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ABSTRACT

Space-energy dependent forward type equations for the collision densities 
of energetic atoms in multi-species semi-infinite homogeneous medium are for
mulated. Introduction of the one-dimensional isotropic forward-backward model 
of Fermi for the scattering and application of the Laplace transform with 
respect to the lethargy variable will lead to a linear differential equation 
system with constant coefficients. This equation system is solved for an 
arbitrary number of species and relations between the collision densities 
and defect distributions of the different species are given in the Kinchin 
Pease model. The case of an alien particle incident on a two-component target 
is examined in some detail and the sputtering spectra are given numerically.

АННОТАЦИЯ

Для описания плотности столкновений энергетических атомов в однородном 
многокомпонентном полупространстве выведены уравнения прямого типа, зависящие 
от пространства и энергии. Введение одномерной изотропной модели рассеяния 
вперед-назад типа Ферми и применение трансформации Лапласа по переменной ле
таргии приводит к системе линейных дифференциальных уравнений с постоянным 
коэффициентом. Система уравнений решается для произвольного числа компонентов 
и дается взаимосвязь между плотностью столкновений и распределением дефектов 
различного типа в модели радиационного повреждения Кинчин-Пис. Подробно изу
чается случай попадания в двухкомпонентный материал третьей частицы и для 
всех трех типов атомов дается спектр распыления в цифровой форме.

KIVONAT

Tér- és energiafüggő, előre tipusu egyenleteket állitunk fel homogén 
többkomponensű féltérben energetikus atomok ütközési sűrűségére. A Fermi- 
féle izotróp előre-hátra szórási modell bevezetése és a letargiaváltozó sze
rinti Laplace-transz formáció alkalmazása konstans együtthatójú lineáris 
differenciálegyenletrendszerre vezet. Az egyenletrendszert tetszőleges szá
mú komponensre megoldjuk, és megadjuk az összefüggést az ütközési sűrűségek 
és a különböző defektek között a Kinchin-Pease sugárkárosodási modellben. 
Részletesen vizsgáljuk kétkomponensű anyagra beeső harmadik tipusu részecs
ke esetét, és a porlódási spektrumot mindhárom tipusu atomra numerikusán megadjuk.



1. INTRODUCTION

Relevant quantities of radiation damage /defect distribu

tions, energy deposition, sputtering yield and spectrum/ have 

been the interest of study over the past two decades or so.

These works, as is discussed in a number of publications 

/Williams 1978a, Winterbon 1977, Sigmund 1969, Lewins 1965/ 

use either the forward or the backward forms of the pertinent 

transport equation, and the choice is based either on the na

ture of the problem or can be quite accidental.

Basically, there are two arguments on which expediency of 

a particular form can be decided upon. One is the fact that in 

the forward and backward equations the final and initial vari

ables are operated upon respectively, and thus one of the forms 

may be superior to the other because of the mathematical con

sequences of this. With energy dependent scattering and in

homogeneous media this even applies to the Green's function of 

the problem, which otherwise satisfies both the forward and 

backward equations. Second, integrals of the Green's function 

with respect to the final variables satisfy the backward equa

tion only and vica versa, which gives another hint which form 

is more convenient to use in analogy to neutron transport theory 

where selection between the two forms of the transport equation 

is motivated by whether it is the source term or the detector 

position which varies throughout a series of problems.
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In this paper we choose the direct equation for the 

collision densities in a multi-species medium. Electronic 

stopping is neglected right from the beginning. Since we will 

assume one incident particle, thus representing a point source, 

the collision density so obtained is essentially the Green's 

function of the problem. Advantages of the forward equation in 

connection with heterogeneous media have already been pointed 

out by Williams /1979/. In the particular case presented here, 

i.e. surface source with a half-space, forward equations are 

easier to formulate since in the backward equations, source 

position is operated upon and has therefore to be left arbit

rary /Pázsit 1981./. Another advantage of the forward form here 

is that different quantities of radiation damage will be obtai

ned on integration of the same quantity with respect to the 

corresponding arguments.

