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ABSTRACT
We present a systematic method using Bäcklund transformation for gener­

ating SU(2) Yang-Mills-Higgs monopoles of arbitrary charge. The purely alge­
braic iteration formula for our Bäcklund transformation is derived. Our method 
is based on the equivalence of the axially and mirror symmetric Bogomolny 
equations and the Ernst equation. The properties of the Ernst equation that 
are relevant formonopoles are also discussed.

The application of the method is illustrated on the example of the one 
and two monopolé solutions.

А Н Н О Т А Ц И Я
Предлагается систематический метод для генерации SU(2) монополей произ­

вольного заряда типа Янга-Милльса-Хиггса, основанный на преобразовании 
Бэклунда. Получена чисто алгебраическая итерационная формула для нашего пре­
образования Бэклунда. Наш метод основан на эквивалентности аксиально и зер­
кально симметричного уравнения Богомольного и уравенения Эрнста. Обсуждаются 
те свойства уравнения Эрнста, которые существенны для монополей.Применение метода иллюстрируется на примере решений с одним и двумя мо- 
нополями.

KIVONAT

Az SU(2) Yang-Mills-Higgs elmélet véges energiájú, tetszőleges topológi- 
kus töltéssel rendelkező monopólus megoldásainak generálására szolgáló mód­
szert fejlesztünk ki Bäcklund transzformációk fölhasználásával. Levezetünk 
a Bäcklund transzformációk iterálására vonatkozó, tisztán algebrai formulát. 
Módszerünk az axiállsan szimmetrikus Bogomolny és az Ernst egyenlet ekviva­
lenciáján alapul. Az Ernst egyenlet a monopólus elmélet szempontjából fontos 
tulajdonságait is diszkutáljuk.

A módszer alkalmazásaként megmutatjuk, hogyan lehet generálni az egysze­
res töltésű és egy uj, kétszeres töltésű monopólus megoldást.



1. INTRODUCTION

Аз it was shown for the first time by ’tHooft and Polya­
kov [l] spontaneously broken gauge theories with a simple gauge 
group possess classical solutions which may be identified as 
magnetic monopoles. These solutions can be interpreted as "soli- 
tons" in 3+1 dimensions in the sense that their energy is well 
localised at any instant of time, so they can represent "particles". 
These particles are stabilized by a quantum number, topological 
in origin which corresponds to the magnetic charge. Magnetic mono­
poles arise naturally in the currently popular grand unified the­
ories unifying the weak, electromagnetic and strong interactions.
In Ref, |2] it was suggested that particles with both magnetic 
and electric charges / dyons / may play an important role at the 
subconstituent level.

In the limit of vanishing Higgs potential, when the 
Higgs field becomes massless, a considerable simplification arises 
and the analytic form of the static singly charged and spherically 
symmetric *tHooft-Polyakov monopolé was found by Prasad and 
Sommerfield jjj] and by Bogomolny [4] , In this case the theory is 
considerably simplified and the static minimal energy configurati­
ons are solutions of a first order system of equations / Bogomolny 
equations /• This paper is devoted to the study of these equations,
A remarkable property of the theory with vanishing potential that 
like monopoles do not interact. The repulsive Coulombic force is 
cancelled by the long range attractive force due to the massless 

scalar field.



It has been shown by perturbative techniques |5,6j that the force 
between monopcles decreases faster than any inverse power of the 
separation.

The existence of static, noninteracting finite energy 
monopoles has been recently established by Taubes [7] . The first 
exact solution corresponding to a doubly charged solution / two 
monopoles superimposed on each other / was found by Ward [в] 
using twistor methods and by the present authors [9] • We applied 
soliton theoretic techniques to generate the one monopolé / IMP / 
[lOj and the doubly charged monopolé / 2MP / from a simple 

"vacuum" solution. These results are based on the equivalence of 
the axially and mirror symmetric Bogomolny equations with a 
rather well known equation of general relativity, the Ernst equa­
tion« [ll] . For the Ernst equation there are various solution 
generating techniques: Bäcklund transformations /ВТ/ found by 
Harrison [12] and by Neugebauer [13J and the inverse scattering 
method of Belinsky and Zakharov [14] .

The purpose of this paper is to develop a systematic 
method outlined in Ref. |9,10] to generate axially symmetric 
multimonopoles of arbitrary charge. Our procedure is closely rela­
ted with the inverse scattering methods applied in certain two 
dimensional systems which are completely integrable.

We introduce a Bäcklund transformation /slightly diffe­
rent from Harrison’s ВТ / to obtain the monopolé solutions. The 
major advantage of our method that it consists of entirely 
algebraic steps, and acts directly on the components of vector 
potential. We have to solve a Riccati type equation only once

- 2 -



-  3 -

which is easily done for our simple "vacuum" solution. We give in 
this article a very neat form for the result of iterating an 
arbitrary number of BT’s. We show that by each step the topological 
charge is increased by one unit.

Our paper is organized as follows! In Section 2. we 
summarize our notation?and discuss the axially and mirror symmetric 
Bogomolny equations. In Sect. 3. we discuss the relevant properties 
of the Ernst equation. In Sect. 4. we describe the relationship 
between the Bogomolny and the self-duality equations. In Sect.6. 
we display the general formulae for an arbitrary number of BT’s.
In Sect. 7. we give some special applications.

2. THE AXIALLY SYMMETRIC EQUATIONS

We consider an SU (.2) gauge theory with an isotriplet 
Higgs field in the limit of vanishing Higgs potential. The Lagrangian 
density is

»here F  * = 'Э, ft' - 3 V ft“ - fty

/ We chose the coupling constant e = 1 /.
The Hamiltonian density for static configurations with 

no electric fields / A 0 = 0  / i s
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* -  Ац ^  F ai^ + ^ D ^ f í D ^ V (2)

The field equations of this theory are solved by configurations 
satisfying the Bogomolny equations [4] :

F % - 1  ■. Ш Т (V

The energy, E , can be written using the Bogomolny equations as

E- («)
Now

(5)

using the equations of motion for the Higgs field,
so the energy can be calculated from the Higgs field alone

E- I (6)

The topological charge, n , is given by

> h L - > 5‘ V KУ) я
*-*<0 TV 4 =  COV4SÍ

Since the asymptotic boundary condition ^•v%r> V4*—9oo
imposed, for в solution with topological charge n

(7)

is
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as Л — > С8)

However, condition (в) alone does not guarantee that the topologi­
cal charge is indeed n due to the presence of possible singulari­
ties. From now on, we take the vacuum expectation value of the 
Higgs field N/ - A .

