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ABSTRACT

Space-energy dependent forward type equations for the collision densities
of energetic atoms in multi-species semi-infinite homogeneous medium are for-
mulated. Introduction of the one-dimensional isotropic forward-backward model
of Fermi for the scattering and application of the Laplace transform with
respect to the lethargy variable will lead to a linear differential equation
system with constant coefficients. This equation system is solved for an
arbitrary number of species and relations between the collision densities
and defect distributions of the different species are given in the Kinchin
Pease model. The case of an alien particle incident on a two-component target
is examined in some detail and the sputtering spectra are given numerically.

AHHOTAUMA

[na onncaHus NAOTHOCTU CTOJ/IKHOBEHWI 3HEPreTMUYEeCKUX aTOMOB B OAHOPOLHOM
MHOTOKOMMOHEHTHOM MOJTYNPOCTPAHCTBE BbiIBEAEHb YPaBHEHWsI MPSAMOro Tuna, 3aBucsuume
OT MPOCTpPaHCTBA W 3Hepruv. BBegeHVe OAHOMEPHOV M30TPOMHOW MOAENM paccesiHUs
Briepeg-Ha3ag Tuna depvnm U NpuMeHeHWe TpaHchopmaumu Jlannaca no nepeMeHHol ne-
Tapruy npuvBOAWT K CUCTEME JIMHEHbIX AvdhepeHLuanbHbIX YpPaBHEHU C MOCTOSHHbLIM
KoadhdhumeHToM. CucTemMa ypaBHEHWI pewaeTcs ANns NPOU3BOJILHOIO 4YnMc/ia KOMMOHEHTOB
N JaeTcs B3aUMOCBSI3b MeXay M/IOTHOCTbI0 CTOMKHOBEHWI W pacrnpegeneHneMm AefeKToB
pa3/iM4yHOro TUNa B MOAE/IM paAvauvMoHHOro noBpexaeHus KnHunH-Nnc. [ogpo6Ho u3ly-
yaeTcs cnydali nonafjaHusi B ABYXKOMMOHEHTHbIi MaTepuan TPeTbell yacTuupl 1 ans
BCEX TpPex TWUMOB aTOMOB [AEeTCs CMNeKTp pachb/ieHvs B UU(poBoi dopme.

KIVONAT

Tér- és energiafiggs, elbre tipusu egyenleteket allitunk fel homogén
tobbkomponensli féltérben energetikus atomok Utkozési slrliségére. A Fermi-
féle i1zotrop elBre-hatra szorasi modell bevezetése és a letargiavaltozd sze-
rinti Laplace-transz formaci6é alkalmazdsa konstans egylUtthatéju linearis
differencialegyenletrendszerre vezet. Az egyenletrendszert tetsz6leges sza-
mu komponensre megoldjuk, és megadjuk az Osszeflggést az Utkodzési slriségek
és a kulonboz6 defektek kozoétt a Kinchin-Pease sugarkarosodasi modellben.
Részletesen vizsgaljuk kétkomponens(i anyagra beesdé harmadik tipusu részecs-
ke esetét, és a porlodasi spektrumot mindharom tipusu atomra numerikuséan
megadjuk.



1. INTRODUCTION

Relevant quantities of radiation damage /defect distribu-
tions, energy deposition, sputtering yield and spectrum/ have
been the interest of study over the past two decades or so.
These works, as is discussed in a number of publications
/Williams 1978a, Winterbon 1977, Sigmund 1969, Lewins 1965/
use eilther the forward or the backward forms of the pertinent
transport equation, and the choice is based either on the na-

ture of the problem or can be quite accidental.

Basically, there are two arguments on which expediency of
a particular form can be decided upon. One is the fact that in
the forward and backward equations the Tfinal and initial vari-
ables are operated upon respectively, and thus one of the forms
may be superior to the other because of the mathematical con-
sequences of this. With energy dependent scattering and in-
homogeneous media this even applies to the Green®s function of
the problem, which otherwise satisfies both the forward and
backward equations. Second, integrals of the Green®s function
with respect to the final variables satisfy the backward equa-
tion only and vica versa, which gives another hint which form
is more convenient to use in analogy to neutron transport theory
where selection between the two forms of the transport equation
is motivated by whether i1t iIs the source term or the detector

position which varies throughout a series of problems.



