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ABSTRACT

The equation of state and the pair correlation function of a real fluid
is expressed in terms of the equation of state and distribution functions of
a reference system. The derived general expression makes possible to obtain
power series for the equation of state both in powers of a ''softness" para-
meter E measuring the "amplitude™ of the Boltzmann-factor difference, or in
powers of a formal parameter A measuring the "amplitude"™ of the potential
difference (high tempe-iture expansion).

AHHOTALNA

YpaBHeHue COCTOAHWA U MNapHas KOppesisauMOHHas (YHKUMSA peasibHOM XUAKOCTU
onpeensiuTCA C MNOMOWbK YPABHEHUS COCTOSHUA U KOPPEAUMOHHLIX (DYHKUWA CUCTEMbI,
BblOpaHHO B KaudecTBe pedepeHumn. T[onyydyeHHoe obluee BblpaxeHue MO3BOAAEeT Bbhipa-
3UTb YypaBHEHME COCTOSIHUA B BUAE CTENEHHOro pgaga kKak no '‘napameTpy MArkoctu''kE,
n3mepswwemy ‘‘aMmnamTygy'’ pasHOCTU 60/bUMAaHOBCKUX (aKTOpoB, TaK W Mo napaveTpy
X, wn3mepswwemy “‘amnnuTygy'’ pasHoOCTU rnoTeHuuanos (BbiICOKOTEMMNEpaTypHOe pa3/ioxe-
Hue) .

KIVONAT

Egy realis folyadék allapotegyenletét és parkorrelacios fiuggvényét Kki-
fejeztik egy referencia-rendszer allapotegyenlete és eloszlasflggvényei se-
gitségével. A levezetett altalanos kifejezésb6l az allapotegyenlet eldéal-
lithato mind egy E "lagysagi paraméter'” (amely a Boltzmann-faktorok "ampli-
tadojat” méri) hatvanyar szerint haladé, mind egy formalis X paraméter
(amely a potencialkilonbség "amplitiudéjat’”™ méri) hatvanyai szerint haladé
hatvanysor alakjaban (ez utobbi a magas hémérsékleti sorfejtés).



Recently a new perturbational method has been developed
for the description of the equation of state and the pair
correlation function for classical TfTluidsl. The method was
successtully applied for a hard sphere reference systemz-
This method contains an approximation concerning the calcu-
lation of certain cluster integrals. In this paper we derive
general expressions fTor the equation of state and the pair
correlation function for real Tfluids using the equation of
state and distribution functions of a reference system Iin
terms of diagrammatic expansion technique. We will show the
connection between these generally derived expressions and
those obtained in Ref. 1. We use the diagrammatic expansion
technique developed by Morita and Hiroike and others -~

The notations and definitions are the same as those in Ref.6.

Consider a homogeneous system with identical classical
particles, where the interaction energy is the sum of pair
interactions. Thus the grand partition function of the system

can be written as

)

where o= - % and z(r.)=z stands for the activity,
- hy I

which does not depend on rg Tfor a uniform system. The
Boltzmann-function and the Mayer-function are denoted by e(r) and

T(r) respectively. The Ilogarithm of = can easily be expressed



in diagrammatic terms6 as

in S m [the sum of all distinct connected diagrams

consisting of black z-circles and f-bonds]

A,

The n-particle density is defined as

w4 6 =
n-1 -n = 2205 ) oz(t:ltf._ 0z(r ) (32)
where 62(r.) denotes functional differentiation with respect

to z(r™) . Applying the generalization of Lemma 2. in Ref.6,

the following result can be obtained:

Pn(r™*...£n) m [the sum of all distinct connected diagrams con-
sisting of n white z-circles labelled rm...1" »
black z-circles, e-bonds between each pair of
white circles and some or no f-bonds between

other circles] G3b)

Now let us introduce a reference system with the pair potential
ug () , the thermodynamic and structural properties of which
are assumed to be known (hereafter the index "o0” always refers
to the reference system) . Introducing the notation Af <le~%v(r)'—l

