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ABSTRACT

In this paper the geometric convergence of some two-point Pádé approxima
tions on certain infinite sets of the complex plane is considered.

АННОТАЦИЯ

В данной работе исследуется вопрос геометрической сходимости специальных 
приближений Паде на неограниченных областях комплексной плоскости.

KIVONAT

A cikkben speciális két-pont Pádé közelítések geometriai konvergenciáját 
vizsgáljuk a komplex sik bizonyos végtelen halmazain.



I ,  INTRODUCTION

The main aims of this paper are to investigate the convergence of some 
two-point Pádé approximations on certain infinite sets of the complex plane. 
The convergence of Pádé approximations has received much interest, both for 
its application in numerical computations and for approximation theory prob
lems .

In particular, we consider the function

F (x) u|(1-U)u_1 -ux, e du U > О (1 )

For u “ this function is the subject of numerical calculations connected 
with the plasma dispersion function [ 1 ] — [3 ]

Z(s)
+°°

—  Í—/ix ifc"s
■dt = i/тхе s -2e sУdu (2)"

The case u = 0 (the exponential function) was considered by Saff et al. in 
their excellent papers [4]-[6],

After the development of some preliminary considerations in Section 2, 
we consider, in Section 3, the convergence of two-point Pádé approximations 
to the function F(x) on the real positive axis. We shall prove that these ra
tional approximants of R^ix) type

V x) p0+plx+- ■+* W
k-1

1+q^xt... tq^x
(3)

have a geometric convergence rate as of at least -£t Theorem 2. In Theorem 3
we establish that the best generalized two-point Pádé approximations have a
geometric convergence rate like ip. In Section 4 we consider some infinite3Kparabolic-type domains of the complex plane in which the geometric convergence 
of two-point Pádé approximations also holds. Our results, Theorem 4, is an ap
plication of the results of Saff and Varga [11]. In Theorem 5 we present in
finite sectors of the complex plane in which the special generalized two-point 
Pádé approximations converge in geometric order.
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I I .  D EF IN IT IO NS AND PRELIMINARY RESULTS

When a function f(x) satisfies the conditions

f (x) -v I c x , x О ,
k:° _ _ <4,

f (x) v l d.x k 1 , x -*• 00 ,
k=0 K

we can determine rational fractions R^ix), (3), for which the following rela
tions hold

f (x) - Rk (x) = 0(xk) , x -*■ О ,
(5)

f (x) - Rk (x) = О (x k 1) , x °° .

Definition 1. The rationale R^(x) satisfying both previous conditions are
called two-point Pádé approximations to the function f(x). There exists a
more general conception of this definition.
Definition 2. The rationals Rj^ (x)

(m) (m) , (m) k-1, . p„ +Pi x+...+р. .xг. (m ) /-Ч _ 0 1 к-l !C\Rk (x)-----"(mV 7-----“ liiTT—  (6)1+q^ x+. . •+4jc x 
satisfying the conditions

f (x) - Rkm  ̂(x) = О (xk+m) , x О ,
(7)

,, . _ (m) -k+m-1,f (x) - R^ (x) = 0(x ) , x -*■ «о '

where m is a positive integer m = 0,1,2,...,к , we call generalized two-point 
Pádé approximations to the function f(x). The reason for this generalization 
is obvious: we take k+m terms from the series near t = 0, and к-m terms from 
the series near t = «> to calculate the coefficients of the rational R^ ; (x). 
Let us mention that the case m=0 corresponds to Definition 1 and that m=k is 
the classic (one-point) Pádé approximation. For our function F(x) we can 
solve exactly the problem of generalized two-point Pádé approximation in 
closed form.
Theorem 1. For the generalized two-point Pádé approximations to the function 
F (x) the following results hold:

(i) the denominator of the rationals

P (m) (x)R (m) (x) = к ( }Rk (x) (m)Q, (x)
, (m)Qk‘“' (x) , in hypergeometric notation, is

7l l (-k;l-u-m-k;x) f
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(ii) the numerator of the error term
(m)

E^m) (x) = F (x) (x) - S-1--£) --X-)-
k k QjP  (x )

(m)S£“ ' (x) , in integral form, is

S (m)(x) = (~l)m rU+U) Lk+m Sk { ( Г (m+k+u)
-xu k,n .m+u-1, e u (1-u) du

(iii) the functions P^11̂  (x) , (x) (and (x) too) satisfy the second
order difference equations with respect to к

(k+m+u-1)(k+m+u)yk+  ̂= (k+m+u-1)(k+m+u+x)у^-кху^_^ , k=l,2, • • • f

(iv) the error function has a more economic representation:

< m)(») - i-ii'riwH«») r,.v , •D=k 'J Г (3+m+u+l) Q j (x)Qj+1(x)
Proofs. First we mention that the function F(x) has the series representations

к
F (X )  = I Т1Й Г  ' x  -  0 'k=0 'i+u'к

00

F (x) 'v u I (1-U) kx k 1
U > О

X  ->■ oo

k=0
(m)The coefficients of the rationale (x) are determined (corresponding to

Definition 2) from the equations

г (-1)3jloTT+üT^í-j = РЯ ' A“0,1, ...,k-i,
к (. 1 , Н£ q . 1 .j , I — О , i—k,k+l, ...,k+m-1,
j=o 3 U+ U 'i-j 

i
U l d-u) i_jqJc_j = Pk_i_i > i=0,1, ... ,k-m-l

This is a system of 2k simultaneous equations in 2k unknowns: p ,p^,...,pk_^» 
ql'q2'*‘‘,qk* We determine explicitly the q^ numbers only. When we eliminate 
the numbers p^ we get the system:

SL j k-1-Ä.
^ 0 (1+и) = U <1-u)k-l-i,-jqk-j ' Л«=т,т+1, ... ,k-l,
к
l 4, (-1) *'~j 

j=o4j (1+^  l-j
j— —  = О , £=k,k+l, ...,k+m-1 ,

or in simpler form

(-1)£_j\ Я-; /-l ,..\ = 0 t & =111,111+1, «. • ,m+k-l •
j=o J lA u4-j
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By elementary manipulations we can transform this system to

I (j+1),Г(j-k-m-u+l)q. = О j=0 * 3 «,=0,1, .. .k-1

This system we solve by the orthogonal polynomial method:

e V £ q.u3 Г ̂ J. k .rc* du = О , Л=0,1,2,...,k-l ,
j=0 3 31

and

I q UJ = Г,(- k - m - U j - l . ) (e~uuk) ,
j=0 3 31 kI duk

therefore
(-k)

Ч-s =j j1(1-u-m-k)  ̂ ' j —0 ,1,...,к

(m)Now (i) is proved. Next, to get (x) we must compute the series

/ \ °° . к , .И-)!(m) , * v 1 v (-1), (x) = I xJ I q, -ту— г---
k j=k+m «,=0 U  Ш  j-«,

j=0

oo V («И
/ -i\mr./u_ \ v / j+m+k_____ Г (m+u)________ v ___ «,(-1) r(l+u) I (-1) x Г (k+m+v) Г (j+m+u+l) Д 0 H

(m+u) «. _ , . k+m Г(1+и)Г(т+ц)
(j +m+u+1)£ ' 'X Г (k+m+u)Г (k+m+u+l)

00 (k+1) . .
jÍ0jI(k+m+u+1)j(~X)

This is a hypergeometric function (^3^ type). It is not difficult to see [7] 
that is satisfies the difference equation (iii). The function Q^  (x) also 
satisfies (iii) and therefore ; (x) is the solution of the same equation. 
Thus (iii) is proved. When we apply the usual integral representation [8] to 
this function we get (ii). Finally we prove (iv). Let us consider the dif
ference

sk + l sk 1 <x) _ Hk tx*
' * > o £ i w  '

Applying (iii) we arrive at the difference equation for H^:

lex
Hk (x) = (k+m+u)(k+m+u-l)Hk-l(x)



5

from which

Vх» , ,, m Г (1+u) Г (m+u) k+m
' Г (k+m+u)Г (k+m+u+1)

Summing the previous difference relation we get formula (iv).

I I I .  NEW RESULTS ON GEOMETRIC CONVERGENCE

With the aid of the results of the previous sections, we now establish 
the convergence of generalized two-point Pádé approximations to the function 
F(x). First we deal with the parameter m having a bounded, fixed value. 
Theorem 2. For the maximum value of the error function

(m) _ max . (m) . 
Ek " 0<x<°° I к (x)

for m+u > 1 the following estimation holds

k=m,m+1, .. .,(m) lp(m)
Ek < 2Ek-l ' (8)

Proof. From (ii) it is not difficult to check that Ekm  ̂(0) = («>) = О, and
thus undoubtedly there exists a positive value xk where

Ekml - iEknl <*k> I -
d (in)and it naturally holds that (xk) = 0. When we differentiate the integral

form of the error function we get

n - U г (т) к *-1 xk (m) (m) .
0 £ГЕк (xk} k+S+'u-I “ (ml ,  ,'Ek (xk} Ek (xk ) +к Uk ixk,