When one is looking for exact solutions of complicated 
equations, there is a need for a simplifying ansatz consistent 
with the known properties of the configuration in quest. In the 
present case the simplest ansatz would be a spherically symmetric 
one. However, the assumption of spherical symmetry is too strong, 
it excludes all but the singly charged ’tHooft-Polyakov monopolé 
[15] . The next simplest thing one can do is to assume axial 

symmetry. In gauge theories by a symmetry we mean that the change 
of the gauge field, ^  , under this symmetry transformation 
/ e.g. a rotation around any axis / can be compensated by a gauge 
transformation [lő] •

Manton [17] constructed an axially and mirror symmetric 
ansatz which can be written in polar coordinates as

)

where X^= <§ } Хг=

functions of

tions (3) they simplify to

, and Ф  4 i j areare
into the Bogomolny equa-
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(,11а)
Э* Фа t Wa<̂ » - g* (эИг+ W, (lib)
Ч Ч ~ Ч Ч = §_/1 (ДЧа-ФлО (lie)

(na)
+ \а/4Фд =* § Л + Ч л О (lie)

We have five equations for the six unknown variables, however, 
equations (lla-e) still possess a residual U(l) gauge invariance:

V L = V/t + A
Ф*.

X'li.
CoS A  + tf.

V я!:
SlH A  j '41 4 “ - E

(12)
2/|

This residual gauge freedom enables us to reduce the number of un­
known functions from six to five. In fact, we can do even more 
than that, namely, we can satisfy one equation in (ll) by the 
following trick: it is possible to find such а Л  that

W ’ A >

(l?a)

(l?b)

are simultaneously true. This is more than a gauge fixing, because 
(l^a) and (l3b) imply equations (lla-c) for <ф ̂  ^  • VI i  • 

To show this explicitly, one should derive the integrability con­
ditions for equations (l^a-b), which are easily found to be

Ч Ч "  Ч Ч  = ^гФл) + ^v>A ( Ф м  +

+ в Л1>г,г + /у\4Н 1 )  + Ч г Ч ] )
(l4)
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Eq. (14) really implies (lla-c) ,so, for a solution of (lla-c) 
it is possible to require both conditions (l^a-b) at once.
Now, using (l3a-b) eqs. (lla-e) reduce to four equations for 
four unknown functions. Next, we observe that (lib) implies the 
existence of a function ^ , such that

ь
t

\i V
Then it is easy to see that (lie) can be also satisfied by 
putting

VJ .= - % sЛ i VJ = - j k  
> 1 1

(16)

and the remaining two equations (lld-e) reduce to

(17.)

4ЛЧ- - 2  V í . V t - 0

where Л  =  e
Introducing 6 =  £ + i. v|/

(17b)
, v = ( 3 „ o s )

eqs. (l7a-b) may be written as

R e e  Л е  - ( V  e )г=  О

which is the celebrated form of the Ernst equation of general 
relativity. A geometrical derivation of eq. (l8) from (lla-e) 
was given in Ref. jio] •

The equivalence of eqs. (lla-e) and (l8) is of 
interest because it reveals a surprising / although completely
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formal / connection between general relativity and Sü(2) gauge 
theories, and what is more important for us, it gave the clue to 
find new exact solutions of the Bogomolny equations describing 
multiply charged monopoles, using the various solution generating 
techniques worked out for the Ernst equation.

As we would like to make this paper somewhat self-contain­
ed, in the next section we summarize briefly those properties of 
this equation that are relevant in the study of monopoles. For a 
moi'e detailed discussion of this important equation in general 
relativity we refer to the literature jl8,19] •

PROPERTIES OF THE ERNST EQUATION

The most general line element of an axially symmetric, 
stationary space-time can be written as

(-19)

where $ are functions of <3^  only.
The vacuum Einstein equations corresponding to (19) are

Л in ̂  (xjиз) = 0 0О

& Ü U ,  - V| = 0

Г  ?г s

/Í\
T 0 o'

(21a-)
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Once eqs. (20a,b) are solved, it is easy to integrate eqs.
(21a-c) for Í) , so we shall concentrate on eqs. (20a, b) • 

Eqs. (20a,b) possess an Sb(2,R) symmetry group which corre­
sponds to the linear coordinate transformations:

t = ol 1 " b  ^

^ => c* ^ - c A  (  acl -  b e  = 4)

This SL(2,R) invariance group will be denoted by L. Rewriting 
eqs. (20a,b) as

(23)
■ Ц З - ^ - ^ v í - 0

where 4  + = —  + uj . 'h + transforms under the
Í “

action of L as

) c\ + b
4  + = ---- ------

d £ с. ^  +

Now we observe that eq. (20b) can be interpreted as 
the integrability condition for the existence of a new function 

which is related to u3 in the following way:
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о, » f 0
j (25)

Introducing the complex Ernst potential, € • t v v Hf , eqs.
(20a, b} take the form: ^e. € Д  fc - ($7fe ) s О  which is

just eqf (l8) . The Ernst eq. (l8) is invariant under a new
SL(2,R) transformation group, P , / Ehlers transformations ^20] / 
defined by

€> b ! L 1 1 1 e  ^ д о

5"- i í t

It is important to realize that there exists a direct mapping from 
eqs* (l8) to eqs. (20a,b) / this is the so called Neugebauer- 
Kramer mapping [2l] /. This mapping is a group element, I = l”\
of a cyclic group of order two, defined by

V -  S > . %
+ - ■£ J ю  я _L ^  ; 4/ =̂» i io

We shall write (27) in a more compact form

In fact, the groups L and P are related by I :

X  L I"1 = P .

(27)

(28)

The action of the group of coordinate transformations, L , does 
not commute with the Ehlers transformations, P , and by the re­
peated applications of these transformations one can generate 
new solutions of the Ernst equation from the old ones. However,
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properties of solutions generated this way change in an uncontrolla­
ble way, e.g. starting with an asymptotically flat solution the 
result will be an asymptotically non-flat space-time which is of 
little use in general relativity. In fact, we have an infinite di­
mensional symmetry group —  the Geroch group {22Д —  of the Ernst
equation and one should look for suitable subgroups which preserve 
asymptotic flatness to generate physically interesting solutions 
in general relativity. This program was completed by Kinnersley 
et al |2з] • Geroch has shown the existence of infinitely many
conservation lawe, as well. The origin of the Geroch group was 
somewhat mysterious until the discovery that it can be related 
to the existence of a Lax pair £24] • A method was developped t*y
Belinski and Zakharov [14} to solve the resulting linear eigen­
value problem. Independently of each other Harrison [l2] and 
Neugebauer [l3] found Bäcklund transformations / ВТ / for the 
Ernst equation. Neugebauer deduced a composition theorem for two 
successive BT’s , so once a ВТ has been determined one can apply 
arbitrary many B T ’s by algebraic methods alone. Cosgrove [l9] 
has found a composition theorem for Harrison’s B T ’s using Neuge­
bauer’ s work. All these techniques could be successfully applied 
to generate solutions of physical relevance / asymptotically flat / 
for the Ernst equation containing arbitrary many free parameters.
In general relativity for most solutions of interest, the Ernst 
potential, £ , can be written as

i  I  a  u k ”'£ = ,
П

(29)
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/ are the usual spherical coordinates, m is the
/ real / Schwarzshild mass /. However, if one is interested in 
generating solutions of the Ernst equation corresponding to mag­
netic monopoles, one needs a completely different condition of 

(29) . The gauge invariant length of the Higgs field is given by

Ф " =  ф \Л

пП о
í,* + ч->г

V
It is important to note here that the Ehlers transformations (26) 
leave ф  invariant, whereas the I and L transformations change 

Ф  . Our boundary condition requires that for a monopolé
of charge n,

ф * _  (fö

which is just incompatible with eq. (29) . The moral from this is 
that unphysical solutions in general relativity might be of inter­
est in gauge theories and vice versa.

