
I F. I G L Ó I  
J .  K O L L Á R

GENERALIZED CLUSTER EXPANSION
FOR REAL FLUIDS

‘Hungarian ‘Academy o f‘Sciences

CENTRAL 
RESEARCH 
INSTITUTE FOR 
PHYSICS

BUDAPEST



V№



GENERALIZED CLUSTER EXPANSION FOR REAL FLUIDS
F. Iglói and J. Kollár

Central Research Institute for Physics 
H-1525 Budapest 114, P.O.B. 49, Hungary

HU ISSN 0368 5330
ISBN 963 371 881 X

KFKI-1981-40



ABSTRACT

The equation of state and the pair correlation function of a real fluid 
is expressed in terms of the equation of state and distribution functions of 
a reference system. The derived general expression makes possible to obtain 
power series for the equation of state both in powers of a "softness" para­
meter E measuring the "amplitude" of the Boltzmann-factor difference, or in 
powers of a formal parameter A. measuring the "amplitude" of the potential 
difference (high tempe-iture expansion).

АННОТАЦИЯ

Уравнение состояния и парная корреляционная функция реальной жидкости 
определяются с помощью уравнения состояния и корреляционных функций системы, 
выбранной в качестве референции. Полученное общее выражение позволяет выра­
зить уравнение состояния в виде степенного ряда как по "параметру мягкости"Е, 
измеряющему "амплитуду" разности больцмановских факторов, так и по параметру 
X, измеряющему "амплитуду" разности потенциалов (высокотемпературное разложе­
ние) .

KIVONAT

Egy reális folyadék állapotegyenletét és párkorrelációs függvényét ki­
fejeztük egy referencia-rendszer állapotegyenlete és eloszlásfüggvényei se­
gítségével. A levezetett általános kifejezésből az állapotegyenlet előál­
lítható mind egy E "lágysági paraméter" (amely a Boltzmann-faktorok "ampli­
túdóját" méri) hatványai szerint haladó, mind egy formális X paraméter 
(amely a potenciálkülönbség "amplitúdóját" méri) hatványai szerint haladó 
hatványsor alakjában (ez utóbbi a magas hőmérsékleti sorfejtés).



Recently a new perturbational method has been developed
for the description of the equation of state and the pair

correlation function for classical fluids1 . The method was
2successfully applied for a hard sphere reference system .

This method contains an approximation concerning the calcu­

lation of certain cluster integrals. In this paper we derive 

general expressions for the equation of state and the pair 

correlation function for real fluids using the equation of 

state and distribution functions of a reference system in 

terms of diagrammatic expansion technique. We will show the 

connection between these generally derived expressions and 

those obtained in Ref. 1. We use the diagrammatic expansion 

technique developed by Morita and Hiroike and others ' .

The notations and definitions are the same as those in Ref.6.

Consider a homogeneous system with identical classical 

particles, where the interaction energy is the sum of pair 

interactions. Thus the grand partition function of the system 

can be written as

(1 )

where r. . = r. - r. , and z(r.)=z stands for the activity,— ID — l -j — x

which does not depend on r. for a uniform system. The—i
Boltzmann-function and the Mayer-function are denoted by e(r) and 

f(r) respectively. The logarithm of = can easily be expressed
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in diagrammatic terms 6 a s

in S' ■ [the sum of all distinct connected diagrams 

consisting of black z-circles and f-bonds]

Л*Д (2 )

The n-particle density is defined as

1 6(n) =" “ z(r )...z(r ) ■.---n —1 —n = —1 —n oz(r )... 0 z (r ) (3a)
-1' —n

where 6z(r.) denotes functional differentiation with respect

to z(r^) . Applying the generalization of Lemma 2. in Ref.6,

the following result can be obtained:

Pn(r^...£n) ■ [the sum of all distinct connected diagrams con- 

sisting of n white z-circles labelled r^...!^ »

black z-circles, e-bonds between each pair of 

white circles and some or no f-bonds between 

other circles] (3b)

Now let us introduce a reference system with the pair potential

u q (r) , the thermodynamic and structural properties of which

are assumed to be known (hereafter the index "o” always refers
~ßv (г)to the reference system) . Introducing the notation Af «■ e p ' -1

(where v(r) u(r) - u (r)) we can formally rewrite f asо

f - f + e Af (4)о о

Substituting this formula into Eq. 2, the following expression
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can be obtained for the logarithm of £ i

An = - A n ln-2 n

where

(5)

Г - [the sum of all distinct connected diagrams consisting of n э э
at least n black г-circles, n of those are connected

(at least) to another by an eQAf -bond# and some or

no f -bonds] (6)о

Comparing now the definitions of p° and we can see that

the two sets of diagrams are similar to each other. In order

to derive an exact relation between them, first we introduce

the definition of an n-pont "skeleton diagram" a # whichn , M
consists of n white z-circles labelled r,...r , each of them—1 —n
is connected (at least) to an other by Af-bond, e.g.

