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ABSTRACT

In the models proposed by Longa and Olea there exist two oppositely
magnetized equilibrium states, if the temperature is sufficiently low. Spins
in the frustrated cells also carry a moment the magnitude of which is 0.528
at zero temperature.

AHHOTALNA

B mogmenu, npegsioxkeHHoW JloHra m Onewom, CyWecTBYWT ABa pPaBHOBECHbLIX COCTO-
SAHUSA C MPOTUBOMOJ/IOKXHO HanpaBNeHHOW HaMarHMYEeHHOCTblo, €c/n TemnepaTypa gocTa-
TOYHO HU3KasA. CnuHb B (PYCTUPOBAHHON fAYelKe WUMelT MarHWTHbIA MOMEHT, Be/nYMHa
KoToporo paBHa 0,528 npu HyneBoW TemnepaType.

KIVONAT

Longa és Olea altal javasolt modellekben két ellentétesen magnesezett
egyensulyi allapot létezik, ha a hémérséklet elegendéen alacsony. A fruszt-
ralt celldkban lev6é spinek szintén hordoznak magneses momentumot, melynek
értéke zéro hémérsékleten 0.528.



1.Introduction

Recently, Longa and Oles™ (1980) studied a family of peri-
odic Ising frustration models on the square lattice, in
which frustrated squares occupied pairs of neighbouring
columns and two such pairs were separated by m H col-
umns of non-frustrated squares (fig-1). This distribution
of frustration can be realized, for example, by choosing
the bonds negative along each (m+2)th vertical line and
positive otherwise. Applying the method of dimers they
calculated the free energy of these models and found a
singularity at some T=Tc (n) >0. To study the low temper-
ature behaviour, they performed a mean-field calcula-
tion which suggested the appearance of long-range order
in areas of non-frustrated squares. In the present note,
this suggestion is verified rigorously and it is shown
that the spins in the frustrated cells also become par-
tially ordered.
Very recently, Hoever et al.(1980) extended the discus-
sion to models with arbitrary periodic distribution of
columns of frustrated squares : they calculated the
free energy and found a simple and striking condition
for the existence of a positive critical temperature.
The study of the magnetization is more difficult in this
case and will be the subject of future work.
On physical grounds, it is easy to understand why does
magnetization set in at low temperatures in the models
of Longa and Oles. Let us adopt the choice for the bonds
as indicated above and consider the ground state spin
configurations (gs) of the system. The *1 and

G' =-1 configurations are gs; on fig.1, full lines of

unit length cross the negative bonds, indicating that



they are the "wrong bonds™ 1in and s. : those at the
higher energy level. Consider, e.g., C+ . A local zero
energy transformation (Izet) which consists of fTlipping
several non-neighbouring spins along a vertical line
with negative bonds, carries into another gs. Let F+
be the family of those gs which can be obtained from

C+ by performing a sequence of lzet and let F_ be the
corresponding family for 6 _ . Every £s in F+ (F)

shows long range order in the sense that every spin
outside the negative vertical lines has the value +1
(-1). Clearly,-F =F+ and these sets are disjoint. One
expects that F+ and F_ are the continuations, to T=0,

of oppositely magnetized low temperature phases. The
complication arises from the existence of a family F*

of which 1is disjoint from both F+ and F_ . The ele-
ments of F can be obtained from that of F, or F by
flipping whole strips of spins; an example is shown on
fig.2. The "strip-flip" transformation is not local but
it can be performed as a sequence of local transforma-
tions at a total cost of energy proportional to the
width of the strip. Therefore, Fqg provides with a channel
between F+ and F_ , available at whatever small positive
temperatures. A simple numerical estimate shows, however,
that the mixing of F+ and F_ via Fq is a negligible
effect: It iIs easy to calculate the total number of gs. *
IF tl, and the number of gs with long range order,
IF+1 + IF 1 . Considering a square of N sites, one finds
the asymptotic results
cor = IFPMF_NMFql=2 (1+c Ry "7 (m+2)
and

|[F+] +IF 1 =2 cN/<m+2)
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where c=(1+"T5)/2 (see later in the text). Hence, the

entropy of the mixing at zero temperature Iis
In,Ftot®™ - In(IP+I1+1IP_D)= WM*C-1"

which vanishes iIn the thermodynamic limit, suggesting
that F+ and F_ represent different low temperature
phases.

