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ABSTRACT

The phase transition of the classical two-dimensional Potts model, in 
particular the order of the transition as the number of components q in
creases, is studied by constructing renormalization group transformations on 
the equivalent one-dimensional quantum problem. It is shown that the block 
transformation with two sites per cell indicates the existence of a critical 
q separating the small q and large q regions with different critical behav
iours. The physically accessible fixed point for q>q is a discontinuity 
fixed point where the specific heat exponent a=l andctherefore the transition 
is of first order.

АННОТАЦИЯ

Изучаются фазовые переходы в классической двухмерной модели Поттса, 
частично зависимость порядка фазового перехода от числа компонентов q по
средством исследования эквивалентной одномерной квантовой проблемы, применяя 
метод ренормализационной группы. Показано, что в проведенном преобразовании 
блоков, содержащих по два узла решетки, появляется критическое значение q , 
разделяющее две области, в каждой из которых критическое поведение различное. 
При q > qc достигается дисконтинуальная фиксированная точка, при которой по
казатель теплоемкости а = 1, и поэтому происходит фазовый переход первого 
рода.

KIVONAT

A klasszikus kétdimenziós Potts model fázisátalakulásait, pontosabban 
az átalakulás rendjének a q komponensszámtól való függését tanulmányozzuk az 
ekvivalens egy dimenziós kvantum probléma renormálási csoportos vizsgálatá
val. Megmutatjuk, hogy a két rácspontot tartalmazó cellákon elvégzett blokk 
transzformációban megjelenik egy kritikus q^ mely különböző kritikus visel
kedésű két tartományt választ el. q>qc eseten egy diszkontinuitási fix pontot 
érünk el, ahol a fajhő exponens a = 1 és ezért az átalakulás elsőrendű.



1 INTRODUCTION

Recently there have been several attempts to describe the 

phase transition in the q-state Potts model1 . This model is a 

possible generalization of the two-state Ising model to arbit

rary number of states, but much less is known exactly. The

critical temperature or critical coupling can be determined
2from a duality transformation. Baxter has shown that the phase

transition in the two-dimensional (2-d) Potts model is of second

order if the number of components q _< 4 , but of first order for

q>4. Except for special cases the critical exponents are not

known exactly, although there are recent guesses both for the 
3 4thermal and magnetic exponents.

We know even less about the model in three dimensions.

There is evidence from high-temperature series5 that the three- 

estate Potts model has a first-order transition, there is, 

however, still no general agreement (see Refs. 6 and 7) whether 

the critical value q^ which separates the regions with second- 

-order and first-order transitions, respectively, is between 

q=2 and q=3 or not. Even if the transition if of first-order, 

it is, at most, only weakly first order and therefore approximate 

treatments may easily fail to predict correctly the order of the 

transition.

In fact most approximate treatments do fail in describing 

the phase transitions in the Potts model. The mean-field theory 

predicts first-order transition for the three-state Potts model 

in any dimensions. The renormalization group (RG) results which 

should improve upon the mean-field treatment are rather contro-

8



versial. The RG transformations performed on the continuum
9 10Ginzburg-Landau model versions of the Potts model ' give first- 

-order transition not only in e-expansion around d=4 but also 

in d=3 and d=2. On the other hand the real space renormalization 

group transformation in its standard form ' always gives 

second-order transition irrespective of the number of components.

The real-space RG transformations are not free from ambi

guities. The mapping of the cell with several sites to a single 

Potts spin is rather arbitrary. It was this arbitrariness which 

allowed Nienhuis et al.'*'3 to choose that mapping which in its 

consequences comes closest to the known results of the 2-d 

Potts model. The mapping can generate vacancies in the lattice 

of Potts-spins if the Potts-spins in a cell are in different 

states. The generation of vacancies is more probable for large q 

(large number of states) than for small q and this gives rise to

an abrupt change in the order of transition at a finite q .c
The fixed point of the RG transformation, which was accessible

from the pure Potts model for q £ q ^ , is annihilated by another

fixed point and the accessible fixed point for q > q is a dis-c
continuity fixed point.

It would be.desirable to have RG transformations which have

little arbitrariness in them and allow for systematic improvements

The zero-temperature renormalization groups for quantum sys- 
14-19terns can be formulated in a way that a consistent pertur-

bational calculation can be done in principle to any order.

