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ABSTRACT

We present a systematic method using Backlund transformation for gener-
ating SU®@) Yang-Mills-Higgs monopoles of arbitrary charge. The purely alge-
braic iteration formula for our Bécklund transformation is derived. Our method
is based on the equivalence of the axially and mirror symmetric Bogomolny
equations and the Ernst equation. The properties of the Ernst equation that
are relevant formonopoles are also discussed.

The application of the method is illustrated on the example of the one
and two monopolé solutions.

AHHOTALNA

MNpegnaraeTcs cucrTemaTnyeckuii meTon Ana reHepaumm SU(2) moHononen npowns-
BO/IBHOIO 3apsga Tvna AHra-Munnbca-Xmrrca, OCHOBaHHbIi Ha npeobpa3oBaHUK
BaknyHga. MMony4deHa 4uucTo anrebpavyveckass UTepauMoHHas ¢Gopmyna s Hawero npe-
obpasoBaHna baknyHga. Haw meTon OCHOBaH Ha 3KBUMBAJIEHTHOCTU aKCUa/lbHO U 3ep-
Ka/lbHO CYMMETPUYHOI0 ypaBHEHUSI BOroMosibHOro u ypaBeHeHus 3pHcTa. 06cyxganTcs
Te CBOIiCTBa YypaBHEHWA JpHCTa, KOTOpble CYWEeCTBEHHbl A/ MOHOMOoMeN.

NpuMeHeHVe mMeToda WIICTPUPYETCA Ha npuMepe peweHuid ¢ OAHUM U ABYMS MO-
HOMONAMM .

KIVONAT

Az SU@) Yang-Mills-Higgs elmélet véges energiaju, tetsz6leges topoloégi-
kus toltéssel rendelkezé monop6lus megoldasainak generaldsara szolgalé mod-
szert fejlesztink ki Backlund transzformacidk folhasznalasaval. Levezetink
a Backlund transzformaciok iteralasara vonatkozdé, tisztan algebrai formulat.
Médszerink az axiallsan szimmetrikus Bogomolny és az Ernst egyenlet ekviva-
lenciajan alapul. Az Ernst egyenlet a monopélus elmélet szempontjabol fontos
tulajdonsagait is diszkutaljuk.

A modszer alkalmazasaként megmutatjuk, hogyan lehet generalni az egysze-
res toltésl és egy uj, kétszeres toltésl monopdlus megoldast.



1. INTRODUCTION

A3 it was shown for the first time by ’tHooft and Polya-
kov [I] spontaneously broken gauge theories with a simple gauge
group possess classical solutions which may be identified as
magnetic monopoles. These solutions can be interpreted as "soli-
tons™ in 3+1 dimensions iIn the sense that their energy is well
localised at any instant of time, so they can represent "particles".
These particles are stabilized by a quantum number, topological
in origin which corresponds to the magnetic charge. Magnetic mono-
poles arise naturally in the currently popular grand unified the-
ories unifying the weak, electromagnetic and strong interactions.
In Ref, |2] it was suggested that particles with both magnetic
and electric charges / dyons / may play an important role at the
subconstituent level.

In the limit of vanishing Higgs potential, when the
Higgs field becomes massless, a considerable simplification arises
and the analytic form of the static singly charged and spherically
symmetric *tHooft-Polyakov monopolé was found by Prasad and
Sommerfield jjj] and by Bogomolny [4] , In this case the theory is
considerably simplified and the static minimal energy configurati-
ons are solutions of a first order system of equations / Bogomolny
equations /= This paper is devoted to the study of these equations,
A remarkable property of the theory with vanishing potential that
like monopoles do not interact. The repulsive Coulombic force 1is

cancelled by the long range attractive force due to the massless

scalar field.



It has been shown by perturbative techniques |5,6] that the force
between monopcles decreases faster than any inverse power of the
separation.

The existence of static, noninteracting finite energy
monopoles has been recently established by Taubes [7] . The Ffirst
exact solution corresponding to a doubly charged solution / two
monopoles superimposed on each other / was found by Ward [B]
using twistor methods and by the present authors [9] - We applied
soliton theoretic techniques to generate the one monopolé /7 IMP /

[10J and the doubly charged monopolé / 2MP / from a simple
"vacuum”™ solution. These results are based on the equivalence of
the axially and mirror symmetric Bogomolny equations with a
rather well known equation of general relativity, the Ernst equa-
tion« [II] . For the Ernst equation there are various solution
generating techniques: Backlund transformations /BT/ found by
Harrison [12] and by Neugebauer [13] and the inverse scattering
method of Belinsky and Zakharov [14] .

The purpose of this paper is to develop a systematic
method outlined in Ref. []9,10] to generate axially symmetric
multimonopoles of arbitrary charge. Our procedure 1is closely rela-
ted with the inverse scattering methods applied in certain two
dimensional systems which are completely integrable.

We 1introduce a Backlund transformation /slightly diffe-
rent from Harrison’s BT / to obtain the monopolé solutions. The
major advantage of our method that it consists of entirely
algebraic steps, and acts directly on the components of vector

potential. We have to solve a Riccati type equation only once



which is easily done for our simple ™"vacuum'"™ solution. We give in
this article a very neat form for the result of iterating an
arbitrary number of BT’s. We show that by each step the topological
charge 1is increased by one unit.

Our paper 1is organized as follows! In Section 2. we
summarize our notation?and discuss the axially and mirror symmetric
Bogomolny equations. In Sect. 3. we discuss the relevant properties
of the Ernst equation. In Sect. 4. we describe the relationship
between the Bogomolny and the self-duality equations. In Sect.6.
we display the general formulae for an arbitrary number of BT’s.

In Sect. 7. we give some special applications.

2. THE AXITALLY SYMMETRIC EQUATIONS

We consider an SU (2 gauge theory with an isotriplet
Higgs field in the limit of vanishing Higgs potential. The Lagrangian

density 1is

»here F *= =3, ft* - 3V ft* - fty

/ We chose the coupling constant e = 1 /.
The Hamiltonian density for static configurations with

no electric fields /7 AO0O= 0 /1S
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The Tfield equations of this theory are solved by configurations

satisfying the Bogomolny equations 41

Fh-1 wll T v

The energy, E , can be written using the Bogomolny equations as

- ©

Now

®

using the equations of motion for the Higgs Tield,

so the energy can be calculated from the Higgs field alone

- |

The topological charge, n , is given by

N >hL->5°V K )

*-*<0 TV 4= covasi

Since the asymptotic boundary condition “eVi> \ is
4*-900

imposed, for B solution with topological charge n
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However, condition (B) alone does not guarantee that the topologi-
cal charge 1is indeed n due to the presence of possible singulari-
ties. From now on, we take the vacuum expectation value of the
Higgs field N~- A .