We think, it is clear from the above that one should be 
somewhat careful in applying the techniques working so beatifully 
in general relativity for generating multimonopole solutions due 
to the fact that the boundary conditions are so different. In 
fact, it is a very intrigueing feature of the Ernst equation that 
both the Kerr and the monopolé solution can be interpreted as 
"solitons" in the sense that both can be generated by BT»s starting 
with the "vacuum" of general relativity / Minkowsky space / or 
with the Higgs vacuum / ф  — \ / respectively.
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Before entering into the details of explaining how 
Böcklund transformations can be used to generate multimonopole 
solutions, we make a short digression to show the connection between 
the Ernst equation and its symmetry transformations on the one 
hand and the selfduality equations and the non-linear transfor­
mations of Corrigan et al (26] on the other hand.

4. THE CONNECTION BETWEEN NONOPOLES AND SELFVDUAL GAUGE FIELDS

Let us consider a pure SU (2) gauge theory with Lagrangian

C  ^  И
The Euclidean space field equations are solved by such configura­
tions which satisfy the self-duality conditions

Г ” = */»v > v

^
where b is the dual field tensor/»V

* Г ' .  ! t  Г Я 4 5 'V y 2 *

Ф )

(34)

In the case when all fields, 0 ” , are independent of 
the Euclidean time the self-duality equations (ЗЗ) reduce to

F.“ = (D ft Y*
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where we recognize the Bogomolny eqations (3) , reinterpreting 
Q 0 as the Higgs field.

Yang has shown the existence of a particularly convenient 
gauge -n the R-gauge —  in which the self-duality equations (33) 
take the following form [25] :

+ + T,»XV  т ;5 = 0  (?6а)

Х  К з  + О  - 2 Ь,Х>5 - 2 х)4Х,г-0 <?6Ь>
*  ( Ъ - Л  + х > » ) -  2 x >i Х > ^ °  (,б с )

Гг^=хл*;хг П *-x5*íx4
It is useful to introduce a new function ТГ realizing that 
(?6b,c) are identically satisfied defining T  as

- 2. —  - 2 —
X  5 X  ^;ij=

/ and similarly for the barred quantities /. In terms of X j  T  

TV the self-duality equations take the form

X U )Vi-t 1,tl)-í^ + %s (1r,s ^ - » T ' J, 4 )i )  = 0 (j6d)

+ ^ ч л \ ь ш °  (?6e>

1%Ч»),ч + ич*),»'0 C,6f)
The striking similarity of eqs. (j6a-c) to the Ernst equations 
(l7a,b) and of ^36d-f) to (|Oa,b) makes it obvious how to 

relate the former systems of equations to the latter ones. Indeed, 
taking X  to be real and assuming that both %  and X  depend 
only on we immediately obtain eqs. (l7a,b) [27^ •
However, taking X  =» S  ̂ X  = Vz ^

«
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тг= (2 ы  in eqs. фб^) / with vy and v>o
being real functions / we again obtain (l7a,b) and (20a,b) 
respectively. This is important as it is also possible to show that 
using these latter identifications for X0 X  we obtain
the expressions (l3,15,l6) for the functions of
the Manton ansatz.

As it was pointed out by Corrigan et al. |26j the self­
duality equations (зба-с) have an SL (2, C ) invariance group 
which acts nonlinearly on X  and X  :

X ---5»
____________X

(.♦ + ЬЬ XL (?Ta)

(c + d t ) ( 5 t b t )  + b d X 5"-|T  5»   --------------*----— —
(a + bl) + Ь x) + bb X1

(?7b)

This transformation was denoted by in Ref. ^26 • It is easy
to see that (j57a,b) are the analogues of the Ehlers transformations 
for the Ernst equation discussed in Sect.% It is important to 
realize that in the SL(2,C) transformation group (?7) a,b,c,d 
can be taken not just simple parameters but arbitrary analytical 
functions of (y>z) • ■̂n what follows we shall use a simple
subgroup of this Sb(2,C) group that maps ( т  )

into (|й| Й  í j  R ' ^ )  where is an
arbitrary analytic function.

In Ref. [26] yet another invariance transformation 
/ the so called ^  or "Bäcklund" transformation / was also given: 
if ( X ) T  ̂ X  к j tv_) satisfy eqs. (36) then
(y *  : -г • —  T • — are also solutions of these\ X. ) lTj
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equations. Note that this is a discrete transformation yielding 
the identity when applied twice. This fact and the structure of 
the transformation indicate that ^  can be related to the 
Neugebauer-Kramer mapping (27) . For example, in the case of the
Manton ansatz we find that acts on 4 J ^  as

This is yet not equivalent to eq. (27) , however, applying to
it an SL(2,c) transformation of the type we mentioned above with 
Q  ($)= 2 Га £  we indeed obtain the Neugebauer-Kramer

mapping for Yj ю  • Thus we see the precise connection
—  within the Manton ansatz —  between the transformation of Ref.

[26] and the Neugebauer-Kramer mapping eq. (27) : the latter
is the product of a ^  and a special Sb(2,C) transformation 
with a given analytic function.

In our opinion it would be more appropriate to make a 
distinction between Bficklund transformations and the and 
transformations of Ref. [26] , the latter being rather an invar­
iance property of the Yang equations. It seems reasonable to ex­
pect that B T ’s for eqs. (зба-с) should reduce to those already 
known for the Ernst equation in a special case, just as the 
Sb(2,C) transformations (37) give the Ehlers transformations 
when we restrict eqs. (зба-с) to the Ernst equation. As far as 
we know BT’s in this sense / generalizing Harrison’s or Neuge- 
bauer’s BT ’s / are not yet found. There is a strong indication 
that these BT’s really exist since in Ref. [28] the existence 
of the corresponding linear eigenvalue problem which reduces to
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that of Belinski and Zakharov for the Ernst equation was
discovered. In Ref. j28j we constructed a four dimensional 
"soliton" generating method to solve this linear eigenvalue prob­
lem which is the generalization of the method of Belinski and 
Zakharov. On the other hand, it has been proved by Cosgrove [l9] 
that the soliton generating method of Belinski and Zakharov is in 
close connection with Harrison’s ВТ.