Multi-species collision processes have been the subject of 

several communications. These works are either essentially 

space-independent /Kostin 1966, Williams 1976a, 1978b/, or deal 

with the space dependence by an expansion of the flux or 

collision density according to Legendre polinomials and spatial 

moments in infinite media /Dederichs 1965, Winterbon 1980a,b/.

Here, to preserve the possibility of obtaining an analytical 

result, we approximate the scattering term by the so-called 

forward-backward model of Fermi in the transport equation sys-
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tern which will enable exact solutions to be obtained for the 

collision densities of the different species throughout the 

whole spatial and energy range. Calculation of the collision 

densities is followed by the determination of the defect distri

butions and the sputtering spectra. These latter will be given 

numerically in case of an alien particle being incident on a 

biatomic target to serve as an illustration of the general theory.

2. GENERAL THEORY

If we consider a semi-infinite medium, stretching to the 

right from the origin, consisting of different species i=l,2,...N|, 

into which energetic particles are introduced according to the 

source functions Q i/г , rj ,E/ /1=0,...М/, the collision density 

of particles of type i, G^/r ,Q,E/, will satisfy the forward- 

type transport equation system:

1 , , n ,
Wfir,yi.GiU'ix.E) + C i< .r  , n .E )  , P ^ e H c U id L C ’ к 7 C i i . ( £ - $ . e * 0 .e )~ v3cl.r.C) ~ ;

Ki ^
“(v.cc.ö .e’)-» lCi,(r;nl.E-ja.oGiCr.n’e M  + Qitr.n.E} , /1/

with the boundary conditions

C ) -- Q;Cíb, Q .E)0T;(rai E ) (or Л  * > О

Although the meaning of the symbols is familiar from literature, 

let us elaborate a little for later convenience. So P^/Е/ stands 

for the damage model, i.e. gives the probability that an atom
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of type i, emerging from a collision with energy E will leave 

the site. Here we employ the damage model of Kinchin and Pease 

/1955/, according to which these probabilities are step func

tions, that is

P±/E/ = 1  if E > Ei

= 0  if E < E±l

where E^ is called the displacement energy of the atom of type i.

is the probability density that a particle of type i with 

O. and E will be knocked out by a particle of type j that 

enters a collision at Г with О  and E' .

Chj is the probability density that a particle of type i, 
entering a collision at r with Q.' , E' w ith an atom of type j

will emerge with Г1 , E.

It is to be seen that the above definitions imply a re

coil at each collision The fact that a particle can leave the 

collision site only if its energy is greater thaji the displace

ment energy is accounted for by the function P^ /Е/ above.

In general, and C^j can be factorized into terms des

cribing the reaction probabilities, the post-collision energy 

distributions and the dependence of scattering angle on energy 

loss, i.e.

Cj, (f , fl, E’~vO. . E) = Cji С г ,E) t C E'-> E ^ j L ( E ) ,
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and

Ц <>, п ;е'- а ,е) = ctJ(г. Е') Се'-* с)̂  С/л,, е'-* е>
where
JUio ~ Stc}'

According to the physical meaning of the factors in the 

collision kernel we have the following normalizations

I  C j c C r . E ) - i 
1*0

for the reaction probabilities,

$ d E cyJi: С E E  ) -  Ы Е 44 j С E -* E) ■* 1

for the post-collision energy distributions, and 

S сШ - ^ С / ао, E - *  E 1) • 5 d Q ? 4 ( / A o , E ^ E )  > 1

for the scattering angle distribution. Furthermore, energy 

conservation in a scattering implies the following relation:

4  cj С E -4 E ) = cycj СЕ1“* E -  E ) .

More details on the factorization and functional form of the 

scattering kernel are given by Williams /1976b/. E.g. for hard 

spere scattering

j

ECA-WipE']'1
0

-for ö í E í  (A-OfvjíE* j F •<.' E. 
otherwise ,

, иf -fof öfkjE * E 4 E 4 Eo

О  o t h e r w i s e
/ 2 /

where Eq is the upper limit on the energy of source functions 
and

*4
( A t - Aj
' ' A i t  A j

being the mass of particles of type i.
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As noted before, quantities characteristic of radiation 

damage are given as integrals of the collision density in the 

present approach. Before proceeding to the solution of eqns.