In this paper we choose the direct equation for the
collision densities in a multi-species medium. Electronic
stopping is neglected right from the beginning. Since we will
assume one incident particle, thus representing a point source,
the collision density so obtained iIs essentially the Green®s
function of the problem. Advantages of the forward equation in
connection with heterogeneous media have already been pointed
out by wWilliams /1979/. 1In the particular case presented here,
i.e. surface source with a half-space, forward equations are
easier to formulate since iIn the backward equations, source
position 1is operated upon and has therefore to be left arbit-
rary /Pazsit 1981./. Another advantage of the forward form here
is that different quantities of radiation damage will be obtai-
ned on integration of the same quantity with respect to the

corresponding arguments.

Multi-species collision processes have been the subject of
several communications. These works are either essentially
space-independent /Kostin 1966, Williams 1976a, 1978b/, or deal
with the space dependence by an expansion of the flux or
collision density according to Legendre polinomials and spatial

moments In Iinfinite media /Dederichs 1965, Winterbon 1980a,b’/.

Here, to preserve the possibility of obtaining an analytical
result, we approximate the scattering term by the so-called

forward-backward model of Fermi iIn the transport equation sys-



tem which will enable exact solutions to be obtained for the
collision densities of the different species throughout the
whole spatial and energy range. Calculation of the collision
densities is followed by the determination of the defect distri-
butions and the sputtering spectra. These latter will be given
numerically iIn case of an alien particle being incident on a

biatomic target to serve as an illustration of the general theory.
2. GENERAL THEORY

IT we consider a semi-infinite medium, stretching to the
right from the origin, consisting of different species i=1,2,...N|,
into which energetic particles are introduced according to the
source functions Qi/r ,g ,B/ /1=0,...M/, the collision density
of particles of type 1, G™/r ,Q,E/, will satisfy the forward-

type transport equation system:

1 ’ s N )
V—\ffi\gj){’bGiU'iX'E) +Ci<.r ,n.E) , PheHcUidLC’ K7 Cii.(E-$.e*0.e)
Kk~ ’
“Q@eecos eI»ICI,(r;nl_.E-ja.oGiCr.n’eM +Qitr.n.E} , /1/

with the boundary conditions
C) —Q:Cib,Q .BAT;(ralE) (or 1 *>0

Although the meaning of the symbols is familiar from literature,
let us elaborate a little for later convenience. So P~/E/ stands

for the damage model, i.e. gives the probability that an atom



of type 1, emerging from a collision with energy E will leave
the site. Here we employ the damage model of Kinchin and Pease
/1955/, according to which these probabilities are step func-
tions, that is
P+/E/ =1 if E > Ei
=0 if E < E+l

where E™ is called the displacement energy of the atom of type i.

is the probability density that a particle of type i1 with
0. and E will be knocked out by a particle of type J that

enters a collision at I' with O and E" .

Chj 1is the probability density that a particle of type 1,

entering a collision at r with Q" , E* with an atom of type j

will emerge with Il , E.

It is to be seen that the above definitions imply a re-
coil at each collision The fact that a particle can leave the
collision site only If its energy 1iIs greater thaji the displace-

ment energy is accounted for by the function PN /E/ above.

In general, and C~j can be factorized iInto terms des-
cribing the reaction probabilities, the post-collision energy

distributions and the dependence of scattering angle on energy

loss, 1i.e.

Cj,(F,FIE~O0. E) =CjiCr ,B) tCE>ENjL( E),



and

UL <,n eg"a g)=ct(rE) Ce=c)Yr Nn,,e*e>
where

Jio ~ Stc}-

According to the physical meaning of the factors iIn the

collision kernel we have the following normalizations
I CjcCr.E)- i
10
for the reaction probabilities,
$dEcyl:CEE ) - bIE 44j CE*E) w1
for the post-collision energy distributions, and
Sdll -"C/ao,E-* E}* 5dQ?4(/A0,E"E) > 1
for the scattering angle distribution. Furthermore, energy
conservation in a scattering implies the following relation:
4 g CE-4E) =cycj CEX* E- E) .
More details on the factorization and functional form of the

scattering kernel are given by Williams /1976b/. E.g. for hard

spere scattering

ECA-WipE"]"1 —for 6TET (AORjIE*jJ F <E.