In this paper we present a first-order calculation for the Potts 

model using quantum RG transformations.
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It is well known that d dimensional classical statistical

mechanics problems can be related by the transfer matrix to d-1

dimensional quantum problems. In the particular case of the

2-d Ising model, the 1-d quantum equivalent is the Ising chain

in transverse field. The Potts model being a generalization of

the Ising model, the quantum version will similarly be a Potts

chain with some kind of "transverse field". Since the quantum

RG calculations do not give usually very good numbers for the

critical exponents in the first approximation, it is not expected

to get a separation of first-order and second-order transitions

at q = 4, but at least we would like to get an indication that c
something happens at a finite q ^ . In fact, as we will show, the

quantum RG calculations reproduce the fixed point structure
13obtained by Nienhuis at al. , and a crossover from second-order

to first-order transition is obtained at a finite q .c

The outline of the paper is as follows. The 1-d Hamiltonian 

version of the 2-d Potts model is presented in Sec. II. The 

results of a self-dual RG transformation are given in Sec. III. 

Another transformation, a block transformation with two sites 

per cell is performed in Sec. IV. The critical exponents and 

the order of transition are studied in Sec. V. The discussion of 

the results is given in Sec. VI.
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II. HAMILTONIAN VERSION OF THE POTTS MODEL

In the statistical mechanical formulation of the Potts model 

the Potts spin can be in q possible states at each site of the 

lattice. The energy of the configuration depends on whether the 

Potts spins are in the same or different state on neighboring 

sites. Denoting this energy difference by e, the energy of a 

given configuration is given by

E = - e l 6s. . s (2.1)
<1D> i' j

where the Potts spin s^ at site i can have the values s^ = l ,2,... ,q, 

and the summation goes over nearest neighbors.

The transfer matrix of the Potts model was constructed by 

Mittag and Stephen20. Assuming different energies and z^ for 

the vertical and horizontal nearest neighbors, they have shown 

that the transfer matrix is proportional to

T ъ exp (- — - a ) exp(К. X (г?>*B) (2 .2)

where (e^/kT) i s the dual о f ЕдУкТ,

A =
N q-1
l l l Í2q"k “i + 1 ' (2 .

i=l k=l

and

N q-1
l l мк

i=l k=l 1 (2.4)
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the summation over i goes along a row of the lattice, ft is a 

diagonal matrix

/1

ш
ft =

Шq-i

2iri, ш = exp ( — —  ) (2.5)

while

/ 0 1 О
0 0 1 . . .

1 0  0

21Stephen and Mittag have also shown that a simple pseudo- 

-Hamiltonian, a linear operator that commutes with the transfer 

matrix, exists at the critical point of the Potts model which 

is at

e.q e2q
- Й -  n  ' W  n  (2-7)

and there the pseudo-Hamiltonian is proportional to A+B.

A Hamiltonian formulation of the Potts model is therefore 

possible, strictly speaking, at the critical point only.

(2 .6 )

Assuming, however, that the lattice anisotropy is irrelevant 

near the critical point, the discrete lattice can be made conti

nuous in one direction. Identifying this direction as the time 

axis of the quantum model, a timecontinuum quantum version of



8

the Potts model can be derived near the critical point in 

the form

H = - -  A-hB , (2.8)q

and the critical point corresponds to A/q=h.

The first part of the Hamiltonian is the usual Potts 

coupling between the neighboring sites (the energy is lower by 

-A if the neighbours are in the same state than if they are in 

different states). The second term is the analogue of the trans

verse field, it rotates any state into a linear combination of 

all other states.

It is sometimes more convenient to use a different repre

sentation, namely one in which the field part is diagonal. 