In Ref. ^28] it was shown that eqs. (_36a-c) possess 
an infinite parameter invariance group which is the analogue of 
the Geroch group. In applying this invariance group for generating 
new solutions for the Yang equations one encounters problems simi­
lar to the simpler case of the Ernst equation. A straightforward 
application does not lead very far because of the uncontrollable 
singularities. Lohe [29̂  tried to generate multimonopole solu­
tions of eqs. (Зба-с) when X and T  are independent of 
/ which are of course the Bogomolny equations / carrying out this 
procedure on the BPS monopolé. He applied the special product 
(*> £ to ensure the reality of the final result which turned

out to be a singular configuration. This is not surprising remem­
bering that this method does not lead to acceptable solutions in 
the case of general relativity if we start from an asymptotically 
flat solution. To get physically interesting solutions / e.g. 
those with finite action / one should find suitable subgroups 
in a spirit similar to the work of Kinnersley et al.

As it was shown by Manton [17] the Bogomolny-Prasad- 
Sommerfield /BPS/ monopolé |з,4| can be obtained from the 
Corrigan-Fairlie-*tHooft-Wilczek / CFtHW / ansatz in a
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complex gauge, but he found that the CFtHW ansatz does not contain 
multimonopole solutions.

Atiyah and Ward [31} found a natural generalization 
of the CFtHW ansatz which arose out of the twistor approach for 
the self-duality equations, originally proposed by Ward [32] »
The construction of Atiyah and Ward leads to a hierarchy of 
ansatze A^, A^,*.*, where A^ is just the CFtHW ansatz. Ward used 
the A 2 ansatz and found a doubly charged monopolé by a somewhat 
ad hoc generalization of the BPS solution [в] • Independently
of Ward we found the same solution using the methods described in 
this paper [9] •

5. BÄCKLUND TRANSFORMATIONS FOR THE ERNST EQUATION

Since for generating multimonopole solutions we found 
most convenient to apply a slightly modified form of Harrisoh’s 
ВТ / HBT /, and the existing publications on this topic are some­
what compressed , it might be of use to enter into some details.
We present the material from a different point of view from that 
of general relativity. We show how one can derive the composition 
theorem for HBT’s from first principles / without referring to 
Neugebauer’s composition theorem / and derive the general formulae 
for an arbitrary number of HBT’s.

As a first step, we discuss Harrison’s Bficklund trans­
formation and derive the composition theorem for two consecutive
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BT’s. This composition theorem is of fundamental importance since 
it enables us to construct multisoliton solutions using pure 
algebra once a Riccati equation for the first step has been solved»

We define the following variables:
*

4
) M  - e M  

x

c*

J Л 2 L *
* (38)

c 3 e "Э t  -
u

) £. — — ■

These variables are different from that of Harrison, the connection 
between (3S) and that of Ref. |l2^ was pointed out in Ref. [lO].

The Ernst equation (l8) can be recast into a system 
of first order differential equations for the variables (38)

«i,2 = - « А + « А  - г ( Г + '0 ~  (Mi + * <-,9a)

«2,2 • - “A  ♦ m2n i - г(с l Г)(N1 * мг) ■ C39b)

«1,1 = - « А  * «2«! - I ^ (N1 + «2> ■ C’9=)

«2,1 ■ - ■ * *  + «2«1 - Г(С ~ Л 2Т  M1 + H2 * (,9d)

Harrison derived his ВТ following the method of Wahlquist and 
Estabrook [зз] • He started with rewriting eqs. (39a-d) as 
four 2-forms which are to vanish for a solution. Then he looked 
for a pseudopotential q such that the 1-form
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ег = - dq + F(q,Ni>M i, S ^ d ^  + o(q,Ni ,Mi, ^ ) d  C 2

satisfies dtr = 0 if eqs. (39) are satisfied and <a = 0. 
Furthermore, he supposed that F and G depend only linearly on 
M ^ ’s and N^’s. This assumption guarantees that the resulting equa 
tion for the pseudopotential, q , will be of Riccati type. Indeed 
this way one obtains a total Riccati equation for q(C^> ^ 2  ̂ :

dq = [(М2 - q + p(w) (М2 - Mlq2)] d X, x +
+ [ К  - М2)Ч + Р"Ч») ("l - V 2)] 2

where p(w) = у (w - i £, 2) (w + ^ ^ l ) " 1 » w being a constant of 
integration* We remark here that the other integration constant 
for q will be denoted by .

In order to find the concrete form of the ВТ he looked 
for a new solution of eqs. (,39) which depends only on M^, 
N., q. This procedure leads to the following form of the ВТ:

H(q,p)

H(q,p) M2 = M2Cl)

1 + pq
= - q ----- - %

p + q

p + q

q (1 pq) 2

H (q, p) Nx = =

H(q,p) N2 = N2Ü) =

1 + pq 
-------  N,
q(p + q)

N,

q p2 - 1
4s p + q

1 p2 -i
4S 1 + pq

1 1 - P 2
4 § p(p + q)

q (1 - p2

. («»)

. (41b)

, (41c)

4 s p C1 + pq)1 + pq
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It will be convenient for us to show at this stage how 
the Neugebauer-Kramer mapping, I , acts on the M^*s, N^’s and on 
q. A straightforward calculation using the definitions (26) and 

(27З gives

1
I M, = - + ---

1 Ni = * Ni + 774 %

1
I 1L = • M, + ---  ,

4 $

I N. N. t

(42)

We define the action of I on q in the foilwing way: Iq a q 
satisfies

dq = J- (q + p) + M2q (l + pq) + —  (l - q2)] d £ x +
. 45 (47)

+ [- Hi(5 + ;) + "г511 + ;) + “ “ С1 - 52)] a ( 2 .
Eq. (43) comes from eq. (40) for the pseudopotential, q , 
replacing there M^*s, N^*s by Ш ^ * в  and IN^’s.

It is not difficult to verify that q is given in terms 
of p and q / satisfying eq. (40) / as

P + Q
4 ~ “ 1 + pq (44)

At this stage it seems to be very difficult to apply a 
second ВТ, because we have to solve eq. (40) again replacing 
the M^*s, N^»s by * s and n P^ »s to find q* for the next step.