When one is looking for exact solutions of complicated
equations, there is a need for a simplifying ansatz consistent
with the known properties of the configuration in quest. In the
present case the simplest ansatz would be a spherically symmetric
one. However, the assumption of spherical symmetry is too strong,
it excludes all but the singly charged “tHooft-Polyakov monopolé

[15] . The next simplest thing one can do is to assume axial
symmetry. In gauge theories by a symmetry we mean that the change
of the gauge field, ~ , under this symmetry transformation
/ e.g. a rotation around any axis / can be compensated by a gauge
transformation [I6] -

Manton [17] constructed an axially and mirror symmetric

ansatz which can be written in polar coordinates as

where X"= § } Xr= and 0  4ij are

functions of into the Bogomolny equa-

tions (3) they simplify to
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We have five equations for the six unknown variables, however,

equations (lla-e) still possess a residual U(l) gauge invariance:

VLi=V/t+ A

o~
cosh +tf.  SHA § .y av-eg @)

X" Val:
This residual gauge freedom enables us to reduce the number of un-

known functions from six to five. In fact, we can do even more
than that, namely, we can satisfy one equation in (II) by the

following trick: it is possible to find such a /1l that
(1?a)

W (17b)

are simultaneously true. This is more than a gauge fixing, because
(1”a) and (I13b) imply equations (lla-c) for <p~ ~ - VIi -
To show this explicitly, one should derive the integrability con-

ditions for equations (1™Ma-b), which are easily found to be

yy™ yy = Aron) + ~v>A (0w +

®)
+ BDM,r+MHL) + 4ruj)



Eq. (@4) really implies (lla-c) ,so, for a solution of (lla-c)
it is possible to require both conditions (1Ma-b) at once.

Now, using (13a-b) egs. (1la-e) reduce to four equations for
four unknown functions. Next, we observe that (lib) implies the

existence of a function 2 , such that

b \
t v
Then it is easy to see that (li1e) can be also satisfied by
putting
Vl.=- %S Vi=- jk a6
j] B > 1 1
i
and the remaining two equations (lIld-e) reduce to
arz.>

ANY- = 2V i .VE-0 (@0

where 1 = e , v=(C3, 0s)

Introducing 6= £+ LW egs.- (17a-b) may be written as

Ree Jle - (Ve)r=20

which is the celebrated form of the Ernst equation of general
relativity. A geometrical derivation of eq. (18) from (11a-e)
was given 1in Ref. jio] -

The equivalence of egs. (lla-e) and (138) is of

interest because it reveals a surprising / although completely



formal / connection between general relativity and Su(2) gauge
theories, and what is more iImportant for us, it gave the clue to
find new exact solutions of the Bogomolny equations describing
multiply charged monopoles, using the various solution generating
techniques worked out for the Ernst equation.

As we would like to make this paper somewhat self-contain-
ed, iIn the next section we summarize briefly those properties of
this equation that are relevant in the study of monopoles. For a
moi“e detailed discussion of this important equation in general

relativity we refer to the literature j18,19] -

PROPERTIES OF THE ERNST EQUATION

The most general line element of an axially symmetric,

stationary space-time can be written as

a9

where $ are functions of 3N only.

The vacuum Einstein equations corresponding to (19) are

n in~»n xjnz) = O Oo
&Uu, - VI=0 \Zo'o
2a-)



Once egs.- (20a,b) are solved, it is easy to integrate eqQs.
(21a-c) for D , so we shall concentrate on egs. (20a,b) -
Egs.- (20a,hb) possess an Sb(2,R) symmetry group which corre-

sponds to the linear coordinate transformations:
t=o1l "Db N

N>cerN - cA (acl -be =4

This SL(2,R) invariance group will be denoted by L. Rewriting

egs. (20a,b) as

€)

ml3- " -~ v i-o0

where 4+ = — + uj - *h + transforms under the
i cc
action of L as

) A + b
4 + = @ ———— e
d £ c. ™+
Now we observe that eq. (20b) can be interpreted as

the integrability condition for the existence of a new function

which is related to u3 in the following way:



o, » f 0
» j (25)
Introducing the complex Ernst potential, €e t VVHF , eqs.-
(20a, b} take the form: 7e. €[] €- ($7fe) s O which is
just eqf (18) . The Ernst eq. (18) is invariant under a new

SL(2,R) transformation group, P , /7 Ehlers transformations ~20] /

defined by

€>b IL111e N 4o
5"- 11t
It is iImportant to realize that there exists a direct mapping from
eqs™ (18) to egs. (20a,b) / this is the so called Neugebauer-
Kramer mapping [21] /. This mapping is a group element, I = I\

of a cyclic group of order two, defined by

> -k @7

V- S )
+ - mE J o a L~

4/~ i 10

We shall write (27) in a more compact form

In fact, the groups L and P are related by 1 :
XL 1"1L =P . (28)

The action of the group of coordinate transformations, L , does

not commute with the Ehlers transformations, P , and by the re-
peated applications of these transformations one can generate

new solutions of the Ernst equation from the old ones. However,



properties of solutions generated this way change in an uncontrolla-
ble way, e.g. starting with an asymptotically flat solution the
result will be an asymptotically non-flat space-time which is of
little use in general relativity. In fact, we have an infinite di-
mensional symmetry group — the Geroch group £20 - of the Ernst
equation and one should look for suitable subgroups which preserve
asymptotic flatness to generate physically interesting solutions
in general relativity. This program was completed by Kinnersley

et al 23] < Geroch has shown the existence of infinitely many
conservation lawe, as well. The origin of the Geroch group was
somewhat mysterious until the discovery that it can be related

to the existence of a Lax pair £24] < A method was developped ty
Belinski and Zakharov [14} to solve the resulting linear eigen-
value problem. Independently of each other Harrison [12] and
Neugebauer [13] found Backlund transformations / BT / for the
Ernst equation. Neugebauer deduced a composition theorem for two
successive BT’s , so once a BT has been determined one can apply
arbitrary many BT’s by algebraic methods alone. Cosgrove [19]

has found a composition theorem for Harrison’s BT’s using Neuge-
bauer’s work. All these techniques could be successfully applied
to generate solutions of physical relevance / asymptotically flat /
for the Ernst equation containing arbitrary many free parameters.
In general relativity for most solutions of interest, the Ernst

potential, £ , can be written as

£ = I B | a u k '™ 9



/ are the usual spherical coordinates, m is the

/ real / Schwarzshild mass /. However, 1if one is interested in
generating solutions of the Ernst equation corresponding to mag-
netic monopoles, one needs a completely different condition of