/1/ we list them first. We define then the following quantities 

The number density of particles of type i leaving the half

space at the surface point Jfp in direction Г1 and with energy 

E is the sputtering distribution, denoted by S. / Г , O. , E / 

and is given as

Si C a ,a В 0  G i c £ 0,, О
/3/

where n is the outer normal of the half-space at the surface 

point if D .

If a particle of type i is knocked out from its site, 

irrespective of whether the projectile leaves the site or not, 

we call it a vacancy of type i and its spatial distribution 

is given by

Vi ( r) = Z  У d  -Q d  E  ’ V j  i ( £. О  G  j (£. Л ’, c 1 >
/4/

where Vj^/г ,E'/ is the probability that a particle of type j 

with energy E' produces a vacancy of type i and is given as

V/jC CC , Б ) = CjVCCi ) iciEl-P, (c )or,t C(-•«•!• /5/

Note that is neither the distribution of vacant sites since 

the projectile may occupy it after collision, nor the distri

bution of sites from where a particle of type i was removed, 

for the /possibly trapped/ projectile can be of the same type.
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Similarly, if a particle of type i gets stuck in a colli

sion with a particle of species j /irrespective of whether or 

not the target will recoil/, we call it an interstitial of 

type ij. The expected number of interstitials at r reads as

where W . ./ Г ,Е/ is the probability that a particle of type i 1J ~
with energy E gets stuck at r in a collision with another 

one of type j :

Finally, if a projectile of type i has insufficient energy to 

leave the site and it causes a recoil of a particle of type j , 

we call it a replacement. Again, replacements by a particle of 

the same type are included. The replacement distribution is 

defined as

I^Cr) - S c m d E 1 WijCr.E'jGiCr.n.E') / 6 /

W ^ i r . E * )  = C4 ( £ . e ’ ) $ d E  C l - P i C E V l c y ^  ( У - Е У  . IV

Rcj t £ ) * Sdiaa eV cí(c .e')GíCjc,o.e') / 8 /

where again, ^  ij t îe probability of a single event, i.e.

In view of the above,

= vat') - 1  'Rjicr)
and

/9/
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describe the distributions of the vacant and doubly occupied 

sites, respectively.

It is stressed that the above relations are based on the 

assumption that the probability of nonlinear effects /such as 

the occupying of a vacant site by a recoil etc./ is negligible.

We note finally that particle conservation implies the 

following relationship between these quantities

i d r d ^ d ^ Q ' i C ’C.Q--^-) - J d  f ci A  cl G  S  t C ■£ , Q. , E ) ~
Sdr C £  I* it) - v* t■/;).] .

3. CALCULATION OF THE COLLISION DENSITIES

The equation system /1/ poses the same mathematical diffi

culties as those one faces in the course of solution of the 

single species case. Here, therefore, we have recourse to one 

of the usual approximations, the synthetic scattering kernels 

in which the energy and angular dependence is decoupled, al

though particles are assumed to suff er the appropriate energy 

loss. For further simplification we employ the one dimensional 

model of Fermi, according to which particles travel along a 

straight line but can reverse the direction of travelling with 

a given probability on collision. Furthermore, energy indepen

dent cross sections will be used. The host medium will consist 

of N different species, but is assumed to be homogeneous and 

stretching from x=o to со
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ln terms of the transport equation, the above assumptions 

imply that

CiCjC.EbcTL j C<:jCr,E) e C„j } Gi(r,n,E)-> CiCx.^E),

= bvjS(/A-j*') * M -Ь , /Ю/

- bcj($ C^-p) * U-bv.j )§(/** pi}

where y* and yuJ are the pre- and post-collision directions of 

flight, respectively, and they can only take the values +1.

Finally, assume that the post collision energy distribu

tions depend on E'/E as

/ И /

and
Cy<j (.£'-*■ Б) » — , Сб'/Е̂  ,

We shall assume one incoming particle of type o, being 

incident on the free surface, which means that the source term 

takes the form

= Sc,o&Cx)6(y*-06CE-Eo),

and will enter the equations in form of a boundary condition 

only.

