the symmetry properties of /2.9а/ were taken into ac­
count. There is a large class of n-point /multi-phonon/
GF in /3.1/ that describes an uncorrelated propagation of 
phonons in an averaged phonon field. This class should be 
summed up not only for the simplification of further calcula­
tions but also for physical reasons: in highly anharmonic 
crystals atoms move not in a static field but rather in the 
dynamic potential of their vibrating neighbours and this 
renormalization should be taken into account from the begin­
ning. Therefore we introduce the irreducible /or cumulant/
GF £13] that have no disconnected parts of average field re­
normalization
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••iU U. , >>1 n 1 i
irr . .-*■ + 1̂  . .“ <<u, . . .u u, , »  - 1 n 1

n-1
- I cm=>l

/3.2/
n‘m < a  ,...u > « 2 ,  ...u |2.,>>lrrn m+1 n 1 m 1 i

Here the symmetry with respect to permutations of the com­
muting operators u -^...и^ has been taken into account and the 
corresponding coefficient m = C™ = nl/ml(n-m)l was 
introduced. The GF /3.2/ can not be reduced to lower order 
ones by the usual decoupling procedure [14] and so it de­
scribes the correlations between n-particle vibrations. The 
definition /3.2/ can be rewritten in the form of the decom­
position for the n-point GF as the sum of the irreducible 
ones:

<< u ... u ,u .,>> n' 1

n
= I C™ <u . . .u ><<u. . L n m+1 n 1
m=l

. um ' > >rrr

/3.2а/

By using a spectral representation of the type given in 
Eqs. /2.12/, /2.13/ one gets from /3.2а/ the decomposition 
for the n-point correlation functions in terms of the ir­
reducible /or cumulant/ ones:

n-1
<U1* * - V  " E Cn-1. <Um+2*,,Un> (<ul’ *-um+l>C) 

m=»l /3.3/

In obtaining Eq. /3.3/ some obvious changes of indices have 
been performed in Eq. /3.2а/.
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Substituting now /3.2а/ into the equation /3.1/ 
and performing the summation at first over n for each m - 
-particle irreducible GF and then over all m, one obtains:

|(M i“2{ij ‘ *ij> +

*  Í  J r  I n « 5 . . . . S J S . , » i r r , ̂ ~ n* T vs 1 n 1nBz 1* • *n

/3.4/

where the renormalized interaction has the form:

'S«Ф-1« • • П .n, l'. . .n' <U1'** *urf>e<vi* • ,vnu ^xi + ui^:

“ Vi-**Vn exp{ )  n'=

The cumulant expansion in the last line /as well as in /2.26// 
follows from the equation [l9] :

1 г С 1 /-у \—r*r L  ̂Uy. ■ . u § * V у. . . V J U (x , ) •n i < 1 n I n o xJL • • • XI

ЭЛ
°° , nV i_.
L nl 

n=o
l Ф 1. n<U1 *.. n 1 u > n

1. ,n
/3.6/

that can be easily solved in the form /2.26/ by introducing 
the expansion /3.3/ and performing the summation over n and 
m in the same manner as in /3.4/.

To obtain the equation of motion for the n-point 
irreducible GF in Eq. /3.4/ let us differentiate the operator 
u^Ct') with respect to t'. Then taking into account the identity

<[u1...un# 1р±/]>1ГГ = 0 (n > 2)
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that follows from the definition /3.2/, and introducing the 
same decomposition as in Eq. /3.2a/ for the operators 
{vi ,(t' )... it № ) )  on the right hand side of the (n,n' )-point 
GF, one gets

2 - irr
1 ^Mj/ ш <<ui* • .цп I uj» > > (t)
j’

00 •

"  ̂ n'T  ̂ *i'l' .. .n'
n'-2 Г...П'

/3.7/

where

is the (n,n') -point GF irreducible both in the n-point and 
n '-point parts of it.

Now it is convenient to define the zero order GF 
by the equation

I(Miw26ij - Ф± .) (to) “ 0±1" /3.8/
j

which describes the undamped vibrations /or one-phonon pro­
pagation/ in an average phonon field. Then solving the matrix 
equations /3.4/ and /3.7/ with the help of Eq. /3.8/ one 
gets for the GF t

Gii'(«) “ + I P j j ' M  /3.9/
jj'

where the scattering matrix is defined by



P jj'(w)“ £ Í I F T   ̂ *jl...n G í-.n,l'...n'(w)*j' l'...n',n,n'-2 l...n

- 15 -

1'... n' /3.10/

Then the one-phonon GF can be written in the form of the 
Dyson equation

Jii' (ш) - *ii' * nii‘ <“» -1 /3.11/

where the self-energy operator TI^»(u))ie given by the proper 
part (p) of the scattering matrix /3.10/: П ' (w) ' (“>) •
According to Eqs. /3.9/ and /3.11/ П ^ '  satisfies the equa­
tion:

pii»(w) - + I n±j(w) G®j#(u») /3.12 /
j j'

Hence, the self-energy operator has the same form as
Eq. /3.10/ where the (n,n*)-point GF is replaced by its 
proper part K. ./ » («)-G^irr'p ^1, , (w). к(ш) ас-
cording to Eq. /3.12/ can not be cut into two pieces by cut­
ting only one G°-line; G° is defined by Eq. /3.8/.