- 22 -

Usually this is a very hard task even for the simplest seed solu­
tions, since after a single ВТ the new configurations can be 
rather complicated. The great advantage of the ВТ is the existence 
of a composition theorem stating that there is no need to solve 
analytically this complicated equation as its solution can be con­
structed in an appropriate / algebraic / way from solutions of 

(40) with the original M^*s and t'L’s.
We now proceed to derive this composition theorem for 

two consecutive HBT’s which will enable us to find the general 
formulae for an arbitrary number of steps by algebraic methods 
alone. Let us suppose that eq. (40) for the pseudopotential, q , 
was solved. Making use of (4l) we can perform the first ВТ.
Let us suppose that for the second ВТ q ’ depends only on (p-̂ , p2 , 
qx , q2) where (p^, q^) and (p2, are both solutions of (40) 
with the same M^’s, N^’s but different constants w-̂ , w^, ^  2*
This assumption is motivated by other work in soliton theory 
/ Sine-Gordon, Korteweg-de Vries, nonlinear Schrödinger equations /. 
This way we obtain two equations for dq’, namely, eq. (40) with 
H (q-̂ »P-j) etc. and the other coming from our assumption for q*. 
After equating them as it is shown in detail in Appendix A we 
obtain an overdetermined system of equations for q' which can be 
consistently solved yielding

, = 5lpl “ 42p2 
ql(qlpl ” q2p2)

Writing out (45) in terms of p^, p£, q-̂ , q2 we get the formula 
derived by Cosgrove [l9j :
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Рг(Х - pl K  - Pli1 - p j K  * (pf - pl)qlq2 _ л 6)
Ii[(pi - 4) * PiC1 - рг К  - РгС1 - р1)Чг]

Since we will use the transformations IH(p^fqj) to 
generate the monopoles we now turn our attention to the effect of 
this transformation on the M^'s and N^»s. Henceforth the IH(p^fq ^  
transformation will be denoted by B(p^,q^. It is easily verified 
that

В M^0’ 

В M f

в n[0) 
в K2<0)

(47a)

T ^ ° 5 + í t ) ’
(47b)

: ( ■  - r -  ■ ) .q \ q 4p § /
(47c)

q .
” 4P S ) C47d)

As we shall iterate В we need the following commutation 
property of the H and I transformations which can be derived with­
out difficulty from (41) , (42) :

B(p,q) = IH(p,q) = H(p,q)I = I"1B(p,q)I (48)
To illustrate the use of (48) we show how one can reduce IHIH. 
The pseudopotential in the argument of the second H transformation 
is of course not q* but q», since it is preceded by an I mapping. 
So



- 24 -

I 4 2,5’)i HÍpj.íj) = н(р2,Ч>)н(р11Ч1) (49)
2where we used that I = 1 .

6. SUPERPOSITION FORMULAE FOR AN ARBITRARY NUMBER OF 
BÄCKLUND TRANSFORMATIONS

In this section we give the general formulae for n 
consecutive В transformations. Since the proof of this result is 
rather technical we present it in Appendix B.

It is important to deal with the reality conditions for 
solutions generated by this method. The conditions

M* = Nx , M *  = N 2 (50)

will obviously ensure the reality of the new solution. For exam­
ple, after a single В step it immediately follows from (47) that 
starting with a real solution, € 0 , for which 4 ^ * 0  eq. (50) 
implies

q = q* > p*= p"1 (51)

In a different case one should determine what are the constraints 
following from (50) for the q ’s and p ’s.

It is illuminating to show how to derive the formulae
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for two В steps which was applied in Ref. ^9} . W e  proceed to 
carry out a second В transformation for (47)-.

Now applying the duality principle we get for q* / see Appendix A /

9]^P2 “ ^2^1
Ql (q].Pi “ q2p2^

Substituting expressions (45) (47b) and (53) into (52) after 
some simple algebra we find

M.(2)= qlp2 ~ plq2 
Plql " p2q2

plql ~ p2q2 M (o) + P1 ~ p2 
p2ql " plq2 4 s (p2qi “ piq2^

(54 a)

Similarly for the other components

M (2) Plql “ p2q2
qlP2 “ plq2 LPlql ” P2q2

p2ql ~ plq2 M (o) + qlq2 (P1 ~ Vl)
4 § (P2q2 " plqiV

, (54b)

N f2) _ plql ~ p2q2
1 5хрг -

plql ~ p2q2 N (o) + qlq2 (p ? ~ p1 ^
qlp2 “ ?lq2 4 § P1P2 (plq2 " p2ql)

, (54c)

»,(2) _ qlp2 “ plq2 
w2 I I"

Plql “ p2q2
p2ql ~ plq2 и (о) +

2 2 
p2 " P1

plql “ p2q2 4 plp2 (Plql p2q2)
, (54d)
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From condition (50) we deduce that either 

*  -1 *  _ -1
P1 ~ p2 » ql q2 (55)

or

Pi = Pi"1 * Q* = Qi"1 = 1*2) (56)

Eqs. (55) and (56) reduce the number of arbitrary parameters. 
We now rewrite eqs. (54) using determinants which is very sug­
gestive. It is sufficient to consider (54a,d) only

M (2) ;

=

ql q2 
pl p2

1

plql

1

P2q2
1 1 ql q2
plql p2q2 pl p2

ql q2 ql q2
pi p: pl p2
1 1 1 1
plql p?q2 1plql P2q2

M..» ♦ —

N. (o)
1

4?

j £
qi
pi

pi
pi

-1
p2
p2

-1

1 1 

plql p2q2

(57a;

(57b)

The above form is most useful if we want to generalize it for an 
arbitrary number of steps. Having calculated the analogous formu­
lae for 5 В transformations it was quite evident what the corres­
ponding result would be after iterating n-times the В transfor­
mation. We realized that these В transformations have the



intrigueing property that an even or an odd number of iterations 
should be treated separately. We present here our results in the 
following compact form,for an even number of steps

where the D * з / a =1,...4 / are 2 k X 2 k  determinants and they are 8

completely characterized by their i-th row

4 % ) 1 2 3 41 Qi» Pi» PiQi» Pp  Pi^i» • •« „ 2k-1 1 
•••> Pi 1

4 % )  - | l »  PiQi» P?» P ^ i»  Pi»«-«- П 2 k -l 1

4 % )  - | l»  PiQi» P?, PiQi* Pi»«««< _2k-2 2k

4 % )  - I p I 1 . pi> P i4 i> pi> P i V "
_ 2 k -l 1 

........ pi  1

and i = 1,......2k;
for an odd number of steps.

K fek+i)

4 кЛ ч )

4 к+*(ч)
4 k+\i)

1 4 ^ M
4? 4^\) I
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N l?k+1l = .
w2

here Dg’s are (2k+í)y;|j2k+l) determinants written in an analogous 
way as above

where i = 1,.....,2k+l.
We give an inductive proof of these results in Appendix B.