Introducing the lethargy variable u=ln(EQ /E) and allowing 

for /10/ and /11/, eqns /1/ reduce to
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^X + O ^ lCx , fX'U.) ‘ P^E^du! [ZL̂ Cji V»ji(u-a)[ bji. CjCx,1,ul)

4 l ' b , ú ) G lCx,-l, á ) ]  + £  C t i h i i í u - u l [ b tj G ; U n , u )  tJ j:o J
/12/

with the boundary conditions

til«"' G bCx,u, u.) = О IX-* <VO /
and

Gi CO, A ,u) *• 6i,o бСиЗ'СПо/ E 0 .

G^/x, ja. , и/ here denotes the collision density per unit 

energy interval. We shall now assume that the displacement 

energies are all equal to , in which case one can for

mally omit P^/E/ in /12/on the understanding that G^/x, yu, Е/

is the true solution for E>E. whilst G.=0 for E<E,.d 1 d

Taking Laplace transform with respect to и yields 

(ollx +'0СДх,и.Б) = J-oAii.cs)[bJlG 1(x.l,s)+ n-bjOGytx.-l.s)]

+ Z. AijCs'jLU. GtCxM, C1-bi])GcCv,-l.ő)3 ,jfO
where

A]i CŜ  * Cj^bjtCs^ ) Aq Cs) * Cej b^jCS^ .

The boundary conditions read
G : CXiuiß) r О IX От I

G lCo .A.s '} =• 6Co4o/Eo .
Introducing the functions

G v C x . s 4) - G c C x H ,  S'i + G vCx s)  ,
and

/13/

<3iCx,S) C S tCx, 1, £>) -CtCv.-l, s) ,

/14/



11

leads to
I A - w
*34 ^ r t* . s') I

and A *4
J“. ;r QuCx,6) r Z du G; LXy&) ,tti 9x J j*o J J 1 /15/

where
aoj * U b j c - 0  + 5„д[г С2Ь;К- 0 И ]  ,

k«o
ckj » * &cjt Z Ли« -^1 •Ч*о

Note that for isotropic scattering, i.e. if Ь ^ = Ь ^ = 1 / 2  one 

has «2^=- &  ^  .

Differentiating the first eqn in /15/ will help eliminate 

g^ to arrive at

G ut*.s) «• Xjfc Gj C*. 6} t /16/

with
~ Z  <=*■«. * <d K\

Si,
In case of isotropic scattering t^j=—

Making use of the relation
c^Co.s^ = 2 G vt o , V s ) - C ^ o , s ^

the boundary condition can be inverted to

I S - 2 c M _
er- Эх "■ ̂ " "p" ®Go - 71 Gj to, . /17 /

The general solution of equation system /16/ is

i f f ’w e - w , /is/

where Ц>^^/х/ are polynomials and the are the positive

roots of the characteristic equation
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det [ i t ,  -  —  a 3 ' О  .J J g-.*

Assuming for the moment that the characteristic equation has 

n+1 nondegenerate roots with positive real parts, the coeffici

ents are constants and as seen from eqn /16/, they

satisfy the equation system

erf l *4 ^jto
/19/

—» о for x — *■ oo can be ensured by assuming Re / VV, />0 if 

Re /s />s q with some given sQ , and it follows from eqn /17/ that

It may be worth noting that for sufficiently large real values 

of s

X X,j «  1 ,
both an<3 Л  ij being proportional to Laplace transformed
functions, thus

~ dij ^ ~ 5cj )
i . e .

ч 6cj .
Consequently for large values of s the roots of the characteris

tic equation lie near the CT^-s:

~ <T\
and thus if the cross sections <3̂  are all different the 

characteristic equation is expected to have n+1 different roots 

with positive real parts. In the next section explicit bounds 

on the roots will be given for the case of isotropic hard-sphere 

scattering.
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According to the above results the Laplace transforms of 

the collision densities can be determined simply by solving a 

number of algebraic equations. The inverse transform is, how

ever a rather invidious task and can only be performed in some 

special cases. A couple of examples when the analytical inver

sion is possible is reported by Lux and Pázsit /1981/ for the 

single species case. In more complicated cases one of the nu

merical methods is to be resorted to.