0 otherwise ,
f " fof 6fKE *E 4 E 4 Eo 121
J 0 otherwise

where Eq 1s the upper limit on the energy of source functions

and
(At- Aj

T4 it A

being the mass of particles of type i.



As noted before, quantities characteristic of radiation
damage are given as integrals of the collision density in the
present approach. Before proceeding to the solution of eqns.
/1/ we list them first. We define then the following quantities

The number density of particles of type i1 leaving the half-
space at the surface point Jp in direction 1 and with energy
E is the sputtering distribution, denoted by S. /I ,0., E/
and is given as

SiC a,a BO Gic£0, 0

/3/
where n i1s the outer normal of the half-space at the surface

point ifD .

IT a particle of type 1 is knocked out from 1its site,
irrespective of whether the projectile leaves the site or not,
we call it a vacancy of type i and its spatial distribution
is given by

VI(r)E Z Yd-QdE Vji(E.0 Gj(E. N c2
74/
where Vj~/r ,E"/ is the probability that a particle of type jJ

with energy E* produces a vacancy of type 1 and is given as
WICCC ,b6)=CjVCCi )iciEl-P, (c )or ,tC(xele V74

Note that is neither the distribution of vacant sites since
the projectile may occupy it after collision, nor the distri-
bution of sites from where a particle of type i1 was removed,

for the /possibly trapped/ projectile can be of the same type.



Similarly, i1f a particle of type i gets stuck in a colli-

sion with a particle of species J Zirrespective of whether or

not the target will recoil/, we call it an interstitial of

type i1j. The expected number of interstitials at r reads as

I"Cr) -ScmdE1IWijCr.E"jGiCr.n.E") 16/

where Wij/_[ ,E/ is the probability that a particle of type

with energy E gets stuck at r in a collision with another

to

J
of

one of type j:

WAir.E*) = C4 (£.e') $dE CI-PiCEVIcy~r (Y -EY . v
Finally, i1f a projectile of type 1 has insufficient energy
leave the site and it causes a recoil of a particle of type
we call it a replacement. Again, replacements by a particle
the same type are included. The replacement distribution is
defined as

Rcj t£)* Sdiaa eV ci(c e )GiCjc,0.€") 181
where again, ~ ij tNe probability of a single event, i.e.

79/

In view of the above,
= vat") -1 FRjicr)

and



describe the distributions of the vacant and doubly occupied

sites, respectively.

It Is stressed that the above relations are based on the
assumption that the probability of nonlinear effects /such as

the occupying of a vacant site by a recoil etc./ 1is negligible.

We note Tinally that particle conservation implies the

following relationship between these quantities

idrd dnQ ice.0--r) - Jd F Gt o6 S tCE Q. )~

Sdr CE£ 1* it) - v* wr)] .

3. CALCULATION OF THE COLLISION DENSITIES

The equation system /1/ poses the same mathematical diffi-
culties as those one faces iIn the course of solution of the
single species case. Here, therefore, we have recourse to one
of the usual approximations, the synthetic scattering kernels
in which the energy and angular dependence is decoupled, al-
though particles are assumed to suffer the appropriate energy
loss. For further simplification we employ the one dimensional
model of Fermi, according to which particles travel along a
straight line but can reverse the direction of travelling with
a given probability on collision. Furthermore, energy indepen-
dent cross sections will be used. The host medium will consist
of N different species, but is assumed to be homogeneous and

stretching from x=0 to co



In terms of the transport equation, the above assumptions

imply that
CiCjC.EbcTL j C<:jCr.E)eC,j } Gi(r,n,E)-> CiCx."E),
= bviS(Z/A-J*") *M -b , /107

- by C*-p) * U-bv.j)8(/**pi}

where y* and ywJ are the pre- and post-collision directions of

flight, respectively, and they can only take the values +1.