Formulae (58) and (59) are of fundamental importance 
since they enable us to construct the explicit n monopolé solutions 
by pure algebra. In fact, they represent the nonlinear superposition 
rule. It is a very attractive feature of our method that we get 
as an output: just the components of the vector potential, and 
the physically most relevant quantity, the length of the Higgs 
field \4>l , can be read off immediately. It should be noted
here, that Neugebauer [34] has given a compact formul for the 
Ernst potential, 6 , for a 2n-fold Harrison transformation.
Needless to say, it would be very awkward to use this result in
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our сазе.
We guarantee the reality of our solutions by imposing the 

following conditions for and

* -1 * -1 
q2r-l q2r * p2r-l “ p2r (60a)

for an even number of steps, whereas for an odd number of iterations

* -1
ql ~ ql * P1 = P1 

q2^ = 42r+l , p?* ^ r + l 1

(60b)

r = l,....,k. There exist other possibilities as well, however, 
as it is clear from Ref. [35] the physically interesting case 
for us is either (60a) or (60b) . We made the tacit assumption 
in (бОЬ)- that for the seed solution \^0= О  •

As 1<$>1 is the most interesting quantity for us we 
find it useful to present here .

1Ф| = 2
D (2k+e) 
D>k+6)г----- i 2 i l  и.

<5i )
(o)

1+fe
(2k+6)

(qi)
4 2k+64'.i)

n 2(ô  +
(6i)

4§ *r%i)
Dfelei О
D (2FTéT

W) I

Where
(бОа)

G = 0 or 1, к is any integer and we used the reality 
or (60b) respectively.
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To actually get multimonopole configurations one should 
start with a suitable seed solution for which one has to solve 
eq. (40) to obtain q. With these q ’s and the corresponding p's 
where the parameters ^  ’s and w ’s are arbitrary / up to the 
constraints (бо) / one usually ends up with singularities in 

1ф| ,therefore, the energy for this configuration will not
be in general finite. As it was found in [35^ the parameters 

^  i’ w i are uniQue^y determined by imposing the condition 
of finite energy. In fact this constraint means that there be no 
singularities in eq. (6l) for \Ф1 •

7. GENERATING MULTIMONOPOLES

We now show how can one make the first step in applying 
the method developped in this paper which amounts to generate the 
singly charged monopolé. We indicate here why the modified ВТ,
В / = IH / , was singled out as the candidate for generating the 
nonlinear superposition of monopoles.

The moet naive expectation is that one could start with 
the well known BPS one monopolé / IMP / as a seed solution and 
applying a ВТ one would end up with a doubly charged monopolé, 
etc. In the Sine-Gordon theory this is indeed the case, that is 
from a soliton a ВТ generates a two soliton, etc. In practice it 
is not quite straightforward to proceed this way since the IMP 
is somewhat complicated in the R gauge; its Ernst potential, £4nP
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is given by [lO,29j & = F”*(.S ♦ ip) * where
rF = -----  + r cosh z coth r - z sinh z ,sinh r

P = z cosh z - г sinh z coth z

C62)

It is not an easy task to solve eq. (40) for q̂ jyjp so one should
find an other way. It is well known in other models that the one
soliton solütion can be reached from the vacuum state by a ВТ.
In our case the "vacuum" is not the trivial solution of the Ernst
equation, f = 1, 4' 0 which corresponds to Minkowski space,
but rather a more "natural" vacuum would be the Higgs vacuum,

ф Х = 1. The simplest solution of the Ernstt equation with
this property is f = ez , Ч'о = О» ог апУ Ehlers transformation
of f • As it was indicated in Ref. [lo"J a simple HBT does not
give the IMP from this "vacuum set". Instead, it was found that
the HI transformation gives rise to the IMP when applied to the
complex solution f* = — ----  , Ц/> = i coth z , which is ob-

sinh z
tained from e by a complex Ehlers transformation. Even for this 
complex vacuum state the solution of eq. (.40) is quite compli­
cated, so it was important to note that by the В transformation 
one obtains the IMP just from fQ . The m S°^b, n S° ŝ for fQ = ez,

4^ =0 are given by U^0) = u£0) = - j , = N^°) * 4  . Eq. (4Ó)
is readily integrated and we get for q

q = - tanh (̂ R (w)



where Rwhere r (w) = V (w - z)2 + g 2 m d  is the constant of
integration. Using eqs. (47) and (5l) we obtain for ф а

2
ф  = (co th  r (w ) ------“  ) (64)

4 R (w) /

where we had to choose ^  =0 to avoid s in g u la r itie s  and we used

(64)

p + q
(65)= 1

1 + pq

One would now think the way is open to apply a second В transfor­
mation for the IMP to get a 2MP, etc. However, in contrast to the 
known cases it is impossible to generate the 2MP from the IMP by 
a ВТ / either by В or HBT /. The reason of this surprising fact 
will become clearer if we see how the 2MP can be generated. The 
"vacuum" we start with is again fQ = ez and the constants we 
had to choose to ensure the absence of singularities in \ф1

are: wi  = w*  = i  ~ Y ~  » ® = -  i  • 1Ф1 can
now be calculated a f te r  some algebra

where



- зз -

+/>\ ̂  CoS^o(^ _ (^Av'^')ooSoí ̂  o< = í

and we introduced oblate spheroidal coordinates

\J(A-^ ) ( A ^ )  + i 'f 4 = S —  ̂ - Н £ | £ А з  О  £ £ oo

(<tl drastically simplifies on the z = 0 plane and on the z
axis

I 4 > U » 0 , ^ ) \ 1 +
2* (^Co«,V>S4-

°? *ьилС>

where 9 = |"§_-е<'Л  ,г

l Ф С *  v § “°3|а l tctvAfc ~ ^ ~
1 ы.г ¥ гг

This solution describes a doubly charged monopolé situated at the 

o rig in .

Thus we see that the 2MP is generated by a double В 
transformation, as we claimed, but the second of these transfor­
mations is carried out on a state entirely different from the 
IMP.

Finally, we show that applying (öl) to the simplest 
Higgs vacuum the asymptotic behaviour of satisfies eq. (в) .
First we observe that q of eq. (63) tends to -1 exponentially



for г — > oo wíiile (p I approaches 1 here only polvnomiallv •
Therefore keeping in (6l) the polynomial terras only we get

^  - ( x fD^k+6) - v  1)2
while using an identity [зб] for the ratio of two Vandermonde- 
type determinants

Now plugging these ratios as well as j

into (öl) we obtain
n

This shows that every В transformation increases the 
topological charge by one. However, the resulting configurations 
are in general singular, corresponding to infinite energy. 
Therefore, the only remaining task is to find those values of 
w., (bi for which I ф \ given by (öl) is nonsingular. This 
was achieved in Ref. j?5] , where the structure of these new
solutions is thoroughly discussed.
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8. CONCLUSIONS

We derived the general form of the n-fold ВТ for the 
axially and mirror symmetric Bogomolny equations. We have pointed 
out that applying these B T ’s on a simple Higgs vacuum one can 
generate monopoles of arbitrary charge. We illustrated our method 
by showing how the one monopolé and a new doubly charged monopolé 
emerges from this process.