In the next section, the case of hard-sphere isotropic 

scattering is examined in some depth. Extension of the results 

to energy dependent cross sections is in progress.

4. THE CASE OF ISOTROPIC HARD SPHERE SCATTERING

In what follows it will be assumed that the scattering is 

isotropic in the L.S. and that the post collision energy is 

distributed uniformly in an interval determined by the mechani

cal hard sphere law. This means that c y ^  and cy.^ are given 
by /2/, and also that

U-occjV' [or cx^ E ’í E í e ' ^ E o

oiWerwCia
in eqn /11/ and onwards Xj^/s/ and Х -Lj/s/ in eqn /13/
will read

/21/
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Recalling that ^ i j = ” ^ ij in the isotroP ic case,

tij * - dij = - - £i)j (Ai - M  / /22/

where
•о „

Ai  • 51 At« .U»o
In this simplified case the differential equation system /16/ 

becomes

( AI - ) Gi C* ,S) = £" A]t Gj CXi£) , /23/

and the algebraic equations /19/ and /20/ reduce to

* *4( £ . < A ; - t ^ 4 x  x j ; ^ '  , o ,
' 4 i Js0 i=0,1,...N;n=0,1,. . . N, /24/

and

, i=0,1,...n /25/£  Q  + 0 ,n:o 1  ̂О

awhere the V n -s are the roots of the characteristic equation
2

det C AjL + CAt- \ * --O, /26/

and the -s are chosen as the branches of the square roots

that have positive real parts for Re/s/ being sufficiently 

large. As it is shown in the Appendix, the roots of the charac

teristic equation /26/ satisfy the inequalities

l £ - ' l -  ( I , ? c )
'=>' U  £,ClJ l-a./ <-{ ReCs') > 2 .

These inequalities facilitate the determination of the roots 

by confining them into a circle around CTf , but they also 

amount to saying that Re/ />0 if
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4

w (yf
ISI > 2 ( \ *■ I Cij -r-̂ p ) and T3e.Cs ) Ъ 1 .jrl '-UfSl

The latter result enables one to select the most suitable path 

of integration in numerical inverse Laplace transformations.

4.a. Defect distributions

In the isotropic hard sphere scattering model eqn /5/ 

becomes

VjiCx.E')
Cl f

Cjt $ dE [ЕИ-о^] ж " ~£> )
/̂4

and passing on to the lethargy variable, the vacancy distribu

tion from /4/ reads

V .  Cx,udw  b-%4 S d u [ ( i - « ^ e - u - e - u<‘ ] C 14 x . ^ (
У-o о

where
v Ua r In С E«/ Ea) j utj- * wax ( 0 , Ua ♦ dn0-<Víj))

Its Laplace transform with respect to ua is

V;U.O« Li-^T ]C;C*. *
^ ^

'■s J \ ’i, (S+OCvjCx, a-*0
j-.O

or from eqn /23/

V^U.s) - |° L \ - A i C s + O - ^ i ^ J  Citx. a*0 •

Similarly, from eqns /6/ and /7/ for the interstitial distri

butions we have
“a

I i j ( * . « ; >  'Ьтё>. ,j- Л и  С е - “ " - « и e ‘ u ) x ,u l ,J ' 014 u-j
with u^j= max (0, ud + l v v a ij).
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Taking Laplace transform yields

LiCx.sl • ĉ ~ r 5 ;j)] C 1(x,3 . O  = |nc.J -A.1C5.l)]C1<x,i,.0 .

rinally for the replacement distributions, from eqns /8/ and /9
chxmie’

x l;(*(eV  5 , d E c ^ i c ^ E ] '  =
■> (Ea ( С- Сд)

f _5-Ч - [  ~4. - c*Vj ] ^  2ЕЛ <. C < r n ^ ( E 0) ■—  )
l-ê j L E' J

) - Ы -  LÜ-Wvj)- < Б * ~vcn СЕ.(2ЕГ^ .