In Section 2, we make this "physical argument”™ precise.
In order to obtain this goal, we extend the method of
Peierls which cannot be applied to the present problem
neither in its original form (Peierls 1936), nor in a
recent generalized version aimed to cover cases of frus-
tration (Suté 1980).

2. Study of the magnetization

We consider any model with frustrated squares distributed
as discussed above, for some mil. Let o be one of the
two 2B in which the wrong bonds are those along the ver-
tical lines between neighbouring columns of frustrated
squares (see Tig.-1). We prove the fTollowing proposition:
IT the temperature is sufficiently low then there exists
an equilibrium state, belonging to in the following
sense:

(1) In any typical configuration, S*, of this state, one
can find an infinite connected set of sites over which

-

(1) If x 1s not a common site of four frustrated squares

Co ) <Ee>(Xx)> & >0
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and goes to 1 with T going to O.

ain) IT x Is the common site of four frustrated squares

(

.e./ x is iIn a frustrated cell) then

<el'(x)>A =[1-2(2/(1 +15) )2] 6™ (X) »0.528 & ()
o

at T=0.
We may remark the followings:
1) The equilibrium state belonging to @ can be gener-
ated as the thermodynamic limit of probability distribu-
tions iIn finite volumes, 1If 6(X)= 6;)00 on the boun-
dary of these volumes. The notation > refers to this
construction.
2) Except (iii), the above proposition contains the usu-
al statements which can be obtained by a Peierls type
argument. A bound Tq , below which (@) and (ii) are veri-
fied and which is common for any m > 1, can be inferred
from the proof; this Tq is, however, a poor lower esti-
mate Tfor the critical temperatures.
3 By reason of symmetry, there exists another equilib-
rium state belonging to - 6 in the above sense. There-
fore, the properties ((i)-(iii) imply the breakdown of
the S™—* 6 symmetry of the Hamiltonian.
To prove the proposition, we consider a fTinite part V
of the lattice, Tix the configuration 6" outside V and
study the equilibrium probability distribution Py for

the configurations inside. By definition,

Pv [the configuration is ® in V]

4 ! exp (- p(HC « )-H(C Sq))]



=Z exp [2li 21 JIXxVv5o0 (x)&o (y)1
Vv, G P I6Cy>*3«?) Xy 0 (x)&o (y)

@D

where b (G1) contains those bonds <xy> for which

B X0 (W=-"o®B'0o(y) and Zy G 1is the partition func-
tion corresponding to the boundary condition. If for

each <xyH3(6r) one draws a dashed line of unit length
crossing the bond <xy>, one finds that "3(B) 1Is represen-
ted by a collection of closed lines separating the do-

mains of V where 6 = Gb from those where S"=-0O°_ (an

example for ©(S") 1is shown on fig-3). Once 0is fixed
outside V, there is a one-to-one correspondence between
the configurations and the collections of closed lines
on the dual lattice. Let Qo0 denote the set of the wrong
bonds of ’\O; these are crossed by full lines of the
dual lattice. Now, the sum in the exponent of Eq.(1) has
a simple geometric iInterpretation. The sets *Y& ) and
_fIQ may have common bonds which appear on the figure as
coinciding full and dashed lines; 1f 15 QJIQI i1s the
number of common bonds and 10O —_ﬂ_ol iIs the number of
bonds belonging to © but not to Jlqg , then

\' V * > = -1"snsa1onm K B
’\xy>«3 )

Here we assumed that 1J 1=1_. Plainly,
O | 1]9] - (©)
We say that a set of bonds, ' , is a contour if »3(s)

for some 6 and if [ is represented by a singly or mul-

tiply connected line. For any <© , b (ef) is the union



of maximal connected parts each of them being a contour.
IT fore some x «V we find €(X)=—B'C)OO then there is

at least one contour in 3 (&) which surrounds x. In the
following formulas, I' always denotes a contour and

X € Int b means that some part of 3 surrounds X. Let now

0O t< 1 and x be an arbitrary site in V. Then the fol-

lowing inequalities are true for the probability distri-
bution (@ -

Pvt6 0Q=—eao(X]é Py[xelntd (&)]

a JEZ r]
M:x ¢Intr \/
p [FT]+ Z1 p rr ]+ 2Z p tr]
F:xelntP M:x e IntP P :x € IntP
"pitdl O<kp<é€]|n Kp =0
= AX(E£,>) AJ C,O0 Ax (C>