Denoting the states at site i in the representation where the 

Potts coupling is diagonal by |k>^, k=l,2,...,q, the states

„ U - D  (k-DШ k>± , Ä = 1,2 f q (2.9)

are eigenstates of the transverse* field with eigenvalue -(q-l)h 

for I 1 * > and h for all the other states. In this representation

H A_
q

N
l

i=l

q—1
l

k=l
m* Mq'i 1 1+1 - h

N
l
i=l

R.l (2.10)

with

(2 .11 )

1
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This form of the Hamiltonian shows that in this represen

tation the effect of the Potts coupling is to raise one spin 

and to lower the neighboring spin. The Potts spins are, however, 

not real spins. Raising the Potts spin when it is in its highest 

state Iq * > brings it to its lowest state |1 * > .
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III. A SELF-DUAL RENORMALIZATION GROUP TRANSFORMATION

The various realizations of the quantum RG transformations
. 2 3and their relationship is discussed in the accompanying paper

Here we will present the results of a self-dual RG transformation

and then in the next section another transformation will be

considered.

18Fernandez-Pacheco proposed an RG transformation for the 

Ising model, which is self-dual and therefore gives the critical 

coupling exactly. In addition to that it gives also the v expo

nent exactly for the Ising model. When using this method for 

the Potts model, the sites are groupped into clusters labelled 

by £ , each cluster having b sites. The spin-configuration is

fixed on the first site of each cluster and the spins' on the 

remaining sites are eliminated by taking their lowest energy 

configuration. The Hamiltonian given in Eqs. (2.8), (2.3) and

(2.4) is split as

H = H . + H . t ,fixed spin intermediate (3.1)

where

Hfixed spin
N/b

£=1
(3.2)

with

H„ = A V  „к 0q-k q-iУ QK - h У M*L p 1 p p 11 L “p лk=l Х" Х k=l У" 1
(3.3)

containes the single site term on site (£,1), where the spin 

will be considered fixed, and the coupling of this spin to its
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right neighbour, while

Hintermediate
N/b
I '£=1

H£ д +i

with

(3.4)

Ha, i+i

b-l q-l
hl I

q-l

4 a=2 k=l £,a A,a+1 4 г,Ъ Ä-+1'1
- $  I ОС

k=l
,q-k

b q-l
- h i  i M1 

a=2 k=l £ ,a

(3.5)

contains the field acting on the intermediate spins and all 

other couplings. This separation is such that both terms are 

self-dual and therefore the critical coupling will again be 

obtained exactly.

In the decimation transformation the spins are fixed on 

sites (£,1), £ = 1,2 ..., N/b. The thinning of the degrees of 

freedom is achieved by keeping for each configuration of the 

fixed spins a single configuration of the intermediate spins 

which has the lowest energy. Since H ̂  does not contain the

coupling to the site (£,1), the cluster described by H^ has

b sites with one end spin fixed and the energy eigenvalues should 

be calculated for all possible end spin configurations. H^ will 

be treated as perturbation, it will couple the clusters and 

will flip the spins which were until now fixed. As the simplest 

case, we will do the calculation with a scale factor b=2.

The cluster part of the Hamiltonian is then

H£. £+1
\ q_1

= l
4 k=l

Ü ftq-k£,2 £+1,1 - h
q-l
l

k=l
M£, 2 (3.6)
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i.e. the cluster has two spins coupled with a Potts coupling, 

the transverse field acts on one spin only, the other is held 

fixed. For any fixed state of the spin at (£+1,1) the cluster 

has q states. The eigenstates of H can be easily found.
X/ f X/ • _L

There is one lowest lying level with energy

Eо
1
2 [A (q-2 ) h ] - /  у  [A - (q—2) h] 2 + (q-l)h2 (3.7)

q-2 degenerate levels with energy E^=h, and another level at

E „ = - [A + (q-2)h] + / T [A - (q-2) h J + (q-l)h' (3.8)

The wave function of the lowest lying level, when the spin at 

(£ + 1,1) is in state |i > , is
X/ t  X  / -L

*i(i" £+1) = {3 X>£, 2 + a l2>£,2+-*-+ali-1>£,2+ li>£,2+ali+1>£,2+-

+ a lq > £,2 }I1>£+1,1 Х1 (^Д+1) l1>£+ljl ' (3.9)

with

a = (q-_j;)h { - j  [A - (q-2) h] + / j  [A - (q-2)h]2 +(q-l)h2 } .