(where w(r) u@ - uo(r)) we can fTormally rewrite T as

f - f  + e  Af ©@

Substituting this formula into Eq. 2, the following expression



B
can be obtained for the logarithm of £ 1i
An = -An I ®)
n2 N
where
M - [the sum of all distinct connected diagrams consisting of

at least n black r-circles, n of those are connected
(at least) to another by an eQAf -bond# and some or

no fo—bonds] ®)

Comparing now the definitions of p° and we can see that
the two sets of diagrams are similar to each other. In order
to derive an exact relation between them, Tfirst we introduce
the definition of an n-pont "skeleton diagram" an,M # which

consists of n white z-circles labelled r,...r , each of them

is connected (at least) to an other by Af-bond, e.g.

Odc

4,1
where the 'c" and 'dc'" superscripts refer to the fact that the
diagram is connected or disconnected, respectively. In terms of

these skeleton diagrams the definition of Fn can be rewritten

as follows™

LN L ™



where Sn is the symmetry number of the diagram which can

be obtained from a, y by changing the white circles to black

ones, and

qu m [the sum of all distinct connected diagrams which

consist of n white circles labelled ry---r black
z-circles, e -bonds between those white circles which
are connected iIn the corresponding skeleton by Af-bonds,

and some or no F -bonds]

In other words, Fn can be obtained by attaching the white circles
of an’y to the corresponding circles of pn,y , Integrate over
the white circles and take into account only the topologically
distinct diagrams. Since the number of the topologically

equivalent diagrams is just given by S ~ defined above, Eq.7.

follows directly from (6).

It Is easy to show that i1f the skeleton diagram is connec-

ted, then

—C n 0.n.
P ,y@) pn (£ ) @)

since the sum of all those diagrams of P y which differs

from each other only iIn the number and positions of the fo-
-bonds between the white circles, results in a diagram which
contains eo—bonds between each pair of white circles, 1i.e.

we get back the definition of p; . IT the skeleton is dis-
connected, the situation is more complicated. Assume now that
dc

o, y splits into m subdiagrams (clusters) consisting of



ni, qZ"hfn white circles labelled r , £ m +F we
carry out the summation of the diagrams in similarly to
E 3
C

that as iIn the case of pn N G we obtain

[the sum of all distinct connected diagrams consisting

of n white z-circles labelled 51"'rn , black z-circles,

eo—bonds between each pair of white circles which are

in the same cluster, and some or no T -bonds]

It 1Is easy to show that the n-particle distribution function
p;(fn) can be expressed iIn terms of the pﬁ?y functions which
we call as "cluster distribution functions”™ in the following
way. Assume that niéf.é-..énm and construct a set of different
VI’VZ"'VM«n numbers by grouping the clusters contailning

nl*n2*>* atoms in each possible ways

Then
©)

where the summation in the last equation extends, fTirst, over
all possible different combinations of the "V2 eee numbers
for which £v» = n , and second, for a given eee COM-
bination over all possible ways iIn which the coordinates

ni n2

£ , £ ... can be devided into groups consisting of v -—

ator**. The egs. () fTollow directly from the fact that py-~-s



contain only connected diagrams while in the definition of
p°®"-s there are disconnected diagrams as well. The set of
diagrams which represents p° obviously contains all connec-
ted diagrams of p° (p° 1s the connected part of p°), while
the disconnected parts can be written as different products

of lower order (connected) cluster distribution functions.
Thus the sum iIn eq. () will always contain the n-th order
cluster distribution function p° and the different products of

lower order p;'—s, and therefore

~0 o
V1iv2
where the prime denotes that p° 1is excluded from the summa-
tion. It is easy to show that p; defined iIn this way has
the property, that i1t vanishes if the distance between the
coordinates of one of the clusters (or any combinations of them)
and the rest of the coordinates is large enough. He will

show this by induction similarly to the case of the usual

cluster functions7.Assume that this iIs true for p; ."ps and
1 K
consider p =p -1 the coordinates r are devided into