Thus, in terms of lethargy the replacement distribution takes 

the form  ̂ ^

KiiU.tt,,). i  d u - C e - ^ - ^ e - ^ C i i « , ^  *
J l- СЧЧ  U  -j

Ц+'
+ s duLtl-(Xv;j)e'U -e'U<il Gax,u)i ,
û - lr,l

noting that the integrals are to be set to zero whenever the 

lower limits of integrations exceed the upper ones. Practically 

that means that the first integral is nonzero if

2Ed < Ea/oC i-j ,
and the second is nonzero if

E d/(1- <X < 2Ed ,
the two conditions leading to the conclusion that there is no 
replacement if

(X ±_. > 0.5
Accordingly, for (X^j>0.5 \Л and I^j do represent the distri

butions of the vacant and doubly occupied sites.

Taking Laplace transform of the replacement density with 

respect to u^ yields

*
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Rój (x.s) - - 3 '  ■ - Ссх^Ч и - о Ы 5” -2'6] G íCk,s * 0
О-сщвСзн)

for ÍXij<1/2-
Inversion of these formulae in the single species medium is 

given by Lux and Pázsit /1981/.

4 .b. Sputtering spectra

Once the collision densities have been obtained, the 

sputtering distributions per unit lethargy are readily avai

lable by /3/ and /17/ as

* E 0 e.~u * G ; t o f u ) A r *  -  bi.o 6 t u )  ,

or in the Laplace domain

= f0C L(o.3*0 - hi,о .

According to /18/,

G t CO, S) -- X
M O

where the are the solutions of the algebraic equation

systems /19/ and /20/.

In the isotropic hard-sphere case the simplifications 

represented in eqns /21/— /26/ can be allowed for. In what 

follows we shall illustrate this by considering the case of 

an alien particle impinging on a binary target. To take advan

tage of any possible analogies with the theory of neutron ther- 

malization, the alien particle will sometimes be referred to
as a neutron.
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Since the medium does not contain the primary particle

Cjo * A JO r Ajfl J0 j A0 - An, + A0J ;

which means that the equations of GQ decouple from those of G-  ̂

and G^. Accordingly,
У0г \ ~ Л 0)

E e4>a°'= 2rr«V(<T0 •* W0 ) , ^ ; o) * * 0 '
and thus the neutron sputtering spectrum in the Laplace domain 

is

liTo -t]
о * ♦ о

- Co‘* W0 O’ 'O * CC> 4 l )

To determine Sx and S2' first one has

V,,\ - I C d, ♦ dj. i |(du-djaf i/d 3
where

/27/

ri,  = ^ * i a ( 1 -  A ;  -  >u4 ) - C • M  ,

and

d, » A u  A n  .
For the /1=1,2/, eqn /24/ yields

- Cr,a Xo,
- ^  4 ( d i * v ‘ ) ^  - a-; x 0J

which, since the r.h.s. is nonzero for n=o only, serve to 

determine Ц>„с,) and UJ3u> , while for n=l and 2 they coincide to 

yield

4>“' ■ c (<*,-
/28/

2 >
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Eventually, the remaining four coefficients / i , n=l, 2 / can

be obtained by putting /28/ into /25/ which, taking ) as

known can be cast into the form

Z  (<T, + v O ^ °  . -('T,4 ''о)фо°
r \ Z \

l (o~i + \Jr̂) —f c -  = ^  ♦ v„) <Vo,2> .№. Л2->

Having determined /п=1,2/, the remaining spectra are

given as
2

i t4s) = Eo Z фпи\б4- 0 Ат\
^  /29/

S^ and S2 are in principle similar, though more complicated 

constructs as S /s/. Their inversion is hindered by the fact 

that the )Л, will have an infinite number of zeros /Sengupta 

and Srikantiah, 1974/, leading to an infinity of branch cuts 

in S^/s/ on the complex s plane /Williams,1979/. Inversion can 

be given as a sum of line integrals, the one along the cut on 

the real axis giving the asymptotic solution, and the rest 

accounting for the Placzek discontinuities /Williams 1979/.