оdc4,1

where the "c" and "dc" superscripts refer to the fact that the

diagram is connected or disconnected, respectively. In terms of

these skeleton diagrams the definition of Г can be rewrittenn
as follows*

n - I
У n,H

„ . n. ~ . n. , nО J r  ) p (r ) drn,p — n,p — — (7)



A

where S is the symmetry number of the diagram which cann , у
be obtained from a by changing the white circles to blackn, у
ones, and

0 ■ [the sum of all distinct connected diagrams whichn,y
consist of n white circles labelled r, ...r , black— 1 — n
z-circles, e -bonds between those white circles which

are connected in the corresponding skeleton by Af-bonds,

and some or no f -bonds]

-c . n. P„ „ (£ ) n , у —
о . n. pn (£ ) (8 )

since the sum of all those diagrams of p which differsn , у
from each other only in the number and positions of the f -о
-bonds between the white circles, results in a diagram which

contains e -bonds between each pair of white circles, i.e. о *

we get back the definition of p° . If the skeleton is dis-n
connected, the situation is more complicated. Assume now that
dcоn , у splits into m subdiagrams (clusters) consisting of

In other words, Г can be obtained by attaching the white circlesn
of a to the corresponding circles of p , integrate overn , у n , у
the white circles and take into account only the topologically 

distinct diagrams. Since the number of the topologically 

equivalent diagrams is just given by S^  ̂ defined above, Eq.7. 

follows directly from (6).

It is easy to show that if the skeleton diagram is connec­

ted, then
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n, , n„,...n white circles labelled г , 1 2 m  —
carry out the summation of the diagrams in

** .cthat as in the case of p , we obtainn, \i

m _ _£ . If we

similarly to

[the sum of all distinct connected diagrams consisting

of n white z-circles labelled r,...r , black z-circles,—1 —n
e -bonds between each pair of white circles which are о
in the same cluster, and some or no f -bonds]

It is easy to show that the n-particle distribution function

p°(rn) can be expressed in terms of the p^c functions which n — n , у
we call as "cluster distribution functions" in the following

way. Assume that п-án.á...án and construct a set of different1 2  m
V.,v_...v «n numbers by grouping the clusters containing 1 Z M
nl'n2*’* atoms in each possible ways

nm n

Then

(9)

where the summation in the last equation extends, first, over 

all possible different combinations of the ' V 2 ••• numbers

for which £v^ = n , and second, for a given ••• com­

bination over all possible ways in which the coordinates
П1 n2 _  _£ , £ ... can be devided into groups consisting of v^ ...

atom**. The eqs. (9) follow directly from the fact that py '-s



6

contain only connected diagrams while in the definition of 

p°'-s there are disconnected diagrams as well. The set of 

diagrams which represents p° obviously contains all connec­

ted diagrams of p° (p° is the connected part of p°), while 

the disconnected parts can be written as different products 

of lower order (connected) cluster distribution functions.

Thus the sum in eq. (9) will always contain the n-th order 

cluster distribution function p° and the different products of

lower order p°'-s, and therefore v

~ о о

V1V2

where the prime denotes that p° is excluded from the summa­

tion. It is easy to show that p° defined in this way hasn
the property, that it vanishes if the distance between the

coordinates of one of the clusters (or any combinations of them)

and the rest of the coordinates is large enough. He will

show this by induction similarly to the case of the usual

cluster functions7.Assume that this is true for p° ...p° andv v 1 К
consider p = p . I f  the coordinates r are devided into v . v —K+l _ _V V — Vtwo groups, say £ and r_ and the distance between these 

groups is large, then

о , v. P (r )v — '
о V.

Pv(I >
о . v-v. P — (r )v-v —

and from (9) we obtain

P° + v
t P

Ev,
~o. • • p I

1 V2
r ~o г ' ~0 Lp— + ) pv „ L  —  v. £v.=v 1i

~o Л Г . V ' 'O. . p  . . . J L p  — + ) pV V—V L ‘ _ V2 Zv.-v-v 1i
...]