29 . The gauge invariant length of the Higgs field is given by

nrl o
,* + u->r

vV

It is important to note here that the Ehlers transformations (26)

o"= b\

leave @ invariant, whereas the I and L transformations change
0] . Our boundary condition requires that for a monopolé

of charge n,

b _ (T

which is just incompatible with eq. (29) . The moral from this is
that unphysical solutions in general relativity might be of inter-
est in gauge theories and vice versa.

We think, it is clear from the above that one should be
somewhat careful in applying the techniques working so beatifully
in general relativity for generating multimonopole solutions due
to the fact that the boundary conditions are so different. In
fact, it is a very intrigueing feature of the Ernst equation that
both the Kerr and the monopolé solution can be interpreted as
"solitons”™ in the sense that both can be generated by BT»s starting

with the "vacuum™ of general relativity / Minkowsky space / or

with the Higgs vacuum / ¢ - \ / respectively.



Before entering into the details of explaining how
Bocklund transformations can be used to generate multimonopole
solutions, we make a short digression to show the connection between
the Ernst equation and its symmetry transformations on the one
hand and the selfduality equations and the non-linear transfor-

mations of Corrigan et al @6] on the other hand.

4. THE CONNECTION BETWEEN NONOPOLES AND SELFVDUAL GAUGE FIELDS

Let us consider a pure SU @) gauge theory with Lagrangian

The Euclidean space field equations are solved by such configura-

tions which satisfy the self-duality conditions

I-n:* q))

where is the dual field tensor

t r A45- (34)

In the case when all fields, 0” , are independent of

the Euclidean time the self-duality equations (33) reduce to

F= QOH&¥"



where we recognize the Bogomolny eqgations (3) , reinterpreting
QO as the Higgs fTield.
Yang has shown the existence of a particularly convenient
gauge -n the R-gauge — in which the self-duality equations (33)

take the following form [25]

+ + T,»XV T;5=0 (*a)

. K3 +0 . 2b,X3b6-2X,r-0 <8

*(b-N +Xx>»)- 2X> x>~ (,6c)
r=xeoxar 1 *-X5*1d4
It is useful to introduce a new function T realizing that

(?6b,c) are identically satisfied defining T as
-2 - -2 -
X 5 X ~nrij=
/ and similarly for the barred quantities /. In terms of Xj T

v the self-duality equations take the form
X U Vit d)-in +%hS@ars~-»173,4)i) =0 (Jod)
+ A~ 4yn \'b w°® (?6e>

P45) 4+ 1) »"0 €5))

The striking similarity of eqs. (J6a-c) to the Ernst equations
(17a,b) and of ~36d-f) to (]0a,b) makes it obvious how to
relate the former systems of equations to the latter ones. Indeed,

taking X to be real and assuming that both % and X depend

only on we immediately obtain egs. (17a,b) [27~ -

However, taking X => S N X =VzAa

«



Tr= (2 bl in egs. $»6”) / with w and o
being real functions / we again obtain (I7a,b) and (20a,b)
respectively. This is important as it is also possible to show that
using these latter identifications for X0 X we obtain
the expressions (13,15,16) for the functions of
the Manton ansatz.

As 1t was pointed out by Corrigan et al. |26 the self-
duality equations (36a-c) have an SL (2,C) invariance group

which acts nonlinearly on X and X :

X

K== (o +Ho XL @)

Ir 5 N oA oS (?7b)
@tbl) +Hx)+bbX1

This transformation was denoted by in Ref. n26 e It is easy

to see that (57a,b) are the analogues of the Ehlers transformations
for the Ernst equation discussed in Sect.% It is important to
realize that in the SL(2,C) transformation group (?7) a,b,c,d

can be taken not just simple parameters but arbitrary analytical

functions of (y>z) < mh what follows we shall use a simple
subgroup of this Sb(2,C) group that maps ( T )
into (]} nij R"") where is an

arbitrary analytic function.

In Ref. [26] yet another invariance transformation
/ the so called ~ or "Backlund"™ transformation / was also given:
if (X)TAX Kjuw) satisfy eqs. (36) then

(&*) I'_I'r - T -_ are also solutions of these
J
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equations. Note that this is a discrete transformation yielding

the identity when applied twice. This fact and the structure of

the transformation indicate that ~ can be related to the
Neugebauer-Kramer mapping (27) . For example, in the case of the
Manton ansatz we find that acts on 4 J N as

This 1is yet not equivalent to eq. N , however, applying to

it an SL(2,c) transformation of the type we mentioned above with

Q ($)=2Ta £ we indeed obtain the Neugebauer-Kramer
mapping for Yj w0 e Thus we see the precise connection
— within the Manton ansatz - between the transformation of Ref.
[26] and the Neugebauer-Kramer mapping eq.- (27) : the latter

is the product of a ~ and a special Sb(2,C) transformation
with a given analytic function.

In our opinion it would be more appropriate to make a
distinction between Bficklund transformations and the and
transformations of Ref. [26] , the latter being rather an invar-
iance property of the Yang equations. It seems reasonable to ex-
pect that BT’s for eqgs. (36a-c) should reduce to those already
known for the Ernst equation in a special case, just as the
Sb(2,C) transformations (37) give the Ehlers transformations
when we restrict egs. (36a-c) to the Ernst equation. As far as
we know BT’s in this sense / generalizing Harrison’s or Neuge-

bauer’s BT’s / are not yet found. There is a strong indication

that these BT’s really exist since in Ref. [28] the existence

of the corresponding linear eigenvalue problem which reduces to



that of Belinski and Zakharov for the Ernst equation was
discovered. In Ref. J28j] we constructed a four dimensional
"soliton" generating method to solve this linear eigenvalue prob-
lem which is the generalization of the method of Belinski and
Zakharov. On the other hand, it has been proved by Cosgrove [19]
that the soliton generating method of Belinski and Zakharov is in
close connection with Harrison’s BT.