After our work was completed, we received the papers by 
Prasad, Sinha, Wang [з7j in which they described another frame­
work to generate multimonopoles, generalizing Ward’s construction. 
From the comparison of these two superficially very different 
methods we can immediately establish that our ВТ connects the 
A £ and the A^ ans'átze while preserving reality and regularity 
properties of the seed solution / at least for a suitable choice 
of the parameters /.



APPENDIX A. COMPOSITION THEOREM

We give a detailed derivation of the composition 
theorem for two subsequent ВТ* $.

The Riccati equation ( 34 ) for the pseudopotential, q* 
in the second ВТ is

dq* = Г- K--~ q»(l ♦ P2q») + + P2) ♦
L Qi qi

From the

dq* =

Now substituting dq^ arid dq2 from eq. (34) and since

assumption q*= q * (Рх»Р2»Ч1»Ч2) we **or

Ъ q* Э  q* Э  q* 9  q* , ,dqi + — --  dq2 + ---- dpx + — --  dp2 . [A.2/
3 q x q2 9 p2 P2
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ve get comparing (a .i) and (a .2) the following equations for q»

9  I* / . 3  q* i . ^1/ \ /— --  q,(l + p^q,) + — --  q2 (l ♦ P2q2) = q»— (l + P2q'), (A.4a)
о q^ о q2

9  q* 
3 q 1

3  q* q-i
(qx + Pi) + -г— (q2 + P2 ) = ~ ( q* + p2 )

о q2 q^
* (a .4b)

a Ql - M  V  1 5  4  * = * ^ l 4 ' ^ 4o)
3  q* I q*\
^ Ч1Г ^ Г

3  q*/ 1 ] 9  q* / 1 \ 1 / 1
q2 ' p 2 1 ^i^i P2

, ÍA.4d)

3  q* ,2 \ 3  q* , 2 s

" э Г  P! (P! " l} + ~ Э Г  ^  “ 1]Pi P2 ( pi  -  1j [ qi q 4 1+P2q,) ‘ fq ,+P2)],

(A.4e)

3  q* Pi - 1 3 q’ p22 - 1
Pl Pi P2 P2

2
1 - Pi qlq ’ ( q* 1

—
i 1 1

Pi 1 + p-jqj \ p2 ) P i + ql
q + —
\ P? 'J (A.4f)

We see that we got an overdetermined system of differential equa­

tions for q*, and it is possible to reduce eqe» (ft#4a-dj just
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to simple algebraic equations

- S g l  = , ^ a .5s )
ql^l “ q2q2 1 “ qlqlq ’q>

Pi qlq2 ~ q2ql 
P2 qlql ” q2q2

2-  -2 -

qlq2q* "* qlq2q>
q2q2 ” qlqlq,q>

U . 5 b )

These two quadratic equations for q ’ / or q ’ / are easily solved 
and indeed they have one common root, or alternatively one can 
reduce (A.5a-b) to a linear equation, the solution of which 
is seen to satisfy both (A.5a-b) •

1 Q1P2 “ q2Px
ql qlpl ” q2p2

(A.6)

Iq’ = q* is the "dual** of q* in the sense that one should simply 
replace q^, q2 and q-̂  in (a .6 ) by q^, q2 and q^.

One can verify that (A.6 ) really solves all of the 
eqs. in (A.4) . This q» satisfiés eq. (34) with p== p2 
and replaced by H(q1 ,p1')Mi, H f q ^ p j N j  .
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APPENDIX В. PROOF OF N-STEP FORMULAE

We proceed to prove our results for iterating an arbitrary 
number of В transformations given by formulae (58) and (59) ,
using the method of induction.

The validity of (58) and (59) in the case when к = 1 
and 2 respectively / corresponding to 2MP and the IMP / can be 
established without any difficulty.

Let us now suppose that our formulae have been verified 
up to 2k steps. We show that doing one more step we indeed recover 

(59) corresponding to 2k+l steps. In practice it is more 
tractable to do it in the other way round,that is to make first a 
single В transformation / by and p-̂  /»then apply the assumption 
for 2k steps which gives

(B.la)

(B.lb)

where 2 ^  j ^ 2k+l, and

qjql =
P.iql ~ plq .i
Plql—  PjQj

(B.2 )
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We recast the ratios of the determinants, / °< = 1,..*,4/
using (B.2) in the following form

Di2 W (q’i4i) Ti(5.i) Di2k)(5’i) w

T2(5j) T2(q j ) '

- T3<Pj) D42^5.i) - J W
4j Ti(pj) ’

>

where the *s are 2kX2k determinants defined as

Tl K j )  -  I P j4 l -  P l4 j-  P j ( P l4 l - P j4 j ) .  P j ( P j 4 l - P l 1 j ) . —

... Pjk 1(p1q1 - Pj4j) I . (B.4a)

T2 h )  = | р л  -  P j4 j .  P j (P j4 l  -  P l4 j) >. P j ( P l4 l  -  P j4 j) » • •

* pjk 1(pjql " plqj) (в.4Ь)

T3 Ы  =

T4 lq j) =

plql " pjqj» pj(pjql ’ plqJ*}* pj(plql " pjqjb---

pf " 2(plql - Pjqj b  P j t v l  - Pjqj)l >(B *4c)

pj1 (plql ■ pjqj)’ pj(plql ” pjqj)» pj(pjql “ plqj)’** 

••I Pj (^2ql ~ PjQj) I * (B.4d)

(B.la,b) are rewritten without difficulty using the Т ы *s

M.(2k+l) . . 5 Zliill
1 4(5.j)

PiT;(q.) -

L Ti W  4J 2 4 ?
ÍB.5a)
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N (2к+У _2 ъ м

T2 C4j)
qlN2

(о) 1

4 S
РТ1тт(<М) - t» N  

V 4 j )  i
(В.5b)

We shall now write the determinants, T,* , in a more useful form,
namely as a sum of 2 determinants with elements p^, p^, P^Pj» 
etc. To make our proof as transparent as possible, we introduce the 
following compact notation: let us split the set of indices 

^2,3,*«j2k+l^ into two disjoint se Ö, ana { B 2k_r}

where ^ A ^  contains г different indices and contains the
rest. We also introduce a £ £a , b £  |^2k-r^ ^enote ^he 
corresponding elements of these sets and

j a I = X — j ® lb I « X Ü  b
b e [B2k-ri

With this notation we write the T«< ’s as

5  g  ■‘[«iLi1"1’s* (p j . ( M ) , (B -6 >

where we sum for all possible choices of г different indices; i.e. 
for all different [a sets. The determinants, , introduced 
in (В.б) can be characterized by two of their typical rows, one 
of which contains p^, pß where a € jĵr\ and the other contains 
p^, Рь» where b 6 { B 2k-r^ * ^ i s  suggests the following short­
hand notation for the ’s / we do not interchange the original
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order of any row /:

Sl(pj’ iAr\) =
3  J 2k-l _2k-lPa» papl* pa» Papl»*,#* pa » pa P1 

2 2  „4 _2k-2_ 2kP̂ » Pt,» pbpl» pb»***> pb Pi, pb
(B,7a)

s2 Ip j * “

2 2 4 2kpl> pa* papl* pa »**•» pa
3 3 2k-l

pb> plpb* pb * plpb* * * * * plpb
( B.7b)

S5 (Pj * [ M )  = S3 “ P1 22

pl* pa* plpa* * * * * pa
2k-2 _ _2k-2

PlPa 0 (B.7cj

„ „ „ 3 „ 2k-3  _ 2 k -l 2 k - l /  2
pb» pl pb, pb »•••» pl pb » pb » pb \ pb plJ

Sö(Pj » 5Ar ^  = s4 ~ Pl1 S1 =

lB.7d)
- 1 - 1 / 2  2 N 3 _2k-l л 2k-1

pa P1 \P1 " pa /’ papl* pa»*e*» pa » plpa
2 2 2k-2 2k

0 » Pfc, » PiPb’ • * *» pi pb » pb

The relevant combinations in (в.5 ) are in close connection with 
(b .7) • Now it is very important to realize that most of

determinants, S^ip., [ k \ ) vanish. We show this explicitly 
only for S^, the argument goes similarly for the others. By algebraic 
manipulations / linearly combining the columns / we write in 
two different forms
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si(pj* ! M )  =

Pa» o Pa »
n _2k—l n 
0 ***** Pa * ®

2 2 2 2 ( 2  2 \ _2k-2 2k-2/ 2
Pi» Pb “ Pi» Pbpi» pblpb - pl)»***» pa pl» pa 'Pa

(в.8a)

si ( p j -  M  *

Pa - PaPl> Pa (Pa " P l )  > Papl- 
_ 2 0 _4Pl» Pb » ® > Pb »

P l ( P a - P ? ) -
0 »

tlK-cír ti tiI
’a (Pa-Pi'

( B.8b)

Pa
о „2k0 » Pb

It ia not difficult to verify that si(Pj> {&г\ ) is zero for 
r .> к / from (B8a)/ and for r <C k-1 / from (в. 8b) /. Similar
considerations show that S2 (pj, = 0 for r > k + l  and

r < k  ; s5Cp j* iAr O  = О for r > k  and r <  к-l, S6 (pj»£Ar^) = 
= О for r >  k+1 and r k. The only nonvanishing determinants 
are
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si(pj. Ы) ■ Н |а|[ь5 к5(рьг - 4)
,3 „5ра* ра» ра* * * ** ра2к-1 , , 2 4 2к-21» Рь » Рь »«««« Рь

S2 ÍPj ' íAk\) • (-ifsl + a€[Ak\ípa - pl2 >

, 2 4 2k-2!» Pa» Pe»**«» pa л 2k-l IPb* Pb»***» pb ( J

s2 ( p j ) K +1!)= (-i)'8'* T T  (Ph - p?)

L  2 4 2k 3 5 2k-3
I1 » pa» pa ’* * *’ Pa • pb . Pb » pb » * * * * pb

s5(pj> K-ií) ■ (-D,a,+ M  T T  (pP.pP)L a e

'I1’ Pa* Pa .....Pak"4|' jib’ Pb> Pb...... Pb*'1 »

s5 ( p j , í M )  = ( - i / a,+ k+1 Pl L bTIjpb - 4)]
„ ? 4 ?k-? 7 Я -?ъ—.1
!» Pa» Pa »***» po * pb» pb» pb»***» pb

h b i w )  -И а| + 1 p í 1 r r  (pp . p2)a €

pa * pa» pa 2k-3) 1 2  4 2k I»***» pa (• |pb» pb»•**» pb I /

s6(Pj. ÍVil) - (-4*'* 1 Pl2 [„ (рь - Pl)

Pa1* pa» pa* * * *» pak 1 * pb> pb .....pbk”2

2k+l
pb

. ( M
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The next step is to compute the relevant combinations 
of the T ^  ’s / Ti» T2 » Tg / using ( В.б) and (b .9) .

The important point in the calculation is to apply the following 
identity for Vandermonde determinants

1» ai> 8- k-1• *»
k+1
Т Г
i=2 (ai

2 к
al* ax»•• •» al

1. ai’
2ax»•••» 4 2 ^  i - k+1 .

Finally we get for the T ’s

(- Tl(q j ) =

lal

Po» P

3 _2k-l
1» Px»•* * * Px
3 _5 _2k-l
a' P0

•|qb » Pbqb » Pb4b »e**»Pbkcib |

+ 1

■ - °x(2k+1)(qi)

3  „5
pa> pa» pa ’* * * * pa

2k-l Чх » P^^x» Px^x***** P1 ql 

%> Pbqb » Pbqb »***» Pbkqb

-k

Í M

2 faj)
2 4 „2k1» Pi * Px *•* * > P1

“1 2 4 2k
pa» pa* * * *» pa

•|pbqb , Pbqb » Pbqb »,ee» Pb 4 |
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3 5 2 k -l
pl ql» pl ql ,  pi qi > * * * > pl  ql

3 5 2 k -l
pbqb» pbqb* РЪЧЬ’ * * * lPb qb

-  ( - i ) k i>i2k+1,( 4 )

, l k 1 T5 (4 j )  = ql'C+1 [ T7 (qj )  -  pl T2 (4j ) ]

A
5Ak - i

(-11lal
2 4 _2k-21» Pi» Pi»«**» pl

2 _4 2k-2
|pbqb» pbqb......... рьК,ь1% »рьк П %1 +

!» Ра » Ра» « « « » PQ 1

ÍW
le\+1 „ 2 4 „2k-2

!» Pa» P8»«**» pa

3 2 k -l 2k+l
plql» Pi^i»«««»Pi qi»pi Qi

3 2 k - l  2k+l
PkQh » PbQh»««*»pb qb’ pb qb

= l-i)M  А * А ч ) -

К Г к *6 (Qj) ■ К Г к [*4 Cij) - PÍ1 Tl M  =

K V

-1 зPl • Pl» Pl*•••»

-1 3
pa » pa* ра»*,ж»

2 k -l
pl 2

pbqb»
+

V ™*i
+ Z— „ (~i)lel -1 3pa,«««» 2 k -l

2 4 2kplql» PiQi»«««» Pl Ql

2 4 „2k_
pbqb* ................. ....  qb
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В.10

where 1 ^  i ^  2k+l . Expanding the determinants, D , as
given in (59c) , in terms of their maximal subdeterminants con­
taining only p ^ s  yields immediately eqs. (в.Ю) . Substituting
this result into (b .5) gives the 2k+l - step formulae what we 
wanted to prove. Similarly one can obtain the 2k+2 - step formulae 
starting from the 2k+l - step formulae.
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