Finally, assume that the post collision energy distribu-

tions depend on E"/E as

/n/
and
O<j (£-mb) » —, Ce "/EN,
We shall assume one incoming particle of type o, being

incident on the free surface, which means that the source term

takes the form
=Sc,0&Cx)6(y*-06CE-E0),

and will enter the equations in form of a boundary condition

only.

Introducing the lethargy variable u=In(EQ/E) and allowing

for /10/ and /11/, eqns /1/ reduce to
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AX +0 A 1Ck U “PAEAdUY [AYGG Vjiu-a)[ bji. CjCx,1,ul)

N , 712/
41'b,0)GICx,-l, &)] +£ Ctihiifu-ul[btjG;Un,u) t
J jJo J

with the boundary conditions

x% G bO(,y, w) =0 1

and

Gi CO, A,u) *6i,0 6Cu3"ClMo/ EO .
GN/X, ja.- , W/ here denotes the collision density per unit
energy interval. We shall now assume that the displacement
energies are all equal to , In which case one can for-
mally omit P~A/E/ in /12/on the understanding that G/x, w, E/

is the true solution for E>Ed whilst Glzo for E<E§'

Taking Laplace transform with respect to mn yields
(ollx +70COx,n.B) =JoAii.cs)[bIIG 1(x.1,s)+ n-bjOGytx.-1.s)]
/13/
+jzf.o AijCs"jLU. GECxM, C1-bi])Gclv,-1.6)3 ,
where
AliCr*Cj™bjtCs™ ) Aq Cs)*Cej bNJCSN .
The boundary conditions read

G CXiuiB) ro 1

X o
G1C .A.s" = 6Co40/E0 .
Introducing the functions
GvCx.s4 - GcCxH, S'i+ G vCx s) ,
and /14/

<3iCx,S) C S tCx, 1, &) -CtCv.-1, s) ,



11

leads to
I A - W
*A N r .91
and A *
i gk J%-0) g dp Gr L&) . /15/
where

aoj) * UbjC—O-FaﬂE C2b;K-01] ,
<0
ckj » *&cjt é*onm« -N] e
Note that for isotropic scattering, i.e. if br"=b"=1/2 one

has «27~=- & N .

Differentiating the first eqn in /15/ will help eliminate

g” to arrive at

G ut*.s) eXjfc Gj C~. 6} t /16/

~ Z <x*<dK\
S,
In case of 1i1sotropic scattering thj=—
Making use of the relation
cMCo.sN = 2Gvto ,Vs)-C~o0,s™
the boundary condition can be iInverted to
1S - 2 cC
er-ax i " 'P'®Go -7 Gj to, - /17/

The general solution of equation system /16/ 1is

iffwe -w , /is/

where U>""/x/ are polynomials and the are the positive

roots of the characteristic equation
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detfit ;- ;488 'O

Assuming Tfor the moment that the characteristic equation has
n+l nondegenerate roots with positive real parts, the coeffici-
ents are constants and as seen from eqgn /16/, they
satisfy the equation system

orf jlo */ N /19/
—» o for x—moo can be ensured by assuming Re /W, />0 if

Re /s/>sq with some given sQ, and it follows from eqn /17/ that

It may be worth noting that for sufficiently large real values
of s

X X, « 1,
both an<3 N ij being proportional to Laplace transformed

functions, thus

~dij ~ ~5¢j )

4y 6cj
Consequently for large values of s the roots of the characteris-
tic equation lie near the CT"-s:

~ <7\
and thus if the cross sections <3 are all different the
characteristic equation iIs expected to have n+l different roots
with positive real parts. In the next section explicit bounds
on the roots will be given for the case of isotropic hard-sphere

scattering.



13

According to the above results the Laplace transforms of
the collision densities can be determined simply by solving a
number of algebraic equations. The i1nverse transform is, how-
ever a rather invidious task and can only be performed in some
special cases. A couple of examples when the analytical inver-
sion is possible is reported by Lux and Pazsit /1981/ for the
single species case. In more complicated cases one of the nu-

merical methods i1s to be resorted to.

In the next section, the case of hard-sphere 1isotropic
scattering is examined in some depth. Extension of the results

to energy dependent cross sections is In progress.