The n-point irreducible GF in /3.7/ can also be 
written in terms of K, . p  t (w) if one uses equations 
/3.8/ - /3.12/:

<<u,...u Iu.•>>irr в 1 n 1 i ш

&  1 Vl'...»' e ü ! . a . . ,3.
j n<=2 1'. ..n' 13/

I V j ' W  I
У  n'»2 1'. . . n'

Ф-дгр f (w)31...n l...n, 1 ...n
1

n' J
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Then from the spectral representation, Eqs. /2.11/ - /2.13/ 
for the cumulant part of the correlation functions one gets:

■ V
00

f dm 1
J e ^ - J _—*1™ u2- • -un 1 (D+ieJ /3.14/

00 oo

21m d t  I Т И К  1
П— 3 • П

<u1(t)u1<><u2 (t).. .un (t) lu^
.n'

urí
irr,p

where a two-time proper irreducible correlation function, 
corresponding to K. „ ,,, , (t), has been introduced.• <П f <L • • • П

Thus the one-phonon GF Eq. /3.11/ as well as the 
cumulants /3.14/ in the renormalized interaction /3.5/ are 
written in terms of the (n,n')-point GF K, ,, _,(w) “i. » « П / X • * • П

=<<u-̂ . . • un I u^, . . . un , >>шГ Г ' The equations obtained are
exact but unclosed and therefore some approximations to the
K, ., ,(w) should be considered in order to obtainl...n, i ...n
a self-consistent system of equations.

3.2 First order or renormalized harmonic approximation
In the first order of the SCPT /SCI/ only the re­

normalization of phonons in the self-consistent field is 
taken into account. Thus the SCI is obtained by neglecting 
all the terms which contribute to the damping /or correla­
tions/ of phonons. In that case the self-energy operator
П (to) in the GF /3.11/ and the cumulants /3.14/ for n > 3 ii'
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should be put equal to zero. Therefore the SCI GF is equal 
to the zero order one /3.8/ with the renormalized pseudo- 
harmonio force-constant matrix

•ij5“ 7i7:j exP<5 I <“l“2>7l7 2)Uo(*l) 5 Vl7j Ul(xi>1» 2
/3.15/

The system of equations gets closed by the equation for the 
pair-correlation function in /3.15/. From the spectral rep­
resentation Eqs. /2.12/, /2.13/ and /2.16/, one gets

<u“ u?,>

1 . (<) e® . (к' ) -I
N L

43i / * . MK'
2ы

3w . 
coth—

“iq(xs-xs ,)
в 9 /3.16/

43

where the frequencies and the polarization vectors 
^qj(K ) are defined by the equation

u>2 . ea .(<)- 1 . (<' )—  ----43 q]v ‘ 43 4 //m m 13s' /M< М к'
6 S /3.17/

The free energy /2.23/ in SCI is obtained by using the mean- 
field self-energy operator /2.22/г

П $ * >  я а

- 3
1,2

<UlU2>7l72)Uo (íti) /3.10/
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So one finds

F, - F + 1. О á l  т п , Ф ( х ) < 5. 3,>X L ± з ч / 1 з о
ij

- F 0 + 5 ^ )  - U0 (xi) - I  í и ^ с
ij

/3.19/

The trial foroe-constant matrix in /2.19/ has not been
specified yet. From the self-consistency condition Ф°. should be 
put equal to Ф ^ '  in /3.15/ since the latter one defines the 
spectrum of excitations in SCI according to /3.17/. Then for the 
free energy one gets

Зит*. . ßk’cn
F 1 “ U l(x <) + £ E Än(2 sinh — — ) “ 4 l coth ~~2—  ' /3.19а/

q j  2 43

whiah coincides with that obtained from the variational approach

iD

For the internal energy /2.24/ one easily obtains from Eqs. /2.25/ 
and /2.26/ In the SCI

ßüT- .
E 1 “ 4  ̂ wqj COth 2^* + ^ xi^‘ /3.20/qj

Therefore in the SCI approximation one treats the vibrations of 
an anharmonic crystal as a system of noninteracting pseudoharmoni.c 
phonons with the á-function type behaviour for the phonon spectrum 
/2.18/. This approximation simplifies the calculations; but due
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to this approximation all the odd terms in the anharmonic inter­
action /2.9a/ are missing. One should not hope to obtain a 
quantitative description in SCI: even in the limit of weak an- 
narmonicity the results do not coincide with those of the ordi­
nary perturbation theory /see, e.g.[20]/.