@

where Pv [P ] is the probability that ' is a maximal con-
nected component of some b (G ). According to the usual
Peierls argument (see, e.g., Griffiths 1972),

A (T ,>)n z1 nf/2) 3« e_2/5E€ (©)
X € >4
The second and third sums in Eq.-(4) do not appear if
there 1s no frustration present; below we elaborate their
estimates.
Let g denote the set of those sites of the dual lattice

which are visited by b and let us introduce the notation

z:e_z[i )
Then



Pvtrl ]=
1=z inn > * [/ Z )
Q «0"nNrd

where the denominator 1is just Z and, 1if some config-

vV ,®0
uration 6 contributes to the lI.h.s., then b (6 )=3"/~T
with one of the 3* in the numerator of the r_.h.s..

It is obviously true that

k 3* ch
_ z > 2. z z

-~ C s 313 cl

which gives us

K k~
PV[P]Iz /_2'n 2 @

r

This estimate is valid for any contour I Then

-1

A, (I ,<)E 1) €))

(X
P:x€IntP 8:8CP
O<kp<dPl kK3 =°

At first, we show that

., "-3ell -1
= F(iri ) ©
3«0 CP
K 3=0

holds for any P satisfying the inequalities
0 < kp <£1ImM 10)
For, let I be such a contour. We consider the line rep-

resenting P (fig.-3) and divide it into zero energy seg-

ments (zes) and purely positive energy segments (ppes).-
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A zes is a maximal piece of ' which begins with a wrong
bond, goes on with an alternating sequence of good and
wrong bonds and is terminated by a good bond ( good and
wrong bonds are elements of I —SiO and 1 SL o - Tres-
pectively). A ppes is a maximal connected part of I be-
tween two zes, therefore it contains only good bonds. The
following elementary relations hold:

'p =[number of zes]=[number of ppes]£kr £e.|N]
a-orwriez < iFI'II'I_OI 112 (@l D)
and, as a consequence,

Izes =2 m[number of wrong bonds
zes 6P , lzesi*4

belonging to zes of length >4]
*2 (IPaSLol-rp )> (1-3£)IPI a2

where 1lzesidenotes the length of zes.

Now consider a zes of length 2t where C>2; this goes
through the centers of 2( frustrated squares. These
centers surround €-1 sites, xN,...,x~ "~ , of the lattice
(denoted by circles on fig.3); the spins sitting here
are in frustrated cells. To obtain the estimate (@) we
have to calculate n~”™ , the number of ground states of
these {-1 spins with the condition that the configura-
tion 1is outside them. Clearly, {a (X),..., 60 (XM}
is a c|s and any configuration, not containing the detail
----S (M),- x ),---. 1s also a *s. It iIs easy to
see that n £ satisfTies the difference equation for the

Fibonacci numbers:



n«+l - 2 nt_, *(nt- n<_1)=n{ 1 + nt (132)
with the initial conditions
n, = 2, n2 = 3 (13b)

This equation can be solved by the use of the method of

generating functions, resulting 1in

1+S +* (Js+n* C Its

i os+fs {io1 M) slis > ) a9

for any { + 1. Any zes the length of which is 2t > 4,
contributes to rip with a factor n™ ™ _ From (12) and (14)
then one obtains (9). The bound given in (9) depends
only on the length of P . This makes possible to conti-

nue (8) as

A (t,<)1Z. N,/ fnm @)
X 1 1
where denotes the number of contours of length i

which surround x and satisfy (10). Now we give an upper
bound to this number. It is easy to estimate the number
of those contours which contribute to N~ and contain a
given bond, b, a given number of wrong bonds, and a
given number of zero energy segments, r. Thelr number
will be denoted by N*(b, | ,r). Starting from b, one
can order the £ bonds of the contour in a sequence soO
that neighbouring bonds are joining iIn a site of the
dual lattice. Therefore contours correspond to random
walks of length 1 , starting from b. In each site along
a ppes, there iIs at most three possibilities to continue

the walk; once the walk arrives at a zes, there is al-
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together 6 possibilities until we can continue with the
following ppes : 2 ways to choose the first good bond

of the zes and 3 to choose the last one. The total Ilength
of the purely positive energy segments is ~Z (0 , there-

fore
N,(b, I , rlu 6N £ 3" "° *u 6
= 18 (6)

where we used (11). It follows also from (1) that there
are at most £t and I i/2 different possibilities for
choosing r and , respectively. Furthermore, 1if one
starts from x and makes 1/2 steps to right, one certainly
crosses at least one bond of any contour contributing to