+ k Q k - l ^ k ^  (m) , .
k+m+u-i Q Ы  ^  к-l к ‘

In a more compact form this is
, „ (m) ,

E (m)(x ) = kxkQk-l(xk) (m)Ek Xk Tml 1 ПтП Ek-1 Xk* k kxkQ ^ ( x k) + (k+m+u-l) ( V u)Qk (xk)
Next we show that for О £ x £ 00 and m+u > 1

Qkm) (x) > q£ ^ ( x ) , k=l,2,

A short comparison of the coefficients of the same powers in the polynomials 
shows

(-k) i (-k+1)
"j l (l-u-m-k) ̂  - j ! (2-u-m-k) j—0,l,...,k—1 ,



)

because of trivial inequality

- 6 -

_ÜZÍ
k+m+u-1 — k+m+u-l-j

Now applying the inequality and the fact that (x̂ ) < E^m  ̂ we get

E (m) < Ek -
kxkQk-l(xk}

kXkQj^i (xk) + (k+m+u-1) (x^+u)Q^“l/ (xb). (m)
vk ’̂ ,Jk 'лк'

_ (m)■E < k-1 -

Ir xr
< ________ к L , < к (m) lE (m)- kxk+ (к+ш+u-l) (x^+u) к-l — 2k+m+u-l k -1 2*^-1

Theorem 2 is now proved.
Next we shall show that there exists an optimal choice of parameter m in con
nection with the convergence rate of the generalized two-point Pádé approxi
mations to the function F (x) . We treat the case when the parameter m •*• °°, if 
к -*■ in a suitable manner.
Theorem 3. Let us suppose m -*• °°,

lim S . ß
k->°°

О < ß < 1 (9)

and и > О, then the generalized two-point Pádé approximations to the function 
F(x) have geometric convergence rate

1
lim {E*m)}k = cp(ß) = ßß (l-ß)1“ß2ß-1 < 1 . (10)к-*-®

Before proving this we would comment on our result. From the form of the func
tion <p(ß) one can see that for ß = О (two-point Pádé approximation), the geo
metric convergence rate is for ß = 1 (classic Pádé approximation), <p(l)=l:

 ̂ 1geometric convergence does not exist; for ß = (this is the minimal position
of the function Ф (ß) ), the geometric convergence rate is •=■. In view of this,

J кwe can state that the optimal choice of parameter m is m = [j] with regard to 
the convergence rate of the generalized two-point Pádé approximations to the 
function F(x).
Proof. We shall apply formula (iv) and Lemma 1 to investigate the function 
L^ (x) in the error function

OO
E^m) (x) = (-l)mr(l+u) I L.(x) ;

£=k

£+mV x) = ___________ Г (m+ц) 11 x _____
Г (Л+т+и) Г (í.+m+u+U Qj[m  ̂(x)Q^| (x)

Lemma 1. Let us suppose that u > 0 ,  £ -*■<*>, m -*■ » and

lim 5 = ß
í.-°°

О < ß < 1
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then

lim {
max

0<x<°° LÄ (x) I }l = <p(P>
1

(11)

Proof. First we determine the asymptotic approximation of the denominator 
polynomial. We apply its integral representation:

rU+m+vOQjJ"0 (x) 
I

m+u-1, , .a -u, u (x+u) e du
О

Taking m = &Л, x = a& we use Laplace's method to obtain the. main term of the 
integral for Я -► <=°. The main contribution comes from the neighbourhood of the 

* point u q = As where s is the root of equation

-1 О

In the usual manner of doing the calculations the main term is
00

uß£+U 1 (aj,+u) udu ^ а* exp{ l (-s+ln (s+a) +ßlns)+ (1+ß) Я1пЯ} , 
О

Я ,

where a and b are constans independent of Я. With the aid of this result we 
get an asymptotic representation of (x) for Я -*■

Vv#
L^ (x) ъ а*Я •exp{Я (-1-&+(l+ß)lna+01nß+2s-21n(s+a)-2ßlnß)}

Because (О) = (“) = О the function (x) has its maximum value where
^L^(x) = О or (x) = 0. By differentiating the main term of (x) we ob
tain the equation

l+ß
a

2
s+a О

and therefore we can solve the equations for a and s explicitly:

a (1+ P )2 s = i(l+P)

Eliminating a and s in the asymptotic expression of (x) we get the required 
result.
Returning to the proof of Theorem 3 the following estimations are obvious

T(l+u)Lk (x) < I E^m> (x) I < r(l+u) (Lk (x)+Lk+1(x) + . . .)

Here, when we raise this inequality to the к ^-th power, then on letting к -*• ® 
we obtain the statement of Theorem 3.