In Ref. ~28] it was shown that egs. (_36a-c) possess
an infinite parameter invariance group which is the analogue of
the Geroch group. In applying this invariance group for generating
new solutions for the Yang equations one encounters problems simi-
lar to the simpler case of the Ernst equation. A straightforward
application does not lead very far because of the uncontrollable
singularities. Lohe [29" +tried to generate multimonopole solu-
tions of egs.- (36a-c) when X and T are independent of
/ which are of course the Bogomolny equations / carrying out this
procedure on the BPS monopolé. He applied the special product

&£ to ensure the reality of the final result which turned
out to be a singular configuration. This is not surprising remem-
bering that this method does not lead to acceptable solutions in
the case of general relativity if we start from an asymptotically
flat solution. To get physically interesting solutions / e.g.
those with finite action / one should find suitable subgroups
in a spirit similar to the work of Kinnersley et al.

As it was shown by Manton [17] the Bogomolny-Prasad-
Sommerfield /BPS/ monopolé |3,4] can be obtained from the

Corrigan-Fairlie-*tHooft-Wilczek / CFtHW / ansatz in a



complex gauge, but he found that the CFtHW ansatz does not contain
multimonopole solutions.

Atiyah and Ward [31} found a natural generalization
of the CFtHW ansatz which arose out of the twistor approach for
the self-duality equations, originally proposed by Ward B2] »
The construction of Atiyah and Ward leads to a hierarchy of
ansatze AN, AN,*_*, where A™ is just the CFtHW ansatz. Ward used
the A2 ansatz and found a doubly charged monopolé by a somewhat
ad hoc generalization of the BPS solution [B] <= Independently

of Ward we found the same solution using the methods described in

this paper [9] -

5. BACKLUND TRANSFORMATIONS FOR THE ERNST EQUATION

Since for generating multimonopole solutions we found
most convenient to apply a slightly modified form of Harrisoh’s
BT /7 HBT /, and the existing publications on this topic are some-
what compressed , it might be of use to enter iInto some details.
We present the material from a different point of view from that
of general relativity. We show how one can derive the composition
theorem for HBT’s from first principles / without referring to
Neugebauer’s composition theorem / and derive the general formulae
for an arbitrary number of HBT’s.

As a Ffirst step, we discuss Harrison’s Bficklund trans-

formation and derive the composition theorem for two consecutive



BT’s. This composition theorem is of fundamental importance since
it enables us to construct multisoliton solutions using pure
algebra once a Riccati equation for the first step has been solved»

We define the following variables:

* (38)
) £ _ %}i "ot -
u
These variables are different from that of Harrison, the connection
between (3S) and that of Ref. |12 was pointed out in Ref. [IO].
The Ernst equation (I8) can be recast into a system

of first order differential equations for the variables (@8)
«i,2 =- « A +«A-r(C"+90 ~ WM+ * <,9a)
@2 - “A endi- rc 1 TR ur)ac3o)

«1l,1 = « A * 2«1 - |1 ~ (N1 + «2> m C”9=)

«2,1 m-m** + «2«1 - (C~N1 A M1 + H2 * (,9d)

Harrison derived his BT following the method of Wahlquist and
Estabrook [33] e He started with rewriting egs.- (39a-d) as
four 2-forms which are to vanish for a solution. Then he looked

for a pseudopotential q such that the 1-form
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a = -dg + F(g,Ni>Mi,S ~d ™~ + o(q,Ni,Mi,~)d C2

satisfies dtr = 0 if egs. (39) are satisfied and <a = 0.
Furthermore, he supposed that F and G depend only linearly on
M~”s and N~’s. This assumption guarantees that the resulting equa
tion for the pseudopotential, q , will be of Riccati type. Indeed

this way one obtains a total Riccati equation for q(C~> "2~/ :

dg = [OR - g+ p) (M2 - MIg2)] d Xx +

+ [K - MDY + P"U») 1 -V 2)] 2

where pw) = yWw- i£2) W+ ~*1)"1 »w being a constant of
integration* We remark here that the other integration constant
for g will be denoted by

In order to find the concrete form of the BT he looked
for a new solution of eqgs. (;39) which depends only on M~

N., g- This procedure leads to the following form of the BT:

1 + pq q P2 -1
H(q1p) =-qQ -—- - % («»)
p +q 4s p + ¢
p+q 1 p2 -i
H(g.p) M2 = MZID) ] (41b)
g@ pg 2 4s 1+ pq
1 + pq 1 1-p2
H (@.p) Nx = = e N, , (41c)
qa(p + @ 48 p(p + O
i} 1 - p2
H(g,p) N2 = N&) = N, I« P

1+ pa 4S pQ + pa)
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It will be convenient for us to show at this stage how
the Neugebauer-Kramer mapping, 1 , acts on the M**s, N”’s and on

g- A straightforward calculation using the definitions (26) and

(@273 gives
1 1
I M = - + - 1 1L = « M, + —— )
4%
(42)
7 7 I N. N.
1 Ni = * Ni + aly t
We define the action of I on q in the foilwing way: 1q a q
satisfies
dg=3- @+p +Mqd+pg)+- d-ag2)dEx +
45 “@n

+[-Hi(5+;) + "r51 + ) e -5)a(2 .

Eq. (43) comes from eq. (@40) for the pseudopotential, q

replacing there MM*s, N~*s by W~A*B and IN~’s.

It is not difficult to verify that q is given in terms

of p and gq / satisfying eq. (40) / as

P+ Q
4~“1+pq (44)

At this stage it seems to be very difficult to apply a

second BT, because we have to solve eq.- (40) again replacing

the MM*s, N”™»s by *s and n P~ »s to find g* for the next step.



Usually this is a very hard task even for the simplest seed solu-

tions, since after a single BT the new configurations can be

rather complicated. The great advantage of the BT is the existence

of a composition theorem stating that there is no need to solve

analytically this complicated equation as its solution can be con-

structed in an appropriate / algebraic / way from solutions of
@0) with the original M**s and t"L’s.