3.3 Second order of SCPT
Since the self-energy operator П ^ ,  (w) in the GF /3.11/ 

on account of /3.10/ is proportional to the second order of the renor 
malized anharmonic interaction /3.5/ one should calculate the 
(n,n')-point GF in the lowest order. This is done by taking ac­
count only the uncorrelated propagation of n=n' "dressed" phonons 
and results in the following approximation for the (n,n')-point 
two-time correlation function (n > 2):

un (t)|ur . u ,n n 1 6nn'
lL -> -> 
n<ui (t)u.,> .

i=l
/3.21/

Now employing the spectral representation for the (n,n*)-point 
GP one obtains for the self-energy operator in the second order 
of the SCPT /SC2/

d“ ' (ee“ '-l)Ш-Ш'
dt -iw't x2TT e *

/3.22/

where V j я э/эх^ and V_., a 
respectively.

iu(xi+ui)><Vi, u(xi,+u±,)>,

S/Эх., are acting on u(x ) and u(x,, 
J I X

)
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For the cumulants /3.14/ one gets in the same SC2 approxima­
tion /3.21/:

. -> c ~<u,...u > ~1 n

* 2 Im n  -у -У -У -ydt П {£ <u± (t)ui, >V±, }<u(x±, + u i<) > • 
i“l if

I 3.23/

The equation for the pair correlation function

<u± (t)u;,> -

' e8“-loo
iut - - Im{o)2Mi6i;, ~ 4^ , - n^j\uH-ie)} /3.24/

closes the system of self-consistent equations /3.5/, /3.22/- 
■/3.24/. In the present form the SC2 system of equations can ho 
applied for anharmonic crystals with strong repulsive .inter­
actions since only fully renormalized vertices Ф /3.5/X • • • n
appear in the equations /3.22/, /3.23/, as in the Horner theory 
[21], But just due to the full renprmalization of the vert.ices 
the system of equations is rather untractable. To solve it one 
should either introduce a trial short-range correlation func­
tion in Eq. /3.5/:

<U(xi+ui)>=exp{ I ~r l ‘'un>Cvi*
n-3 X • « • n

•vn }íii(xi h g sr(xi)ü1(x.),
/3.25/

or, employing some cut-off procedure for the strong repulsive 
part of the interaction expand /3.25/ in powers of cumulants:
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< u ( x ± +  U±)> %

* { 1 + I in*  ̂ <u1 ...un>-C V1 ...Vn + ... }U1(xi)
n=3 1...n

- + Ди2 (х1) + ...

/3.26/

The renormalized potential energy in the pseudoharmonic ap­
proximation

U1(xi) = exp I <u± u* V±V.j) ио (х±) /3.26а/

is calculated by integration with a Gaussian function.
We shall not discuss the problem of hard core inter­

action here since an elegant presentation of it is given by 
Horner [21] and consider only the cumulant expansion in Eq. /3.26/

IVup to second order in A^2 (x^). In this approximation the re­
normalized vertices /3.15/*

(2
1... n vr - - V V * i >  + a ü 2 (*í )> /3.27/

can be calculated on account of Eqs. /3.23/, /3.26/ by itera­

tion. In the classical limit of high temperatures, ®штах<<1' 
the integration over time in cumulants /3.23/ using the spectral 
representation can easily be done with the result

and
<V*1‘ * *^n>C ̂  ""е1П£1, <uiui' >Vi' ) <и(^± + u±)>,

o° _

л и ^ х ^ - е  I “7  (I < V V > V i ' )  u 1 (xi ).
n-3 ii'

/3.28/

/3.29/
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The thermodynamical properties in the SC2 approximation can 
be obtained from the internal energy /2.24/, where the aver­
age kinetic energy /2.25/ is calculated by using GF /3.11/ 
with the self-energy operator /3.22/ and the average poten­
tial energy /2.26/ is given by /3.26/. To calculate the second 
order correction to the free energy in /2.23/ one should in­
troduce first the irreducible GF in /2.22/ as done in the 
Section 3.1. Then by integration over frequencies using Eq. 
/3.14/ one gets:

A F. f u 2 I <2,2 > v j v j i ö ^ A . í p  + 
ij

" An
+ z T ^ D T  l <ui-“ V xvr - - 7n u i<x 'xi)}
n— 3 1...n л

where the first term is due to the second order correction
to the renormalized pseudoharmonic matrix фУ.'(Л) as in /3.27/,
The А-dependent function <u^...un>^, AU^(A,x.j) and U^(A,x.)
are given by /3.23/, /3.26/, and /3.26а/ respectively with
every power of u^ multiplied by A. After the integration over
A with <UjU.>, <u.(t)u.> being independent of A, one gets j D

oo
dt I ~ (  I <ui (t)ui,>ViV. ,)n U 1(x.) U 1 (xJ_) =AF Im

n=3 ii‘
/3.30/

2 ^ nl  ̂ <Ul*“*un>C V l"*Vn^l^Xi^ “ 2A^2^Xi^ *l...n

In the calculation of the first two terms F +Af .. in the freeо 1
energy expansion one should employ /3.19/ with the SCI frequen­
cies being replaced by the SC2 frequencies defined as
the maxima of the imaginary part of the GF in the SC2 approxi­
mation according to /2.18/.



23

The proposed cumulant expansions for the average poten­
tial energy /3.26/ and the free energy /3.30/ with the GF 
/3.11/ and equations /3.22/ - /3.24/ give the same results 
as other methods based on diagrammatic .techniques or on the 
variational approach proposed by Werthamer [7] /see e.g. [5]/.

4. THE ANHARMONIC LINEAR CHAIN

In the present Section a simple model of the crystals, 
the anharmonic linear chain with nearest neighbour interaction 
will be investigated briefly in the first order of the SCPT 
[22], [23]. In this case we can obtain a simple explicit 
solution which helps to clarify some aspects of the SCPT.