(3.10)

Keeping only this lowest energy state, the reduced space 

of states will be

11>£, 1 4. (1,2)|i2>
2,1 *'1£>£,lXi£+1

(£,£+1) |i£+1>£+1/1--- (3.11)

and it will be mapped onto the state
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1 >1 1 cell 12>2 cell 1г>£ cell 1íí+l>í.+l cell (3.12)

where |i > is the i. state of the Ä.th cell. The Potts coupling
X» C 6 1 JL X/

between the renormalized states is obtained by calculating the 

energy difference when the neighboring spins are in the same or 

different states and we get

X . = Acell
1 -a

1+ (q-1) a'
(3.13)

The renormalized value of the transverse field is given by the 

matrix element between two states differing by a spin flip.

h 11 cell h 2a+ (g-2)a2 
1 + (q-1)a2

(3.14)

Repeating this RG transformation n times, the recursion relation 

for the ratio A/h is

n + 1 
*n + l

1 -a

2 a + (q-2)a n n
(3.15)

where a is obtained from Eq. (3.10) by using A and h in it. n n n
The ratio is used because one of the couplings can be used to set 

the energy scale.

*
Apart from the trivial fixed points (A/h) = 0  (A = 0, h finite)

★
and (A/h) = “ (A finite, h = 0 ) , there is one non-trivial fixed 

point at (A/h)c = q, which is the exact result for the critical 

coupling. Linearizing around the fixed point, the "thermal" eigen

value is

Уt
q + 2 /q + 2 

^q + 2
(3.16)
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and the critical exponent v is obtained from

log 2 
iog yfc (3.17)

An exponent can also be defined from the behavior of

the energy gap. In the weak coupling case, when A/h<(A/h) = q,c
A renormalizes to zero, but h goes to a constant value, propor

tional to the energy gap. Near the critical coupling, the gap Д 

behaves as

(3.18)

The exponent can be obtained by following the renormali-
19zation of h or using the scaling arguments of Fradkin and Raby 

We get

log Z ^  ( (^) )
v = ---------- c—Д log у (3.19)

where Z, is the multiplicative factor in the renormalization of h, h

Zh
2a+(g-2)a2 
1 + (q-1)a2

(3.20)

When evaluated at the critical coupling, it gives

í 1 • (3.21)

As was shown by Juliién et al. the dynamical exponent z 

can be obtained from the renormalization of the absolute energy 

spacing, namely

b-z
An+1
An

(3.22)
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when these ratios are evaluated at the fixed point value of

А/h. This means that for b=2

z =
log Zh1 ( (-R-) c ) 

log 2 (3.23)

Comparison of Eqs. (3.17), (3.19) and (3.23) gives

v . = z v Д (3.24)

We have also calculated the eigenvalue for a magnetic per

turbation of the form

Hmagn

The recursion relation for the perturbation у is

(3.25)

Уn+1
2 + (q-2) a^ 

l+(q-l) a2n

and the eigenvalue at the fixed point is

(3.26)

_ 3 /q + 4
Ут ~ 2/q + 2

The 3 magnetic exponent has been calculated from

3/v = d
log
log

(3.27)

(3.28)

Finally the specific heat exponent has been obtained using the 

scaling law

2 - a = (1+z)v . (3.29)

Usually the corresponding scaling law for the static critical 

exponents is written in the form 2 - a = dv . In the present
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quantum case the dimensionality is 1+1, but the time or energy 

dimension is scaled differently from the spatial dimension.

This leads to the factor 1+z instead of d.

The numerical values for the critical exponents are given 

in Table I. for some values of q. Since very few exact results 

are known for the Potts model, these numbers should be compared 

with the conjectured values and will be contrasted to the results 

of the next sections. The tendency in the variation of the eigen

values and exponents with q is correct for small q. The exact 

value of v for q=2 seems, however, to be an accident. No other 

exponents are obtained exactly and there is no indication that 

the order of transition changes as q increases. The transition 

obtained by this method is always a second order phase transition.

This result is not very surprising after all. The model has

only one relevant coupling, Л/h, the ordered and disordered

phases are separated by a usual fixed point. A first-order

transition can be expected to occur only in a model, where the

space of couplings is enlarged, as in the Potts lattice gas 
13version of the Potts model. We will show in the next Section 

that the generation of new couplings naturally happens in the 

other versions of the quantum RG transformation.
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IV. SCALING EQUATIONS OF THE BLOCK TRANSFORMATION

• 14-17We will consider now the usual block transformation

with two sites per cell. The Hamiltonian is split into intra

cell and intercell parts

H = H . + H ,intra inter

where the intracell part is

H intra “£
N/2
I H. .