This technique, although theoretically exact, is not very

useful for numerical calculation of the spectra as the zeros 
1of can only be given approximately /Sengupta and Srikan

tiah 1974/, and also that especially for small u values 

[u<<ln(l/ f\ ) ] a very large number of terms has to be con

sidered to attain convergence /Williams 1966/.
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Thus, it seems much more expedient to invert /27/ and 

/29/ by direct application of numerical inversion codes. This, 

as mentioned before, is facilitated by the approximate know

ledge of the singularities of on the complex plane which 

enables one to select the path of integration in the most effec

tive way from the numerical point of view.

The results of a calculation of S^/u/, with the para

meters as given in Table I. are displayed in Fig.l. The Placzek 

discontinuities at u=-ln o<. u=-ln/l- o< ^/, etc. can well 

be noticed. The nature of these discontinuities is investiga

ted in another forthcoming publication.

We also notice that the spectra and S2 increase with 
lethargy in contrast with S0 ' due to there being an increasing 

number of recoils, a fact observed by Williams /1976а/.

5. SUMMARY AND CONCLUSIONS

Introduction of the Fermi scattering model into the for

ward equations of the multispecies transport problem and Lap

lace transform with respect to lethargy reduced the problem to 

a form amenable to analytic solution. Collision densities, de

fect distributions and sputtering spectra were given in closed 

form in the Laplace domain. This result in itself is interesting 

since energy deposition, another characteristics of radiation 

damage, is proportional to g\ / x ,s=1/ /Williams,1979/ without
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Fig. 1.
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the need to inverting it. Calculation of the defect distri

butions and sputtering spectra nevertheless necessitates 

performing the inverse Laplace transform. Analytical inversion 

of these functions is possible in principle, based on the works 

of Sengupta and Srikantiah /1974/ and Williams /1979/. The re

sulting expressions are, however, not especially well suited 

for analytical work. Some investigation of the analytic pro

perties of the characteristic equation, presented here, made 

application of numerical inversion codes troublefree. This was 

illustrated by calculating the sputtering spectra for a biato- 

mic target with an alien incident particle. The results are in 

agreement with some other work in this field.

The situation occuring here bears some resemblance to 

other cases of radiation damage calculations. For instance, in 

three dimensional calculations, space-energy dependent coeffici

ent of the Legendre polinomials are given in the Laplace domain 

as solutions of a linear equation system /Dederichs 1965, 

Winterbon 1980а/. This is just another situation where numeri

cal Laplace transform seems promising, this method is there

fore likely to have more applications in radiation damage prob

lems .

APPENDIX

Bounds for the roots of the characteristic equation

Introduce a new quantity u ̂ instead of the i-th root 

of the characteristic equation /26/ as



23

then the characteristic determinant /after transposition/ takes 

the form
deA [ Xtj + С At -yUO] “ О .

According to classical results the eigenvalue ^ ^  of the 

determinant falls into the Gersgorin circle

\ - Av - "Xli. 1  ̂ \ ̂vcj l )
or

M
I AM « X IA,1 ♦ I л и  •
> b

It follows from eq /21/ that

\ » S CL  \ /IG\ -

where x=Re/s/. Now for x>2

14 1  < fsi ( ' - « d  .
and, taking into account that

I Cii. <
we have

/А1/

^  I
X IXijl <■ Z for Re/s/>2 /А2/

Turning to the second term on the r.h.s. of eqn /А1/, from 
eqn /22/

I ^  ̂. и - <v,5 Kj l + cxl(*  Til f;,c u
and thus

I Ail I 4* ,S1 I C n  i _
151 j«' J l - * 4 for Re/s/>2 /A3/

Insertion of eqs /А2/ and /A3/ into /А1/ yields
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...» 2. M cvi-
1/Av I * I -11 \$\ * £ c\\ T-i^ ) f or Re/ s / >2 .

We note that by analogy with the derivation above it can be 

seen that for real s values

1I u-i I í 6
if s>2, real.

%
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TABLE 1

i 0 1 2

<*oi 0 . 0 0.4444 0.8186

*Hои О•о 0.5 0.5

c li 0 . 0 0.7 О • ы

-HCN
О О•о 0.3 0.7

1.0 10. ы • О

\i — 0.36
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