4.1 The self-consistent system of equations

Let us consider an anharmonic linear chain of length L 
which consists of N+l identical atoms with mass M. Taking into 
account only nearest neighbour interaction, the Hamiltonian 
in the adiabatic approximation [1] reads:

V t  =
N

H + H1 =  In=o
+2
Í n2M

N
i ln=l <p(R - n V i } + H. /4.1/

where p^ and R^ are the momentum and position operators for the
n-th atom. The interaction potential between the neighbouring
atoms is denoted by <p( R - R . ) . In the case of a one-dimensional-1 n n-1
chain the effect of the external forces can be described by
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the external tension P which acts on the ends of the chain:

H1 ' P <RN - Ro )= P ”, (Rn - Rn-l> • I * - 2 'n=l

It is convenient to introduce the equilibrium separation 
l between the neighbouring atoms and the relative displacement 
operators by the following definition:

R -n R . = <R -R , > + u n-1 n n-1 n - un-1 a + u - n un-1 /4.3/

where the statistical average < ... > is calculated for the 
equilibrium state of the system described by the Hamiltonian 
/4.1/:

< ... > = Sp { e ^ 9... } /Sp{ e (e = kT) . /4.4/

The equilibrium separation l in the one-dimensional case 
can be obtained from the equation

P tp(R -R . n n-i <p'U) > /4.5/

which shows that the average force acting on an arbitrary atom 
in the equilibrium position is equal to zero.

It is convenient to introduce explicitely the displacement 
operators in the Hamiltonian /4.1/ by the Fourier transformation:

<p(R) = I <p(q) eiqR ;
q

0 (q) = l
T J J /  _

/ dR <p(R) e iq . 
—L/2

/4.6/

In this representation the Hamiltonian of the linear chain



25

/4.1/ takes the form:

9 t  = I
n

I I Ф(Ч) ei<3* 
n q

iq(V V i ) + H. /4.7/

For the calculation of the correlation function of nearest 
neighbours and the frequency of the lattice vibration we apply 
the method of thermodynamic double-time GF [13] . We use the 
following one-phonon GF:

Gnn t (t-f) = «  un(t) un ,(t') »  = - i0(t-t') <[ un(t) ; un ,(t')]>

/4.8/
in usual notations [14].
To obtain the equation of motion for the GF /4.8/ we differen­
tiate it twice with respect to time t and employ the equation 
of motion for the Heisenberg operators un(t) and pn(t) •
In this manner we get:

2 H2M i  2-=- G . (t-t') = 6(t-t') 6 . +,,2 nn' nn'

I <p(q) eiq£ 
q

iq «  { eiq(W i > iq(u ,,-u ) ^ n+1 n u . (t1 ) »  .n'

/4.9/
j*

The multiphonon GF on the r.h.s. of Eq. /4.9/ describes 
I an uncorrelated propagation of phonons in an averaged phonon

field. We use the first order or renormalized harmonic approxi­
mation of the SCPT here, in which the processes connected with 
the damping of phonons are not considered, but the renormali-
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zation of the energy of phonons in the phonon self-consistent 
field is taken into account. In this approximation the multi­
phonon GF can be written in the form:

iq(u-u ,) » ,
«  e ; u , »  = У — r «  { iq(u -u n)}S ; u , »n' L. s! u n n-1 n's=l

00

~ У -~r < { i q (u -u . ) }S  ̂> s «  iq (u -u . ) ; u , »  = L, s! 1 n n-1 ^ n n-1 n's=l

= < e
iq(u -u .) ^ n n-1 > i q «  (u -vi ,) ; u , »  n n-1 n

/4.10/

For the calculation of the correlation function on the 
r.h.s. of Eq. /4.10/ we use the same approximation. We introduce 
the following function:

Xq(u -u . )
F (\) = < e П > ; F(o) = 1 . /4.11/

Differentiating it on X and using the similar approximations 
as in Eq. /4.10/ we get:

3F(\)
- Г Г  = < ’ ' V V i 1 e

Xq(u -u . ) ^ n n-17 > =

= < q(u -u 1 ) У ^ n n-1 s=l
(q\ ) b , 4 s „(u -u .) >s! n n-1

~ X q2< ( % ‘V ] . ) 2 > *

The integration of this equation over X from X = o  
us:

H l ' V V i ’ „ - ^ 2<(W i )2> - ^ 2ц2< e > = e = e ,

/4.12/

to \=i gives

/4.13/
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where we take into account that the correlation function of 
nearest neighbour atoms does not depend on n:

ü 7 - < (v r % > 2 > - •= < W i > 2 > /4.14/

Now we introduce the Fourier transform for the GF /4.8/:

oo
G , (t-t') = / donn Vri '

-io(t-t')
2n G Ли) nn' /4.15/

and take into account that it depends only on the difference of 
lattice sites (n-n')s

G ,(o) = rjjr У e nn' MN fк
ik£(n-n') /4.16/

Then Eq. /4.9/ takes the form:

о G. (о ) = 1 + к
2 2

+ 2̂  I <p(q) eiqi,(iq)2 e u 2(l-cosk£) G^io) f
q

/4.17/

where Eqs. /4.10/, /4.13/ have been used. The solution of Eq. 
/4.17/ reads

Gr (o ) 2 2 о -о. к
/4.18/

as in the harmonic approximation except for the renormalization 
of the force constant:

2 4f(0Д ) . 2 ki. f 0 Д  2 _ 2 2
к M 2 f ok ok /4.19/

where oQk is the harmonic frequency of vibration and f stands
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for the harmonic force constant. The renormalized force constant 
f(0,i) according to Eq. (13) can be written as:

2 2
f(6,£) = J  I <p(q) eiq£(iq)2 e U = ф " (£) , /4.20/

q
where we introduced the self-consistent potential

2~2
< <p(Rn~Rn_1 ) > ~ (p (Ä ) = I (p(q) eiq£ e 24 U =

q

- I ±  ( Ф  f  Ф(2в)<») ■ /4.21/
s=o

2 2In obtaining Eq. /4.21/ we decomposed the function exp(-^ q u )
~Tinto the series of u and integrated it over q. The self-consis­

tent potential can also be written in the form

oo 2 a . ■ ■1 .—
ф(£) = j dx e X 2 (p(JH-x/u ) , /4.22/

where x=R//u2 . It is easy to see that in Eq. /4.22/ the renor­
malization of the potential due to the vibrations of the atoms 
is taken into account by averaging it over the small region

/~j~ 2R ~ /u «  £ with the Gaussian function exp(-x /2) which describes 
the effect of the phonon self-consistent field. Owing to this 
function only the shape of the potential o(R) at the bottom of 
the potential well is of importance.

The correlation function of nearest neighbours in Eqs. /4.21/, 
/4.22/ can be obtained from the spectral theorem [13] [14] for 
the GF:

< V V  - é  / -ÖTtrr < - 2 Im Gnn'(brt-15) I •- oo e -1
/4.23/
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From Eq. /4.18/ we get:

, ,2 4 
< (V un-l> > = —  УNf 1

о 2 ok
2“k

G1k
0001 20

G)ok 1 Ч 2 dcp sin ф coth a sin cf
nf a > 2 го

where in the second line of Eq. /4.24/ we have replaced the sum 
over к by-an integral over cp = ki,/2 . The maximum value of the 
vibrational frequency of the chain in the harmonic approximation 
is denoted by о =(4f/M) and т = ö/o T stands for the reducedOL» Ob
temperature. In the high temperature ( t »  1) and low tempera­
ture (1 « 1 )  limit the integral in Eq. /4.24/ becomes

—  a2 u2 = п T { 1 + (— ) } + 0 (t 3)( t » 1 )  , /4.25/CO T ToL
—  2

a u2 = 1 + 4— (— )2 + 0( ) ( i «  1) . /4.26/
"oL J a

In addition to the temperature i the properties of the 
linear chain are determined also by the length of the chain 
L = N£ or by the external tension P . According to Eqs. /4.5/, 
/4.21/ these parameters satisfy the following equation:

P = - i  <cp'(R-R .)> = - i  ip'U) . /4.27/2 n n-1 2

The internal energy is given in our approximation by the 
equation

*
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l Ei = 1 < н > - < §! > + i < Ф<вп-кп_1 » > *

“ Ж  í T  0001 <"к,20) + I *<1)

Í { <pU) + f(0,A) u2 } . /4.28/

Then for the free energy of the anharmonic linear chain 
according to Eq. /3.19/ in our approximation one gets:

^ F1 = Í H  { 2 Sinh (“k/29) } + j { <pU)- f(0#ä ) u2 } . /4.29/к

In this way we have a closed system of self-consistent 
equations /4.19/, /4.20/, /4.21/ or /4.22/, /4.24/, /4.27/, /4.28/, 
/4.29/ which determine the dynamical, thermodynamical and elastic 
properties of the anharmonic linear chain in the renormalized 
harmonic approximation. This self-consistent system of equations 
is determined by the self-consistent potential /4.21/ or /4.22/, 
which can be obtained if the form of the interaction potential 
in the Hamiltonian /4.1/ is known.

4.2 The self-consistent system of equation for the Morse poten­
tial

Let us take the Morse potential as a model potential
-a(R-r ) 2

<p (R ) = D { [ e - 1 ] - 1 } , /4.30/

where rQ is the average distance between the neighbouring atoms 
in the harmonic approximation: <p'(ro )=o and D is the depth of



31

the potential: <p(rQ ) = - D . The force constant in the harmonic
2approximation is given by f = 1/2 <pM (r ) = D a .
■%

Applying the expansion of Eq. /4.21/ or taking the integral 
of Eq. /4.22/ we get the following expression for the self- 
-consistent potential:

-2ar x 2y -ar x y/2
ф (х ) = D { e  ° e - 2 e  ° e  } , /4.31/

where у = a2 u2 = (a rQ)2 (u2/r2) and x = (i,/rQ) - 1 • In Fig. 1.

Fi g. 1. T h e  s e l f - a o n s i s t e n t  p o t e n t i a l  q>(x)/D

the self-consistent potential ip(x)/D is presented for some values 
of у . Since у depends on the temperature and, as we will see, 
in the quantum limit on the energy of zero-point vibrations,
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the larger values of у mean higher temperature or larger energies 
of the zero-point vibrations. The diagrams of the self-consistent 
potential in Fig. 1 show the thermal expansion of the crystals 
and the decrease of the binding energy of lattice atoms when 
the temperature or the energy of the zero-point vibrations 
increases. So for larger у values the self-consistent potential 
sufficiently differs from the interaction potential that means 
that the behaviour of the crystals differ sufficiently from 
that calculated in the harmonic approximation.