We now proceed to derive this composition theorem for
two consecutive HBT’s which will enable us to find the general
formulae for an arbitrary number of steps by algebraic methods
alone. Let us suppose that eq. @40) for the pseudopotential, q ,
was solved. Making use of (41) we can perform the Ffirst BT.

Let us suppose that for the second BT q” depends only on (", p2,
gx, q2) where @, g) and (2, are both solutions of (40)

with the same M”~’s, N~’s but different constants w", w?, no2*
This assumption is motivated by other work in soliton theory

/ Sine-Gordon, Korteweg-de Vries, nonlinear Schrdédinger equations /.
This way we obtain two equations for dq’, namely, eq. @0) with

H (> etc. and the other coming from our assumption for qg*.
After equating them as it is shown in detail in Appendix A we

obtain an overdetermined system of equations for g which can be

consistently solved yielding

, = 51pl “ 42p2
al(qlpl ” q2p2)
Writing out (45) in terms of p”», pE, ¢, g2 we get the formula

derived by Cosgrove [19j :



Pr(X - pIl K -Plil-pjK * (of - pDaglg2 _ n6)

li[(p1 - 115-* PIC1l - pr K - PrCl - pl)ur]

Since we will use the transformations IH(p~fgj) to

generate the monopoles we now turn our attention to the effect of

this transformation on the M""s and N”»s. Henceforth the IH(p~"fg”

transformation will be denoted by B(p”,q”. It is easily verified

that

B M~O” (473)
B Mf (47b)

BrD q gl -r- lg- (47c)

B K20) q . C47d)
4P S )

As we shall iterate B we need the following commutation

property of the H and 1 transformations which can be derived with-

out difficulty from @1 , (42

B(p,q) = IH(p,q) = H(p,g)l = 1"1B(p,g)l “48)

To illustrate the use of (48) we show how one can reduce IHIH.

The pseudopotential in the argument of the second H transformation

is of course not g* but g», since it is preceded by an I mapping.

So



1 4 2.5%i Hipj-ij) = HE2 Y)Y @

2
where we used that I =1.

6. SUPERPOSITION FORMULAE FOR AN ARBITRARY NUMBER OF

BACKLUND TRANSFORMATIONS

In this section we give the general formulae for n

consecutive B transformations. Since the proof of this result is
rather technical we present it in Appendix B.

It is important to deal with the reality conditions for

solutions generated by this method. The conditions

M* = Nx , M* = N2 (50)
will obviously ensure the reality of the new solution. For exam-
ple, after a single B step it immediately follows from (47) that
starting with a real solution, €0 , for which 4~*0 eq. (50)
implies

q = qg* > p*= p"1

G

In a different case one should determine what are the constraints

following from (B0) for the g’s and p’s.

It is illuminating to show how to derive the formulae
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for two B steps which was applied in Ref. N9} .We proceed to

carry out a second B transformation for (47)-.

Now applying the duality principle we get for g* / see Appendix A /

91P2 « A2n1

Ql @l.Pi “ qg2p2~

Substituting expressions (45) (47b) and (53) into (B2) after

some simple algebra we find

w(@= alp2 ~ plg2 plgl ~ p2g2 M © + P1 ~ p2 (G4a)

PIgl " p2gq2 p2ql " plqg2 4 s (p2gi ** pig2»

Similarly for the other components

M@ Plal “ p292 p2ql ~ plg2 M @ + dqlg2 @1 ~VI) | (54b)

qlP2 “ plg2 LPIql ” P2qg2 4-§ (P2q2 " plgiVv
2) _ plgl ~ p29g2 plgl ~ p2g2 N(@© + qlg2 (p? ~ pl~
N plq P29 © +qlgz (p p . (540
1 SXpr - qlp2 “ ?1q2 48 PIP2 @lg2 " p2qb)
2 2
»,2(2) _ ql|:)2 . pl(lq2 p2ql ~ plgq2 n © + p2 " P1 , (54d)
" »

Plgl * p2g2 plgl “ p2g2 4 plp2@Iqgl p292)



From condition (B0) we deduce that either

* _1 * . _1

P1 ~ p2 » gl q2 (55)
or

Pi = Pi"1 * Q* = Qi"1l = 1*2) (56)

Egs. G5) and ®G6) reduce the number of arbitrary parameters.
We now rewrite eqs. (B4 using determinants which is very sug-

gestive. It 1is sufficient to consider (54a,d) only

al q2 1 1
y @ el p2 plat P2q2 , ~ , _ J£ (57a;
1 1 ql q2 qi
plal p2q2 pl p2 pi
-1 -1
ql g2 ql g2 pi p2
_  pi p: pl. p2  ©  opi p2 (57b)
1 1 1 1 a7 1 1
plgl p?q2 1plql P2q2 plgl  p2g2

The above form is most useful if we want to generalize it for an
arbitrary number of steps. Having calculated the analogous formu-
lae for 5 B transformations it was quite evident what the corres-
ponding result would be after iterating n-times the B transfor-

mation. We realized that these B transformations have the



intrigueing property that an even or an odd number of iterations
should be treated separately. We present here our results in the

following compact form,for an even number of steps

where the D8*3 / a =1,...4 / are 2kX2k determinants and they are

completely characterized by their i-th row

4 %) Yis Pi» PIQi> P Phris « weees Bi2K 11

4%) - 1> PiQi» PB» PAi» Pircc Mna2k-1 1

4%) - I» PiQi» P? PiQi* Pirces _2k-2 2k

4% ) = 1p11. pi> Pidi> pi> PV .. pi_Zk_I !
and i =1,...... 2k;

for an odd number of steps.

K fek+i) 4 K'P"(Ll) 1 4 N M
s oy 4 kAR 22 4”\) 1
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N_Ik+1l = .
w2

here Dg’s are k+h)y;|j2k+l) determinants written in an analogous

way as above

where 1 = 1,..... ,2k+1.
We give an inductive proof of these results in Appendix B.