Vi+t

two groups, say £Y and [Y_V

and the distance between these

groups 1is large, then

0 \; o] V. 0 V-V
Py@'d pyag >PygC D

and from (9 we obtain



According to our assumption the sum in the left-hand side of

Eq. (10) contains only those terms which correspond to the

V.

given separation of the coordinates, because p @ )eO 1if the
_ Vi- v ' V-V

coordinates r_ are taken both from 2 's and from i

Therefore this sum is just equal to the right-hand side of

Eq. (10), that is

This 1s also true for the lowest order non-trivial case, when

i O)

0 afn . -PF P
nl+n2 ni+n2 ]

This property assures the convergency of the expansion in eq.(7)
in the thermodynamic limit, since iIn this case each term of

the expansion is proportional to the volume V of the system,

as can be seen very easily. Namely, if once the coordinates

of one of the particles have been fTixed, the region of integ-
ration (where the integrand differs from zero) 1is reduced to a
finite volume determined by the range of interaction of the
potential difference v(r) 1inside a given cluster (when Af™0)
while the convergency of the integration over the relative
coordinates of the particles iIn different clusters is assured

by Paﬂj) which tends to zero for large distances.

Introducing now the notations

: M Sn,y n.p =

11)
oo v 1 dc n. ,n
n L S ,I an,p (—rn



and from (G) and (7) we obtain

An = - An = + RV ?é ®, + Pd )

or the equation of state

P - P, + X (PG + PdC) 12

Since the integrals in (11) are proportional to V, the quantitie

P(r:1 and %C remains Ffinite in the thermodlynamic limit,

IT the reference system is an ideal gas, then p°(r°)=zn=m
where pg stands for the density of the i1deal gas reference
eyetem. It is easy to show from the definition (9 that in this

case E)b:y-o for all n and y , and BPO“pO . Thus

c n

BPn bn
de

BPn 0

where bn®e are the reducible group integrals appearing in the
usual activity expansion of the virial series and we obtain the

well known result

BP=p0+ !
n=

The particle density can be calculated in the following way t

1
P [1+(3P’)ni!3p’ (P + Pd° )] (13)

The basic equations of the method are (12) and (13), which
differ from those given in Ref. 1 in the presence of the correc-

_ dc - - _
tions Pn . These corrections contain, even in lowest order



two Af-bonds. Introducing a "softness parameter™ £, which 1is

formally defined as
EAF(r) = AFf()

we can see that the contribution of the disconnected diagrams 1is
of the order of £2. Since the results for the hard sphere refe-
rence system2 show that in most of the cases the accuracy of

the method 1is satisfactory already in fTirst order, when only
connected diagrams appear iIn the calculation, 1in applications

dc

the disconnected terms are of little iImportance.

Furthermore, we mention that expanding Af in powers of the
potential difference v(r) and collecting the terms of the same
order, Egs. (12) and (13) allow us to calculate any higher order
term iIn the high temperature expansion (or Jl-expansion) as well

(see e.g. in Ref.6.).

It is easy to calculate the pailr correlation function g™(r)

using Eq. (@) TFfirst order In £ in the same way as iIn Ref. L.i

g2@12) " g2 (-12} eol(il2} 6(-12) + 5 2p / g3 (i1i2i3) NE(*12) dS-

_L P 2 o. M*
m55T7T (p3T > 1P «249HI

+ £ 02 /| t94<£1E2i314) ™ 921£102) 92(£3£4!' WE(£34) dE3dE4 + 01f)

as
The last term in the right-hand side of (14) is the first order
correction to the Eq. (23) of Ref. 1. This pair correlation func-
tion satisfies the compressibility equation and goes to unity

for large distances as well.



To summarize we can say that we derived an exact expressio
for the equation of state ((12) and (13)) and the pair corre-
lation function (Eq. (14)) of a real fluid using the equation
of state and the distribution functions of a reference system
and the Af(r) Mayer-function for the potential difference.

From the general TfTormulas one can derive power series for the
equation of state both in powers of a softness parameter £ or

in powers of a formal parameter X (high temperature expansion).
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