4. THE CASE OF ISOTROPIC HARD SPHERE SCATTERING

In what follows it will be assumed that the scattering is
isotropic iIn the L.S. and that the post collision energy is
distributed uniformly iIn an interval determined by the mechani-

cal hard sphere law. This means that cy” and cy.” are given

by /2/, and also that

U-occjVv" [or cx"E’i E T e"™ Eo
oiWerwCia
in egn /11/ and onwards Xj~/s/ and X -Ly/s/ in eqn /13/

will read

/21/



14

Recalling that ~ij= """ 1ijJ in the isotroPic case,
tj *-dij = - - (A -M 7/ 722/
where
© ,,
Ai ¢ 51 At
U»o

In this simplified case the differential equation system /16/

becomes

( Al- )Gi C*,S) = £" A]tGj CXi£) , 723/

and the algebraic equations /19/ and /20/ reduce to

* *
< .- A =AY
(fi. A -t 4X XN, 201, N:n0.1.. N, 12/
and
, 1=0,1,...n /25/
r)(:l":le-I-O ~O !

where the Vrﬁl -s are the roots of the characteristic equation
2
det C AjL + CAt-\~* --0, /26/
and the -s are chosen as the branches of the square roots
that have positive real parts for Re/s/ being sufficiently
large. As it is shown in the Appendix, the roots of the charac-
teristic equation /26/ satisfy the inequalities
I

|- O R 1a) <L ReCs™) > 2
These i1nequalities facilitate the determination of the roots
by confining them into a circle around CTf , but they also

amount to saying that Re/ />0 if
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w _ (yf
ISI >2 (\’ijlrI agj _'EU%) ) and T3E&)b1l.

The latter result enables one to select the most suitable path

of integration in numerical inverse Laplace transformations.

4_.a. Defect distributions
In the isotropic hard sphere scattering model eqn /5%/

becomes

cl f
VjiCx.E*") Cjt $dE [EM-0°] x ")
!

and passing on to the lethargy variable, the vacancy distribu-

tion from /4/ reads

V. Cx,udw  b-%4 Sduf(i-«"e-u-e-w*]JCa@x."(
Y-o o

where

v Uar INCE«/Ea) j utj- *wax (O, Ua ¢ dnO-<Vi))

Its Laplace transform with respect to ualis
V;U.O« Li-~T ]JC;C*. *
"ms J . \ 1(GCvpCx, a0
J--
or from egn /23/

VAU.s) -|°L\-AiCs+0-"i"J Citx. a*0 =

Similarly, from eqns /6/ and /7/ fTor the interstitial distri-

butions we have
l‘a

(> By s M Ce-*"-«ne‘u)  xul,

with urj= max (O, ud + lvvaij).
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Taking Laplace transform yields

LiCx.sl = & ~r5:)]C1(x,3.0=]nc.J-A.1C5.D]CIx,i, 0 .

rinally for the replacement distributions, from eqns /8/ and /9
chxmie”

MHG dEc~ric~rE]" =
»

SH
(Ea(C-Cn)

f _5-U- [ ~4. - c*j] A~ 2EN<KC <rn~(E0) ® )
1 L E J

) -bl - LU-Wvj)- <B * ~von CE. (QEM .

Thus, 1in terms of lethargy the replacement distribution takes

the form N n
Kiiu.tt,,) i du-Ce-"-"e-"Ciil«,N *
J I- Cw V]
LH_I
+ s durtl-(Xv;j)e“U-e" kil Gax,u)i ,
uw- Il

noting that the integrals are to be set to zero whenever the
lower limits of iIntegrations exceed the upper ones. Practically
that means that the first integral is nonzero if

2Ed < Ea/oC 4§ ,
and the second is nonzero 1if

Ed/(1- X < 2Ed ,
the two conditions leading to the conclusion that there is no

replacement if
X+. > 0.5

Accordingly, for (X?jJ>0.5 V1 and 1 do represent the distri-

butions of the vacant and doubly occupied sites.

Taking Laplace transform of the replacement density with

respect to u” yields
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--3" m- Ccx™4Y nm-o0obl5-2"6]GiCk,s*0

Rl (x-5) O-cwBC3H)

for IXij<1/2-
Inversion of these formulae in the single species medium is

given by Lux and Péazsit /1981/.