Formulae (58) and (59) are of fundamental importance
since they enable us to construct the explicit n monopolé solutions
by pure algebra. In fact, they represent the nonlinear superposition
rule. It is a very attractive feature of our method that we get
as an output: just the components of the vector potential, and
the physically most relevant quantity, the length of the Higgs
field \>1 , can be read off immediately. It should be noted
here, that Neugebauer [34] has given a compact formul for the
Ernst potential, 6 , for a 2n-fold Harrison transformation.

Needless to say, it would be very awkward to use this result in



our case.
We guarantee the reality of our solutions by imposing the
following conditions for and

* -1 * -1

q2r-1 q2r * p2r-1 *“ p2r (602)

for an even number of steps, whereas for an odd number of iterations

* -1
~ * =
ql ql P1 P1 (60b)
N = Pl

g2 42r+l , P~ Arsll
r = 1,....,k. There exist other possibilities as well, however,
as it is clear from Ref. [35] the physically interesting case
for us is either (60a) or (60b) . We made the tacit assumption
in (60b)- that for the seed solution \0= O -

As 1 is the most iInteresting quantity for us we

find it useful to present here .

D (2k+e) (2k+6)
o] =2 pliygyizil w, NRICE GO
<5i ) 4 2k+64" i) 6i)
B0
- (2FTéT
48 *ro%i) PEW)
Where G =0 or 1, k is any integer and we used the reality

(60a) or (60b) respectively.



To actually get multimonopole configurations one should
start with a suitable seed solution for which one has to solve
eq- (40) to obtain g. With these q’s and the corresponding p°s
where the parameters N 7’s and w’s are arbitrary / up to the
constraints (60) / one usually ends up with singularities in

10| ,therefore, the energy for this configuration will not
be in general finite. As it was found 1in [35~ the parameters
N 17wl are uniQue”y determined by imposing the condition

of finite energy. In fact this constraint means that there be no

singularities in eq. (61) for \o1 -

7. GENERATING MULTIMONOPOLES

We now show how can one make the first step in applying
the method developped in this paper which amounts to generate the
singly charged monopolé. We indicate here why the modified BT,

B /7 =1H / , was singled out as the candidate for generating the
nonlinear superposition of monopoles.

The moet naive expectation is that one could start with
the well known BPS one monopolé / IMP / as a seed solution and
applying a BT one would end up with a doubly charged monopolé,
etc. In the Sine-Gordon theory this is indeed the case, that 1is
from a soliton a BT generates a two soliton, etc. In practice it
is not quite straightforward to proceed this way since the IMP

is somewhat complicated in the R gauge; its Ernst potential, £4 p
n



is given by [10,29j & = F"*(.S ¢ 1p) * where
r
F = ———— + rcosh zcothr - z sinh z ,
sinh r
€5%)
P =2z cosh z - r sinh z coth z

It is not an easy task to solve eq. (@40) for yjp so one should
find an other way. It is well known in other models that the one
soliton soliution can be reached from the vacuum state by a BT.
In our case the "vacuum™ is not the trivial solution of the Ernst
equation, f =1, 4° 0O which corresponds to Minkowski space,
but rather a more "natural™ vacuum would be the Higgs vacuum,

hX = 1. The simplest solution of the Ernstt equation with
this property is f = ez , o= O or ay enters transformation
of f « As i1t was indicated in Ref. [0 a simple HBT does not
give the IMP from this "vacuum set". Instead, it was found that
the HI transformation gives rise to the IMP when applied to the

complex solution f = — -—— , Us= 1 coth z , which is ob-
sinh z

tained from e by a complex Ehlers transformation. Even for this
complex vacuum state the solution of eq. (-40) 1is quite compli-
cated, so it was important to note that by the B transformation
one obtains the IMP just from fQ. The mS°, nS°s for fQ = ez,

4~ =0 are given by UMN))= u£0Q= - j , = N°) *4 | Eq. @O0)

is readily integrated and we get for (q

q = - tanh ("RW)



where R@)=V@Ww - z)2 + g2 md IS the constant of

integration. Using eqs. @7) and (61) we obtain for ¢a

b = gcoth r¢@) - “ ) (64)

where we had to choose ~ =0 to avoid singularities and we used

p+aq
=1 (65)
1 + pg
One would now think the way is open to apply a second B transfor-
mation for the IMP to get a 2MP, etc. However, 1in contrast to the
known cases it is impossible to generate the 2MP from the IMP by
a BT / either by B or HBT /. The reason of this surprising fact
will become clearer if we see how the 2MP can be generated. The
"vacuum"™ we start with is again FfQ = ez and the constants we
had to choose to ensure the absence of singularities in \¢l
are: Wi =w* =i ~Y~ » ® = - i . 1Pl can

now be calculated after some algebra

where



1
-\

AN CoS™o (™ _ (CAv™~A")ooSoi <

and we introduced oblate spheroidal coordinates

\J(A-*)(AN) +01F4= S— ~-HE]JE£A3 0 £ £o00

(<tl drastically simplifies on the z = O plane and on the z

2% ("Co«,V>54 -
14>U»0,")\ 1+
°? *bunC>
where 9 =" ¢
I0C* v8“°3]a ltctvAfc ~ N o~
1 bl.r ¥ I

This solution describes a doubly charged monopolé situated at the
origin.

Thus we see that the 2MP is generated by a double B
transformation, as we claimed, but the second of these transfor-
mations is carried out on a state entirely different from the
IMP.

Finally, we show that applying (1) to the simplest
Higgs vacuum the asymptotic behaviour of satisfies eq- (B) .

First we observe that g of eq. (63) tends to -1 exponentially



for r —> oo witile (p 1 approaches 1 here only polvnomiallv e

Therefore keeping in (61) the polynomial terras only we get

N - ( xf
DAK+6) - v 1)
2

while using an identity [36] for the ratio of two Vandermonde-

type determinants

Now plugging these ratios as well as J

into (1) we obtain

This shows that every B transformation increases the
topological charge by one. However, the resulting configurations
are in general singular, corresponding to infinite energy.
Therefore, the only remaining task is to find those values of
w., (bi for which Idp \ given by on is nonsingular. This
was achieved in Ref. 37?5] , where the structure of these new

solutions is thoroughly discussed.
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8. CONCLUSIONS

We derived the general form of the n-fold BT for the
axially and mirror symmetric Bogomolny equations. We have pointed
out that applying these BT’s on a simple Higgs vacuum one can
generate monopoles of arbitrary charge. We illustrated our method
by showing how the one monopolé and a new doubly charged monopolé
emerges from this process.