(4.1)

(4.2)

wi th

H
£

q-i
k=l

q-
n,

- h
2
l

a=l

q-i
l

k=l
4.3)

while the intercell coupling is

with

H. *- inter
N/2

= I£=1
H£, £+1

H£,£+1
_A
q

q-i
l

k=l
q-k
£+1,1 ‘

(4.4)

(4.5)

As a first step of the RG transformation, the eigenfunctions

and eigenvalues of a single cell have to be determined. A cell
2of two spins has q states. This eigenvalue problem can be 

conveniently solved in the representation given in Eq. (2.10) 

where the eigenstates of the transverse field are used as a 

basis. In this representation the Hamiltonian of a cell is

H
£

, q-1
-  I
q k=i

мк Mq_k - h £, 1 £, 2
2
l

a=l
R£,a (4.6)
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Since the Potts coupling corresponds now to raising and lowering,
2respectively, the neighboring spins, the q states of the cell 

fall into q subgroups which are not mixed by H . The state 

I 1 ’ 1 * > , when both spins are in the state |l'> (see Eq. (2.9)),

is mixed to |2 * q '> , |3' (q —1) '> ... and |q'2'> . Looking for

the eigenvalues of H in the form

ф = a 1 11 * 1 1 > + a 2 |2'q' > + ... +a^|q'2' > (4.7)

a straightforward diagonalization gives the following wave 

functions and energies:

Фл =1 / l+(q-l)a2
{11'1'> + a|2'q'> + a|3'(q-1)'> + ... + a|q'2'>} , (4.8)

where

a = (q-1)A { ~qh + A + / (qh - A) 2 + f2q (4.9)

is a non-degenerate lowest lying level with energy

E± = - (q --2 ) h (q-2) , / , , q-2 ,,2 . q-1 ,2- A - / (qh - ^  A) + ^  A
q

(4.10)

There is a (q-2)-fold degenerate level at a higher energy

E_ = 2h + — ,2 q (4.11)

with wave functions

Ф (1) = 7 =2 */cp̂ l=  {I 2 * q * > + eI 3 * (q-1)'> + e2I 4'(q-2)'> +...+ e4"2 |q'2'> ,

(2)
4̂.
== {|2'q’>+ e2|3'(q-1)’>+e4|4'(q-2)’>+...+e2(q 2)|q'2' >} ,

Ф2д“2)= y = =  { I 2 * q * >+ eq_2|3' (q-1)'>+e2(q_2) I 4'(q-2)'>+...+£ (q_2) |q’2f >}

(4.12)
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V- , 2lri \where e = exp ( — — ) .q-i

Finally there is another non-degenerate level

*3 J~. „ 2  2, 7(q-1) a +q-l
{ - (q-l)a|l'l'>+ I 2’q* > + I 3' (q-1)'> +...+|q'2'>

with energy

E - - (q-2)h - /(qh --Í3IÍLX)2
q

Another set of states can be obtained by looking at the 

state I 1 * 2 * > and the states mixed to it. By symmetry similar 

sets can be obtained by starting from |l'3'>, ...» |l'q’> and the 

energy spectrum will be the same. Seeking the eigenstates in 

the form

ф = b. 11'2' > + b0 I 2'1'> + b |3'q'>+...+ b |q'3’>

the Hamiltonian can again be diagonalized exactly and we

for the eigenfunctions of the lowest lying levels:

(1) . 1 { b|l'2’>+ b 1 2 '1 ^q-2+2b2

(2) _ 1 { b|1'3’> +12'2
1 Уа-2+2Ъг

+ |3'q’>+|4'(q-1)' > +...+|q'3' >} 

+ bI 3'1'> +|4'q'> +... + |q'4'>} ,

------- { b|l'q'> +|2' (q-1) *>+| 3* (q-2)'>+...+ b|q'l’> } ,
*V2+2b^

with

Ь = 2Л { 2 h ' ^  X + ^ (2 h “ ^  X)2 + 2'("q'2~ X2 } 'q

(4.16)