(10)
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According to our assumption the sum in the left-hand side of

Eq. (10) contains only those terms which correspond to the
v.

given separation of the coordinates, because p (r̂ )e0 if the
v . — i —i  v , v - v ,coordinates r_ are taken both from 2: s and from í: s.

Therefore this sum is just equal to the right-hand side of

Eq.(10), that is
~o
p = 0v

This is also true for the lowest order non-trivial case, when

-о о о оP„ ■ Pn . - P„ P„nl+n2 ni+n2 ni n2

This property assures the convergency of the expansion in eq.(7) 

in the thermodynamic limit, since in this case each term of 

the expansion is proportional to the volume V of the system, 

as can be seen very easily. Namely, if once the coordinates 

of one of the particles have been fixed, the region of integ­

ration (where the integrand differs from zero) is reduced to a 

finite volume determined by the range of interaction of the 

potential difference v(r) inside a given cluster (when Af^O) 

while the convergency of the integration over the relative 

coordinates of the particles in different clusters is assured
Пby P (£. ) which tends to zero for large distances.

Introducing now the notations

3VP,c . у 1 r c , n I 0 (r * n,p -n L
M sn,y

,d c  . V 1 t dc , n 1 a (r ; n,p -n L
M sn,M

n. , n
(11)



and from (5) and (7) we obtain

An = - An = + ßV У (P + Pd )о L n nn

or the equation of state

P - P + У (PC + PdC) (12)о L n n

Since the integrals in (11) are proportional to V, the quantitie 
c d cP and P remains finite in the thermodynamic limit, n n 1

If the reference system is an ideal gas, then p°(r°) =zn=>pn

where pq stands for the density of the ideal gas reference

eyetem. It is easy to show from the definition (9) that in this 
**ocase p -0 for all n and у , and ßP “p . Thus n,y о о

ßP

ßP

с
n

de
n

n bn

О

where bn 'e are the reducible group integrals appearing in the 

usual activity expansion of the virial series and we obtain the 

well known result

ßP = p + о ln=2
The particle density can be calculated in the following way t

P [ 1 + ( ЭР,
-1 00
) ln=2 ( P" + Pd° )]Эр, n (13)

The basic equations of the method are (12) and (13), which

differ from those given in Ref. 1 in the presence of the correc- 
dctions Pn . These corrections contain, even in lowest order
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two Af-bonds. Introducing a "softness parameter" £, which is 

formally defined as

£Af(r) = A f (r)

we can see that the contribution of the disconnected diagrams is
2of the order of £ . Since the results for the hard sphere refe-

2rence system show that in most of the cases the accuracy of 

the method is satisfactory already in first order, when only

connected diagrams appear in the calculation, in applications
d cthe disconnected terms are of little importance.

Furthermore, we mention that expanding Af in powers of the 

potential difference v(r) and collecting the terms of the same 

order, Eqs. (12) and (13) allow us to calculate any higher order 

term in the high temperature expansion (or Л-expansion) as well 

(see e.g. in Ref.6.).

It is easy to calculate the pair correlation function g^(r) 

using Eq. (3) first order in £ in the same way as in Ref. l.i

g2(il2) " g2(-12} eo1(il2} 6 (-12) + 5 2p / g3 (ílí2í3) Л£(^12) dS-

ЭРГ ЭР л- 2 / 2 о . .*1*
■ 5 э Т  ( р Э Т  > 1 Р «2‘Í H 11

+ £ о2 /  t94<£1E2Í 3 Í 4 ) " 92 l£ l Í 2 ) 92 (£з£4 ! '  й £ (£з4) d£3d£4 + 01£)

(14)

The last term in the right-hand side of (14) is the first order 

correction to the Eq. (23) of Ref. 1. This pair correlation func­

tion satisfies the compressibility equation and goes to unity 

for large distances as well.



To summarize we can say that we derived an exact expressio
for the equation of state ((12) and (13)) and the pair corre­

lation function (Eq. (14)) of a real fluid using the equation 

of state and the distribution functions of a reference system 

and the Af(r) Mayer-function for the potential difference.

From the general formulas one can derive power series for the 

equation of state both in powers of a softness parameter £ or 

in powers of a formal parameter X (high temperature expansion).
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