Eq. /4.5/ for the Morse potential reads:

P* = 4 {
-2ar x оe e

2y -ar x y/2 о 1 ,e e } f /4.32/

where we introduced the reduced tension P = (4/arQ ) P(rQ/D) .
We note, that the introduced reduced tension differs from that 
used in works [22], [23]. The renormalization factor of the 
frequency, according to Eqs. /4,19/, /4.20/, for the Morse 
potential takes the form:

a2(y) = | { P *  + e y [ l + / l + P * e Y ]} .

Taking into account /4.31/ we can rewrite Eqs. 
/4.25/, /4.26/ as equations for y: 

tt/2
\ ct(y) у = / d (p sin <p coth ( a— ) ,

о

a2(у) У = T* { 1 + i  ^  )2 } T »  1 ,

2 о\a(y) у = 1 + IL- ( i )2

/4.33/

/4.24/,

/4.34/

/4.35/

T «  1 /4.36/
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where X = (п D/со т ) is the dimensionless coupling constant and OJLi
T* = 0/D = тп/\ is the reduced temperature.

The expressions for the equilibrium separation of neigh­
bouring atoms £ , the internal energy /4.28/ and the free energy 
/4.29/ in the case of Morse potential can be written as follows

/4.37/ 

/4.38/

/4.39/

2where a is given by Eq. /4.33/ and Fq stands for the harmonic
free energy Fq = 0 £ £n { 2 sinhiw^^e) }

к
The system of self-consistent equations /4.32/, /4.33/, 

/4.34/ determines the properties of the anharmonic linear chain,
■ftwhen Л,т and P or £ are given, see Eqs. /4.37/-/4.39/.

Let us now consider the equation /4.34/ in the high tempe­
rature limit, Eq. /4.35/. Taking into account only the first term 
in the r.h.s. of Eq. /4.35/ and using /4.33/ the self-consistent 
equation can be written as follows

F(y) = 1 --{ P* + e ^ [ 1 + / l  + P*e-^ ] } = о . /4.40/
2T*

The dependence of the solution of Eq. /4.40/ on the reduced
‘X- -X*temperature T and reduced tension P is given in Fig. 2.
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Fig. 2. T h e  r e a l  s o l u t i o n  o f  t h e  s e l f - c o n s i s t e n t  
e q u a t i o n  f o r т »  1

■X* *At sufficiently low temperature: T <Tc = 0,578 , and pressure:
P < Pc = 0,222 there are several real solutions for y(T), the 
thermodynamically stable ones are shown by the full lines. The 
lowest line, у^(Т) ^ 1 corresponds to a crystalline state with 
small vibrational motions. In the limit of small anharmonicity 
/or lower temperature/, this solution gives the harmonic corre­
lation function. But as T* -> T*(P) /denoted by the full dots 
in Fig. 2./ y^(T) becomes unstable: Ts(P) is the instability
temperature. As can be seen from Fig. 2. and from the PV diagram



corresponding to Eq. /4.32/ or /4.37/ (tor ar =6), shown in Fig.3.

p*

F i g .  3. T h e  P V - d i a g r a m  o f  the ( i n h a r m o n i c  l i n e a r  c h a i n  
f o r  г »  1

at T* = T*(P) there is a first order phase transition that drives
the chain from the state with у = y-̂ (T) to some other state with
у = y2(T) , shown by the upper full line in Fig. 2. The latter is
also a "crystalline" state /due to the restrictions imposed by
the theory/ but the vibrations of the atoms are rather large,
У 2(Т)>1 and are defined by the external pressure:in the limit
P+ о the solution y2(T) ■*■<*>. At sufficiently high pressure P >Pf;

*or corresponding high temperature, T >Tc this type of vibra-
-H-tional instability disappears. The two solutions at ?c coincide 

and there is only one stable solution for the correlation func­
tion y(T) for P*>P* . Physically it means that the external
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forces become more efficient than the interatomic ones and the 
former determine the lattice dynamics: they are strong-enough 
to localize the atomic vibrations.

At low temperatures ( t «  1) the solution of the self- 
-consistent equation /4.36/ for the correlation function y(\,T) 
leads to the same results [24] as in the high temperature limit. 
The only difference is that at low temperatures the amplitude 
of atomic vibrations is given mostly by the zero-point energy, 
proportional to К . As a result, a highly anharmonic chain 
with small coupling constant \<\c=l,207 can be unstable even at 
T=OK, the critical value of the tension in this case is Pc=0,037. 
In Fig.4. idle instability temperature tgis presented as a function of

Fig. 4. T h e  d e p e n d e n c e  o f  the i n s t a b i l i t y  t e m p e r a t u r e
*T o n  th e r e d u c e d  t e n s i o n  P  f o r  s o m e  v a l u e s  o f  s

the d i m e n s i o n l e s s  c o u p l i n g  c o n s  ta n t  \ i n  th e lo w 
t e m p e r a t u r e  l i m i t  т «  1

!