. Whence, 1t is sufficient to choose the starting bond
b from a set containing t/2 bonds. These facts and (16)
yield

£ J {312 181t (173)

Also, (11) gives
N =0 1if 1 ch/b (17b)

because I'p > 1 for any I satisfying (10). Equations (8),
@, (@5 and (7)) together result in
N

2 t
A (£,<)<0.4C — (37 mo0.787)
X «V1/t (18)

Suppose now that x is not in a frustrated cell; then
AN (0)=0 and
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P ET) =—er ()11 2. 172 ez~ e 24ET
V ° I>4

+0.4 t (37 -0.787) 19)
<>1/E

Choosing £=0.066 and fi>3.2 we find that the sums on
the r.h.s. of (19) are convergent. Then, Tfrom the Borel-
Cantelli lemma (see,e.g., Feller 1968) it follows that
with probability 1 there is only a finite number of con-
tours surrounding X, which is another way to formulate
the percolation property (i) of the proposition. If £ is
so small that A*( (,c )< 1/2-* (where «@>0) and (i 1is
so large that AX (£,>) €x/2 then

Py [6(X) =—erQ ) ] é (I-« )/2

showing that a moment, parallel to Sq (), appears in X,
Finally, if we keep £ fixed and let f go to infinity,
we obtain that

limsup P [6(X)=-er (x)] é 0.4 t 51 (37i-0.787)I 20)
(i-oe» ° £?1/1

This inequality is true for whatever positive t and
volume V, implying that 6 (X)=6"0() at T=0 with full
probability. This concludes the proof of the statement
(i1) of the proposition.
The bounds () and (18) are also valid for x not being
in a frustrated cell. However, A (0) is not zero in that
case. Let J(X) denote the shortest possible contour
around x, that is, the contour of the four edges sepa-
rating x from its nearest neighbours. Now, an<®

kp >0 for any other contoiir around x. We can write
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therefore
Ax (©) = Pv[ tfF()] 2l

Below we show that
lim Py [ tF(X)]= « 0.236 22)

V-*00

at T=0. Indeed, for /b=t<x>

if k3>°
if kv =0

@
and the substitution of (23) into (6) gives

Pv OFfCO]= v 1 (@Z))
b Yy(xX)c?d ?:k =0

In the numerator , the summation runs over those £s which
coincide with $0 outside V and —€TO on the site x. In
the denominator, we. find the same summation except the
restriction on S"(X). In every gs occurring in these sum-
mations the configuration outside the frustrated cells
coincides with 6 - The number ofegs iIs therefore the
product of the numbers of £s in each column of frustra-
ted cells. The contribution of every column cancels out
in (24), except that of the one containing x. If, 1In this
column, there are m" site above x and m2 below i1t, then

P,.[X(xX)]= n n -/ n (25)
V-u

mA-1  m2~" mifm2+ -
where n”™ is given by (14). ITf both m and m2 goes to
infinity, we obtain the limit (22). The third part of
the proposition follows from (22) and the fact that
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lim Py[S°()=-6TQ(G) 1= lim Py [yl (26)
@00 =" 0

3. Concluding remarks

We have rigorously shown that frustrated systems descri-
bed by the above models become magnetically ordered at
sufficiently low temperatures. An interesting finding is
that ground states which locally transform into each
other may not be equivalent from a statistical point of
view. Spins in the frustrated cells become magnetized
though their moments are not fully saturated at zero
temperature. Therefore, a periodic oscillation of the
magnetization appears in the horizontal direction. The
continuity, at T=0, of the moments iIn the frustrated

cells still needs a proof.
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Fig- 1

The m=1 frustration model. Crosses mark frustrated
squares and the lines connecting them indicate the
wrong bonds of the ground states o+ and o0_

(a , in general).

Fig. 2
Wrong bonds in a ground state belonging to F

N
=
r R PR -

Fig. 3

The ground state aQ and a contour with respect to it.
Zero energy sequences are put in parentheses.
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