8

IV ,  CONVERGENCE ON THE COMPLEX PLANE

In the previous section we considered convergence on the real positive 
axis. Here we shall be concerned with the convergence on unbounded domains of 
the complex plane that are symmetric with respect to the real positive axis. 
Such an extension of the convergence to larger domains of the complex plane 
"overconvergence problem" very much depends on the knowledge of the location 
of the poles of the two-point Pádé approximations to F(z). It is clear from 
formula (ii) that the poles of these approximants are the zeros of polynomial 

(z) . Our next results come from investigations of the location of the 
zeros for the polynomial (z).
First of all we show that the convergence of the generalized two-point Pádé 
approximation holds for any bounded domain of the complex plane.
From representation (i) , by the Theorem of Tannery [9], it follows that

(z) exp{z/(l+ß)} , к -*■ °° , I z I < К = const. , (12)
and

lim 2 = ß (where ß = О, when m is bounded). 
к-«"

As a consequence of this result all zeros of the polynomial (z) tend to
infinity when к
Another consequence is that the rationals (z) converge to F (z) faster
than geometrically

J £ ‘ |z| < H * “ 0 • <13>

This follows easily from the integral representation (ii) of the error.
Next we shall consider the convergence problem in parabolic type unbounded do
main of the complex plane. We state another result on the location of the 
poles of the rational R-f11̂  (z) .К / V

Lemma 2. The polynomials ; (z) have no zeros in the parabolic domain

S = (z=x+iyeC; y^<4(m+u)(x+m+u)) • (14)

Proof. This statement immediately follows from a Theorem of Henrid [10], 
when we use the identifications z, = z, ß, = k+m+u-1, e. = k-1,/ v К К К
qk = Г (k+m+u-1)Qk (z), k=l,2,... , a = m+u.
Now we define the parabolic type unbouded domains

Sr = {z=x+iyeC; y‘:!<4r (m+u) (x+m+u) } . (15)

The following theorem gives the estimation of the convergence rate to the 
R ^ ] (z) in Sr .
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Theorem 4. Let us suppose, for the number r, that 

О < r < 3-2/2 , (16)
/ m \

holds; then the rationals IV ' (z) converge to F(z) in the domain S with theк jr
geometric convergence rate

1 2
lim |F(z)-R<m ) (z)|}* < < 1 . (17)
k->a= r

Proof. We can apply a general Theorem of Saff and Varga [11]. For our special 
result we need the identifications q = 2, r^ = (z). Their exceptional
bounded subset is missing here, i.e. we proved in previous considerations 
that on every bounded set stronger than geometric convergence holds.
Finally we consider the problem of convergence on unbounded sectors

W = {z=x+iy€C, |argz| < 0} (18)

When m has a finite value there exists no infinite sector of this type which 
is devoid of zeros of (z), k=l,2,...; consequently, there is no infiniteК /V
sector in which the geometric convergence of the rationale R, (z) can hold.

fßkl KBut when we consider the polynomial (z), k=l,2,... such a sector does
exist nevertheless.
Lemma 3. For k=l,2,... the polynomial Qj|.̂ k ^(z) has no zeros in the infinite 
sector

Wß={z=x+iy£C, |argz |<arccosi-p|} , О < ß < 1 . (19)

Proof. We can apply a Theorem of Saff and Varga [12]. Instead of their v 
(which is an integer value) must take ßk+u~l. In this case the (rather long) 
proof is easy, therefore we omit it for the sake of brevity. Г ßu I
The following result gives the estimation of the convergence rate of R^p J(z) 
in the infinite sector W.

1 “"ßTheorem 5. Let us suppose that for 0 = arccosy—£, 0<ß<l the sector WQ con-[ßk] ^ I >P ptains no poles of J(z), then for every 0 satisfying the inequality
0

0 < 0 < 4arctanf  ̂ ^ ^ «tam^Li+/pW  4
(20)

the rationals R ^ ^ ( z )  converge to F(z) in the infinite sector W with the geo 
metric convergence rate

, j rmax t „ , , „ [ ßk ] , . I ■, F (airvJ (© +Q)
lim{7Fw'F{z)_Rw (z)|> < <P(ßM--- i-------K lsini(0o-0)J < 1 (21)
к*°>

Proof. We can apply a general Theorem of Saff and Varga [11]. For our special
result we need the identifications q = , r, = R.^^tz), q = arccosi—jy.^ ф (ß) ' к к ' о 1+ß
The cited author's exceptional part |z| < ц of the sector is missing here
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because of its boundedness (on the bounded domain the stronger than geometric 
convergence holds).
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