Í
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.ftreduced tension P for some values of X . The critical curve
T is denoted by the dotted line, c

The self-consistent equation /4.34/ which is valid in the 
whole temperature region can be solved only numerically. In Fig. 5.

Fig. 5. T h e  d e p e n d e n c e  o f  t h e  i n s t a b i l i t y  t e m p e r a t u r e
-ftT on t h e  r e d u c e d  t e n s i o n  P f o r  s o m e  v a l u e s  s J

o f  th e d i m e n s i o n l e s s  c o u p l i n g  c o n s t a n t  X . 

the dependence of the instability temperature Tg on the reduced
.fttension P is shown for some values of X . The critical curve 

г is denoted by the dotted line. Using the solutions of
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Eq. /4.34/ and Eqs. /4.37/- /4.39/, we can calculate the 
"physical" properties of the anharmonic linear chain. But it is 
more interesting to elucidate better the physical meaning of the 
instability temperature T . It was shown, that at sufficiently

-X- X-high pressure P >Pc the vibrational instability disappears.
But the critical value of the tension is rather small even at 
high temperatures therefore it seems sufficient to investigate 
the small tension limit P «  1 , when the results of the calcula­
tions can be presented in analytical form.

5. PROPERTIES OF THE ANHARMONIC LINEAR CHAIN IN THE CASE OF 
SMALL TENSION

If P «  1 the renormalization factor of the frequency, 
according to Eqs. /4.19/, /4.20/, /4.33/ takes the form

X*
a2 (у ) = e Y { 1 + -^p eY } , /5.1/

and equations /4.35/, /4.36/ using /5.1/ can be rewritten as

f (У- f n) { 1 + ^~p ey } = eY , (x »  1) /5.2/

X2y2 = eY {1 + \2y2(2y - ^|_) } ( T «  1) , /5.3/

where n = (o2L/24D2) «  1 and у = ( n202 ) / ( 3co2L ) «  1 .
The expressions for the equilibrium separation of neighbouring 
atoms /4.37/, the internal energy /4.38/ and free energy /4.39/ 
in the small tension limit can be written as follows (arQ =6):



39

0IIerf ! + i y - ey }L 4 Y 2 4 e ’ / /5.4/

I  E - _ DN L1 2
i ~ Y  1 л \ 3P* { e * (1-y) - у 4 } c /5.5/

1 F - 1 F N l l N Fo - j  { e y (y+1) + 3P* ,4 y ) • /5.6/

Let us investigate the high and low temperatures separately.

5.1 High temperature ( т »  1) limit

Equation /5.2/ has a real solution only if 0 < 6s , where 
0g is the instability temperature. The solution ys=y(0g) is 
obtained as the simultaneous solution of Eq. /5.2/ and its 
derivative. The calculation gives:

2

es ~ e  ̂1 + e f 1 “ 24 ^2Г  ^  ' ! 5 '7 1

y ( 0 < 0 ) ~ l  + e ( ~ - n )  - / 2(l-0/0 ) . /5.8/

The vibrational frequency со, at 0<0 is given byК ~ s
G)

»k (e<es ) ok { 1-en + /  2(1— 0/0 ) + (1-0/0 ) } . /5.9/

It becomes complex if 0>es • which shows the instability of 
the system. It means, that the state of the linear chain, which 
was stable at 0£9S becomes unstable in the temperature region
0>0 s

The length of the chain, the internal energy and also the 
free energy, which can be obtained from Eqs. /5.4/, /5.5/, /5.6/
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respectively remain finite at 6 -+ 9 • But the coefficient ofs
the linear thermal expansion

_ к Э L „ к 3 e_____
ат ' L 99 1 2aD /2 (1 - 9 /e"> '

and the specific heat at constant pressure

/5.10/

с к г Э / т-i , DäP T
P = N [ 9? <E + —  L >1.P =const

= к {1 + 0,3
J i-е/e /5.11/

tend to infinity if 0 0 . It should be emphasized that the 
relative displacement of the atoms at the instability point is 
rather small:

/ 27 us /y( 6 )s
a«, ( 0 ) a r + j  о  2

0,13 (arQ=6) /5.12/

In the range of temperatures where cooL «  6 «  D the solu­
tion of Eq. /5.2/ has the following form:

2
0 /1 0 1 “oL M  ± 0, 3P’

У “ D U  + D + 24 “ 2 (1 + D> - " Гu
} /5.13/

In this case the renormalized frequency , the equilibrium 
separation of the neighbouring atoms l, the linear thermal 
expression aT , the internal energy (1/N)E, and the specific 
heat at constant pressure c^ are given by the following 
formulae

2 _ 2 , 3P* 0 ri 1 0 1 “ob 3P* , ,
= { 1 + I "  ‘ D ti + 2 D + 24 ~ 2  - —  ] } 'U“k = “ok /5.14/

1 0 1 “oL , 0 11 n*
1 ro {1 24 + 4 D [1 + 24 2 + D ~ 12 P  ̂ } '0

/5.15/
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_ к fo , . ~ 0_ _ 1_ ЫоЬ
“т “ I 4D 1 D 24 2Ö

2
И
12 }

1 р _ _ DN Е " 2 + 0{ 1 + 1 1 + 4 D
1_
24

oL ЗР
0

(1 + 2 I) >D ’ '

к {1 - 1_
24

оOL 1 0
2 D ( 1 + |P*)

/5.16/

/5.17/

/5.18/

The coefficient of the linear thermal expansion, Eq. /5.16/ and 
also the average of the quadratic displacement, Eq. /5.13/ coin­
cide with the result obtained in [25] using the regular pertur­
bation theory, but the higher orders terms in the expression 
of the specific heat at constant pressure do not coincide with 
the result obtained in [25] because in the renormalized harmonic 
approximation all the odd terms thus e.g. the cubic term in the 
anharmonic interaction are missing.