4 b. Sputtering spectra
Once the collision densities have been obtained, the
sputtering distributions per unit lethargy are readily avai-

lable by /3/ and /17/ as
* EOe~u * G;tofu)Ar* - bi.o6 tu) ,
or in the Laplace domain
= f0CL(0.3*0 - hi,o
According to /18/,
Gt CO,S) - ao

where the are the solutions of the algebraic equation

systems /19/ and /20/.

In the isotropic hard-sphere case the simplifications
represented iIn eqns /21/-/26/ can be allowed for. In what
follows we shall illustrate this by considering the case of
an alien particle impinging on a binary target. To take advan-
tage of any possible analogies with the theory of neutron ther-
malization, the alien particle will sometimes be referred to

as a neutron.
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Since the medium does not contain the primary particle

o *ADrAlJOjJ AO-M, +AQJ ;

which means that the equations of GQ decouple from those of G»
and GN. Accordingly,
yar \~N10)
Eedd™= 2rrevqcTo®*W0) ,  M;0) * *0'
and thus the neutron sputtering spectrum in the Laplace domain

1S

liTo o 40

_ 127/
~Co=o ~tl 07D* @4l

To determine Sx and go" first one has

V,\ - 1Cd, ¢dj. i |(du-djaFi/d 3

where

ri, = "ia ( 1- A; - >u4) - Ce M ,
and

d, » Au An
For the /1=1,2/, eqn /24/ yields

- Or,a Xo,
- N o4(dirv)N e x0

which, since the r_h.s. is nonzero for n=0 only, serve to
determine Llig) and UB> , while for n=1 and 2 they coincide to
yield

4" mc(;

/728/
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Eventually, the remaining four coefficients /i ,n=1,2/ can
be obtained by putting /28/ into /25/ which, taking ) as

known can be cast into the form

Z & +vOonre o -("T,4 "To)(po°
NIg_(o~i+\i‘)—f(}l-2> =N ev,) A2 .
Having determined /n=1,2/, the remaining spectra are
iven as
9 2

184s) =E0Z pm\64-0 AT\
A 729/
SN and S2 are in principle similar, though more complicated
constructs as S /s/. Their inversion is hindered by the fact
that the )l1, will have an infinite number of zeros /Sengupta
and Srikantiah, 1974/, leading to an infinity of branch cuts
in S~/s/ on the complex s plane /Williams,1979/. Inversion can
be given as a sum of line integrals, the one along the cut on
the real axis giving the asymptotic solution, and the rest

accounting for the Placzek discontinuities /Williams 1979/.

This technique, although theoretically exact, is not very
useful for numerical calculation of the spectra as the zeros
of ! can only be given approximately /Sengupta and Srikan-
tiah 1974/, and also that especially for small u values

[u<<In(l/ £\ )] a very large number of terms has to be con-

sidered to attain convergence /Williams 1966/.
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Thus, it seems much more expedient to invert /27/ and
/29/ by direct application of numerical inversion codes. This,
as mentioned before, 1is facilitated by the approximate know-
ledge of the singularities of on the complex plane which
enables one to select the path of iIntegration in the most effec-

tive way from the numerical point of view.

The results of a calculation of S™/u/, with the para-
meters as given in Table 1. are displayed in Fig.1. The Placzek
discontinuities at u=-In u=-In/l- o< 72/, etc. can well
be noticed. The nature of these discontinuities is investiga-

ted i1n another forthcoming publication.

We also notice that the spectra and S2 increase with

lethargy in contrast with SO" due to there being an increasing

number of recoils, a fact observed by Williams /1976a/.