After our work was completed, we received the papers by
Prasad, Sinha, Wang [37] in which they described another frame-
work to generate multimonopoles, generalizing Ward’s construction.
From the comparison of these two superficially very different
methods we can immediately establish that our BT connects the
A £ and the A® ans"atze while preserving reality and regularity
properties of the seed solution / at least for a suitable choice

of the parameters /.



APPENDIX A. COMPOSITION THEOREM

We give a detailed derivation of the composition
theorem for two subsequent BT* $.
The Riccati equation (34 ) for the pseudopotential, g*

in the second BT is

dg* = = K-—~ g»(1 & P2g») + + P2) ¢
L Qi qi
From the assumption g*= gq* (Px»P2»Y1»42) we *or
b 3 3 9
dg* = q*dqi+_i*dq2+—i*dpx+—gkdp2 W
3qgx q2 9p2 P2

Now substituting dg~ arid dg2 from eq. (34) and since



ve get comparing (a -i) and (a.2) the following equations for g»

9 1* / ) 3 g* i . ~1/ \ /
- — g, (1 + p™Mg,) +— — q2{ ¢ P2g2) = g»— (A + P2g™), (A.43)
o g® 0 g2
9 g* 3 g* cH «
i —_ — = ~ * *@ .
sqr @ P+ S @+ P2) =~ (a*+p2)
3 g* I a*\
Nagn UM Ml 15 4  * - * A1 47 A 4o)
3 q*/ 1 ] o q* / 1 \ 1/ 1 .
, 1A 4d)
g2 - p2 1 NN p2
3 g* ,2 \ 3 g* , 2 S
" 33—_ PI (P! " l} + ~ SF;-Z A e 1] (pl - ]J[qlq 4 1+P2q,) ‘ fq,+P2)],
1
(A.4e)
3 g Pi-1 39”7 p2-1
PI Pi P2 P2
2 _ -
1 - Pi 1g° q* I 1
qlq N ( 1 q + - g (A.4D)
Pi 1+ paarn p2) Pi+ gl \ P2 U

We see that we got an overdetermined system of differential equa-

tions for g*, and it is possible to reduce eqge» (ft#da-dj  just



to simple algebraic equations

- Sgl = ’ Na .5s)
ql™l “ g2qg2 1 “ qlglq’g>
2. -2 .
Pi qlg2 ~ q2ql qlg2gq> "™ qlq2g> U.5b)
P2 qlql ” q2g2 aq2q92 ” qlqlqg,qg>

These two quadratic equations for q” /7 or q” / are easily solved
and indeed they have one common root, or alternatively one can
reduce (A.5a-b) to a linear equation, the solution of which

is seen to satisfy both (A.5a-b) -

1 Q1rP2 “ q2Px (A.6)

gl qglpl ” g2p2

Iq” = g is the "dual* of g* in the sense that one should simply
replace g®, g2 and g~ in (@ -6) by g®, g2 and g"-

One can verify that (A.6 ) really solves all of the
egs. in (A.4) . This g» satisfiés eq. (34) with p== p2

and replaced by H(gl,pl")Mi, HFfg”pjNj
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APPENDIX B. PROOF OF N-STEP FORMULAE

We proceed to prove our results for iterating an arbitrary
number of B transformations given by formulae (58) and (59) ,
using the method of induction.

The validity of (58) and (59) in the case when k =1
and 2 respectively / corresponding to 2MP and the IMP / can be
established without any difficulty.

Let us now suppose that our formulae have been verified
up to 2k steps. We show that doing one more step we indeed recover

(59) corresponding to 2k+1 steps. In practice it is more
tractable to do it in the other way round,that is to make first a

single B transformation / by and p /»then apply the assumption

for 2k steps which gives

(B.1a)

(B-1b)

where 2 ™ j ~ 2k+l1, and

Pl ~ plgi (8.2)
Pigl— PjQj
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We recast the ratios of the determinants, / °<

using (B.2) in the following form

Di2W (qi4di) Ti(s.1) Di2k)(51) W
T2(5}) T2@j)
- T3<Pj) D4275. i) - J W S
43 Ti(py)
where the *s are 2kX2k determinants defined as
TIK j) - 1 Pj4l - Pl4j- Pj(Pl41-Pj4j). Pj(Pj4l-PI1j).—
Pik 1(plgl - Pjaj) | (B.4a)
T2h) = |pn - Pj4j. Pj(Pj4l - PIl4j) > Pj(Pl4l - Pj4j) »==
. _ . (B.4b)
* pjk 1(iql " plaj)
T3 bl = plgl " pjgj» pi(pjal * plgJF¥ pi(plgl " pjgjb---
pf " 2(plgl - Pjgjb Pjtvil - Pjgpl >(B *4c)
T419)) = pijl@lgl = pjgj)” pi(plal ” pjaj)» pj(piql “ plgj) >
=l Pj g1 ~ PjQj) 1 * (B.4d)

(B.la,b) are rewritten without difficulty using the Tbh *s

@+ . . 5 ZIiill PiT;:(g.) -

1 4(5.3) LTi W 43 2 47

1B.5a)
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N (2k+Y 5 M © 1 PT1TtT(<M) - t» N
2 - glIN2
T2C4)) 4S Vaj) i

(B.5b)

We shall now write the determinants, T,* , in a more useful form,
namely as a sum of 2 determinants with elements p», p~, P"Pj»
etc. To make our proof as transparent as possible, we iIntroduce the

following compact notation: let us split the set of indices

~"2,3,*«j2k+1™  into two disjoint seO, ana {B2k_r}
where "~ A~ contains r different indices and contains the
rest. We also introduce a £ £a , b £ |"2k-r" ~enote “he

corresponding elements of these sets and

gl x-je Ibl« XU b
be [B2k-ri

With this notation we write the T« ’s as

s g N[«iLil"r” ei- (M) . e-s>

where we sum for all possible choices of r different indices; 1.e.
for all different [a sets. The determinants, , introduced
in (B.6) can be characterized by two of their typical rows, one
of which contains p~, pR where a€ JyY\ and the other contains

p~, Pb» where b6 {B2k-r * ~is suggests the following short-

hand notation for the >s / we do not interchange the original
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order of any row /:

3 J 2k-1  _2k-1
Pa»» papl* pa» Papl»*,#* pa »pa Pl (8,72)
SI(pj” 1ANr\) = 2 2 24 _2k-2__ 2k ’
P»  Pt» pbpl» pb»**> pb Pi, pb
2 2 4 2k
pl> pa* papl* pa »**e» pa
s2pj* “ 3 3 2k-1 (B-7b)
pb> plpb* pb > plpb*>*** plpb
S5®j* [M) = S3 “ pP1 22
2k-2 _ _2k-2 0 (B.7cj
pl* pa* plpa***** pa PIPa
” - 3 ,» 2k-3 _2k-I 2k-1/ 2
pb» pl pb, pb »ese» plpb » pb » pb \pb plJ
S6(Pj » 5Ar~ = s4 ~ PI1 S1 =
1B.7d)
-1-17/72 2N 3 _2k-1 n 2k-1
pa P1 \P1 " pa/” papl* pa»*e™ pa » plpa
2 2 o 2k-2 2k
0 » HG » PIiPb’ «**» pi pb » pb

The relevant combinations in (B-S) are in close connection with
(b.7) <= Now it is very important to realize that most of

determinants, S”ip., [K\) vanish. We show this explicitly

only for S, the argument goes similarly for the others. By algebraic

manipulations / linearly combining the columns / we write in

two different forms
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si(pj* 'M) =

n _2k-1 n
Pa» o Pa » 0 FkdKx Pa * ®
2 2 2 2 (2 2\ _2k-2 2k-2/7 2

Pi» Pb * Pi» Pbpi» pplpb - pl)»***» pa pl» pa "Pa

(B.8a)

si(pj- M *
tikcir a4
Pa- PaPl> Pa(Pa "Pl1) > Papl- P1(Pa-P?)- ’a (Pa-P1™ Pa
2 0 4 0 o] .. 2K
Pl» Pb » ® > Pb » » 0 » Pb
(B.8b)
It ia not difficult to verify that si(Pj> {&r\) is zero for
r >k / from (B8a)/ and for r < k-1 / from(s.-8b) /. Similar
considerations show that S2 (pj, =0 for r>k+l and
r<k ; sbGj* IiAro0 =0 for r>k and r < k-1, S6(pJ»EAr) =

=0 for r> k+l1 and r k. The only nonvanishing determinants

are



sipj. bl) B s o - 4)
3 .5 2k-1 , 2 4 2K-2
pa* pa»> pa* Fededoke pa 1» Pb» Pb»«««« Pb

S21Pj " TAK\) = (-ifsl+ a€[Ak‘{pa - pt>

2 4 2k-2 n 2k-11
I» Pa» Pe»**o» pa Pb* Pb»***» pb ( J
s2(pj)K+11)= (-i)"8"* TT ¢th - p?)
L 2 4 2k 3 5 2k-3

11» pa» pa’***” Pa  pb. Pb» pb»**** pb

s5@j> K-i1) m (-D,a,+ M TT P.pP
@i> K-i1) m ( L 4L T (PP-pP)

2k+1
"Il Pa* Pa..... Pak™4]" jib” Pb> Pb..._... Pb**1» pb

s5(pj.,TM) =(-i/a,+ k+l P'I.leij-ZD]

? 4 ?k-? 7 4 21
I» Pa» Pa»***» po * pb» pb» pb»***» pb
h biw) M%!+1p|’1 rr ®p . p2)
a

2k-3) 12 4 K

2K 1
pa * pa» pa»***» pa (& |pb>> po»e** pb 1/
sej. viny — (™1, Gb - P

Pal* pa» pa****» pak 1 * pb> pb..... pbk”2 . (M
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The next step is to compute the relevant combinations
of the T~ ’s / Ti» T2» Tg /7 using (B.6) and (b .9)
The important point in the calculation is to apply the following
identity for Vandermonde determinants

K1 k+1

b aj> & i i
1=

2 K
al* axX>»ee &> al

2 2 N *«k+1
1_ ai 72 aX»>eee) 4

Finally we get for the T’s

- TI(qd) =
3 _2k-1
lal 1» PXx»e*** pPx
3 5 2k-1 <lgb» Pbgb» Pb4b»e**»Pbkcib |
Po» Pa- - PO
3 .5 k-1 Ux» PAMX» PxAx***** p1l gl

+ 1 pa> pa» pa e pa

o> Pbgb» Pbgb»***» Pbkqgb

- x(2Zk+1)(@D)

-k
2 faj)
2 4 .2k
1» pij* px*e**> pj
1 ‘1 2 4 2k <=|pbgb, Pbgb» Pbgb»,ee» Pb 4 |
I M pa» pa* ***» pa
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3 5 2k-1
plgl» plqgl, piqi>***>pl ql
3 5 2k-I

pbgb» pbgb* PBIb’ ***|Pb  gb

C(-i)k i>i2k+1,(4)

Ak 1 T5(4)) =gl'CGL [ T7(qj) - plT2(4))]

2 4 k-2
1» Pi» Pi»«**» pl
A (_]_—L'a' , 4 2Kko2 |pbgb» pbgb......... pbK,b1% » pbK 1 %1 +
BAK - i I» Pa» Pa»«««» PQ 1
3 2k-1 2k+I
plgl» PiNi»«««»Pi qi»pi Q1
le\+1 ,, 2 4 ,.2k-2
_ I» Pa» P8»«**» pa 3 2k-I1 2k+1
I W PkGh» PbQh»««*»pb qb’pb qb

= 1-iDM A *Au) -

KT k*6@j) s K T K[*4Cij) - PIL TI M =

Pit« PI» PI* Zi!
» » p| 5 .
bgb»
L 1 3 poq
pa » pa* pa»*,x»
_ 2 4 2k
v Tieeg ok-| plgl» PiQi»«««» PI QI

+ Z— v ("‘i)H -1 pg,«««» ) 5 4 ,,2k
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where 172 i1 ~ 2k+1 . Expanding the determinants, D , as
given in (59c) , In terms of their maximal subdeterminants con-
taining only p~s yields immediately egs. (B.10) . Substituting

this result into (b .5) gives the 2k+l - step formulae what we

wanted to prove. Similarly one can obtain the 2k+2 - step formulae

starting from the 2k+l - step formulae.
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