5.2 Low temperature ( т << 1) limit

Equation /5.3/ has a real solution for y>o in the range 
where h > \ Q and 9<0S • These parameters defined previously in 
the case of high temperatures are now:

0s Xo = I { 1 2 v 2 ' /5.19/

The solution of Eq. /5.3/ at e<0 is given by
2 ________________,

y(0<0s) = 2 { 1 + ^ | — P * - |  (X-Xq ) - / | U - \ 0 )(1 -02/0g) [1- f U-*0 ) ] +

+ I (\-Xo )(l-02/0g ) } . /5.20/

The renormalized frequency near the instability point can be
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expressed as

2
) { 1 /5.21/

The frequency becomes complex if X < X Q or 0>es which shows the 
instability of the system. It is worth-while to emphasize, that 
the chain becomes unstable even at zero temperature T=OK if the 
zero-point energy is sufficiently high (со /2п) > (D/e) . Such 
a situation can occur for a chain of light atoms with small 
binding energy /"quantum chain"/.

In the vicinity of the instability temperature e<0g the 
length of the chain, the internal energy and also the free energy, 
which can be obtained from Eqs. /5.4/, /5.5/, /5.6/ respectively, 
using solution /5.20/, remain finite. But the coefficient of 
the linear thermal expansion

aT
k_
al

12n'
oL /(\-Xo )(l-e2/Q2s

/5.22/

and the specific heat at constant pressure

c = к —  {1 + 2 
P 3 “oL

/-
x-x
1 - e W' s

/5.23/

tend to infinity if 0->-0s • The relative displacement of the 
atoms at the instability point in the low temperature limit is 
also rather small

/ y(6g) J~2
l ~ a£(0 ) ar +3s s o

( a rо = 6 ) . /5.24/
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For X »  1 the solution of Eq. /5.3/ has the following
form:

y - t <  1 + i  + - f - < 1 + f > » - /5.25/

from which we see, that у «  1 .

Using this solution the renormalized frequency cô , the 
equilibrium separation of the neighbouring atoms l, the linear 
thermal expansion aT , the internal energy (1/N)E , and the 
specific heat at constant pressure c^ can be written as

2 2 , , P
“k = “ok { 1 + T x  < 1 + ^ - !  p* ) >' /5.26/

P* 1l = Г { 1 - r T  + To 54 4
CObL
nD

со г 2[ ! + + H_
1 x 2nD 3

2co
(1 + oL

CO nD ) - 13 p*}24 '
oL

/5.27/

krо
aT “ 6 £

0 n 2co

COoL 5  ( 1 +
OL

nD /5.28/

л со г T со _ 2 a2 со .1 1-. D , OL , л 1 OL , n 0 , , .  ̂ oL N ,
Ы E ” - 2 + —  (1 - 4 "~nD + 7 ~ Г  < 1 + 2 T D  > > '

3 со'oL
/5.29/

CL - * -5- { 1 + 2p 3 a.oL nD /5.30/

The expressions /5.26/-/5.30/ characterize the behaviour 
of a weakly anharmonic linear chain in the low temperature limit. 
Using the ordinary perturbation theory this expressions can be
obtained.
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6. CONCLUSIONS

The SCPT reviewed shortly in Section 3 can be used for 
investigating the properties of strongly anharmonic crystals 
in a wide range of temperature and external pressure. It is 
obvious also that in the limit of weak anharmonicity the SCPT 
gives the same results as the usual perturbation theory. It is 
interesting to point out that the method of double-time thermo­
dynamic Green's function in the SCPT appears to be more simple 
and effective in the derivation of the main results in comparison 
with the other methods, cited in Section 1. We think, that the 
investigation of a simple model, the anharmonic linear chain 
with nearest neighbour central force interaction in the first 
order of SCPT, given in the Sections 4 and 5 has confirmed 
our opinion. This simple model was investigated also in the 
second order of SCPT [26]. The results obtained in the second 
order coincidence with those of the renormalized harmonic 
approximation except for numerical coefficients, which are 
somewhat different. In second order the instability temperature 
becomes smaller and the dimensionless coupling constant becomes 
higher than in the first order of SCPT.

This variant of the SCPT was applied for the investigation 
of a simple model of three-dimensional anharmonic crystals too 
/see [12] and references quoted therein/. It is worth-while 
to point out also several applications of the SCPT to more
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complicated systems, where the interaction of lattice vibrations 
with other subsystems plays on essential role in the lattice 
instability, e.g. in the electron-phonon system of metals and 
semiconductors, magnetic systems with spin-phonon interaction, 
molecular crystals with rotational degrees of freedom, ferro­
electric crystals, etc.
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