5. SUMMARY AND CONCLUSIONS

Introduction of the Fermi scattering model into the for-
ward equations of the multispecies transport problem and Lap-
lace transform with respect to lethargy reduced the problem to
a form amenable to analytic solution. Collision densities, de-
fect distributions and sputtering spectra were given in closed
form in the Laplace domain. This result in itself iIs iInteresting
since energy deposition, another characteristics of radiation

damage, is proportional to g\/x,s=1/ /Williams,1979/ without
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Fig.-
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the need to inverting it. Calculation of the defect distri-
butions and sputtering spectra nevertheless necessitates
performing the inverse Laplace transform. Analytical inversion
of these functions is possible in principle, based on the works
of Sengupta and Srikantiah /1974/ and Williams /1979/. The re-
sulting expressions are, however, not especially well suited
for analytical work. Some investigation of the analytic pro-
perties of the characteristic equation, presented here, made
application of numerical inversion codes troublefree. This was
illustrated by calculating the sputtering spectra for a biato-
mic target with an alien incident particle. The results are in

agreement with some other work in this field.

The situation occuring here bears some resemblance to
other cases of radiation damage calculations. For instance, in
three dimensional calculations, space-energy dependent coeffici-
ent of the Legendre polinomials are given in the Laplace domain
as solutions of a linear equation system /Dederichs 1965,
Winterbon 1980a/. This is just another situation where numeri-
cal Laplace transform seems promising, this method is there-
fore likely to have more applications in radiation damage prob-

lems .

APPENDIX

Bounds for the roots of the characteristic equation
Introduce a new quantity u” iInstead of the i-th root

of the characteristic equation /26/ as
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then the characteristic determinant /after transposition/ takes

the form

deA[Xtj + CAt-yUO] “ O .

According to classical results the eigenvalue 27 of the

determinant falls into the Gersgorin circle
\ -Av -"Mi.1 ~ gl )
or

M
IAM « X IA,1 ¢ lnn -
> b

It follows from eq /21/ that
\»S @ \ /1G\ -
where x=Re/s/. Now for x>2
141 < fsi (" -«d
and, taking into account that

ITI. <
we have

n |

X Kijl = Z for Re/s/>2

/A1/

/A2/

Turning to the second term on the r.h.s. of eqn /Al/, from

eqn 722/
Ki
I ~ "™ _n-<,5 . 1+cxi(
*Til f;,cu
and thus
A } 4
ul é%jiprb I|_*z' for Re/s/>2

Insertion of eqs /A2/ and /A3/ into /Al/ yields

/A3/
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> 2 M oa
V/\VA Bl -1 B\ *E£CN\T-iN) for Re/s/>2.

We note that by analogy with the derivation above it can be

seen that for real s values

R |
iHl1 6
if s>2, real.



TABLE 1

N- 0.36

0.4444

0.5

0.7

0.3

10.

25



26

REFERENCES

Dederichs P_.H. /1965/ Phys.Stat._.Sol .10, 303-18

Kinchin G.H. and Pease R.S. /1955/ Rep.Prog -Phys .113,1

Kostin M.D. 71966/ J .Appl.Phys.37 3801-4

Lewins J./1965/ Importance, the adjoint equation. Pergamon Press.
Lux I, and Pazsit 1. /1981/ Submitted to Rad.Effects.

Pazsit 1./1981/ Phys.Stat.Sol .2, Vol.103.

Sengupta A. and Srikantiah G./1974/ J.Phys.D.7, 1918-27

Sigmund P./1969/ Phys. Rev. 184,383

Williams M_M_R. /1966/ The slowing down and thermalisation of
neutrons. /Amsterdam:North-Holland/

/1976a/ Rad.Effects 30, 147-57
/1976b/ J_Phys_.A_.9, 771-83
/1978a/ Ann_Nucl _Energy 5, 149-50
/1978b/ Rad.Effects 38, 159-64
/1979/ Ann_.Nucl _.Energy 6, 154-73
Winterbon K.B. /1977/ Appl .Phys.Lett. 31, 649
/1980a/ Rad.Effects 46, 181-88

/1980b/ Rad.Effects 48, 97-100






£E7 N N

Kiadja a Kozponti Fizikai Kutatd Intézet
Felel6s kiadd: Gyimesi Zoltan

Szakmai lektor: Szatmary Zoltan

Nyelvi lektor: Valké Janos

Peldanyszam: 310 Torzsszam: 81-304
Készilt a KFKI sokszorositd Uzemében
Felel6s vezetd: Nagy Karoly

Budapest, 1981. majus ho