(4.17)
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and the energy of this (q-l)-fold degenerate level is

EI 3zi2 h (4

There is a higher lying level at

E'2 = 2h + I , (4

which is (q-1)(q-3)-fold degenerate. The wave functions are

Ф (1,1)2
1

/q-2

Ф (1,2)2

(1,q~3)_ l
2 " q ^

Ф (2,1)2
1

/q-2

(2,2)
2 /5=2

é (2'q-3)=

{ I 3'q '> + n I 4' (q-1)'> + n2 |5 * (q-2)’> +...+ n4“3 (q'3 ’> } ,

{ I 3' q * > + Л2 I 4 * (q-1) '> + л4 | 5 * (q—2) * > + ...+ 3^|q'3'>}

{ I 3' q ' > + nq-3|4' (q-1)'> + n2 (q_3) | 51 (q_2) » > +...+ п(<1~3) |

{I 2'2 * > + пI 4'q'> + n2 I 5' (q-1) '> +...+ n4“3 | q ’ 4'>} ,

{I 2'2'> + л2 I 4’q’>+ n4|5'(q-l)'> +...+ П2(4_3) |q'4»>} ,

2
{I 2'2'> + л4”3 I4'q'> + n2(q_2) I 5 » (q-1)<> +...+ n (q_3) |q'4'

(4,

and similar functions, where n = exp (2iri/(q-2) )

Finally, the highest lying level at

E3 ■ - ¥  h - ^  /q
(4

19)

18)

q' 3' >},

>}

2 0 )

.21 )

is again (q-1)-times degenerate and the wave functions are;
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/ lT7.ilZI { 11'2 * > + I 2'1' > -- b I 3 ' q' >
q-2+2b2 q-2

2
q-2 ЬI q' 3 ’ > }

ф(2) = /  (q-2)/2 I I!» 3 I> ---- b|2 * 2’> +|з'1'>3 7 ' q-2 1 'q-2+2b
bIq14'>}

/  (q,-2)/2 { 111 q' > - b|2'(q-l)'> - b | 3 ’ ( q - 2 ) |  q'1 •> } .
q-2+2b2 q_" q”2

(4.22)

The energy spectrum is such that is the lowest lying

level, the next is the (q-1)-times degenerate Ej level. E^ and E ' 

lie higher and are again degenerate. E^ and E^ lie even higher. 

Keeping the two lowest lying levels with q states, these states 

could be mapped onto the states of a cell spin with the identifi

cation .

1' > cell
(i)
’l -*■ (i+1) ' > cell l — 1,2,...,q—1 (4.23)

The effective transverse field acting on the cell spin can be 

obtained from the energy splitting of the cell spin states

qh cell = e ; (4.24)

The Potts coupling between the cell spins can be calculated

from the matrix elements between the cell states I i * > _ ,1 i-cell1 £+lcell
and I (i+1) ' > £ ceii I (j —1) ' >£+iceii * Since the wave function of the

lowest lying cell state 11'> ,, is different in structure from■ cell
the higher lying (q-1) degenerate states, the matrix element will

be different whether all the states I i ’> ,, , |j'> ,, , |(i+l)'>1 cell 1 cell 1 cell
and |(j-l)' »сец are among the degenerate states, or |l’> appears
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once or twice. This indicates that the RG transformation generates 

new couplings. For a consistent calculation we will enlarge the 

space of couplings.,Instead of having one Potts coupling, X, we 

will introduce three, X^, X^ and X3. They are most conveniently 

defined by the matrix elements:

— <1 * „<111 H 2'> q’> , = <1* „<2' H l’> 2' > . ,£+1 1 £ 11 £141 £+1 £+1 1 £ 11 £1 £+1 '

£+1 <(i-l)’1lt<2'|H| . H* II Ы 1,4',...,q' , (4.25)

£+1 <(j-D ’ 1 , i'= 2'',...,(q-1)', j1 II Ы • • л

The energy spectrum of a single cell can be calculated for this 

general model in the same way. The parameters a and b in the wave 

functions are modified

a = (q-i)x. { _qh + Sif '*3 + /(qh " S r  x3) 2+ 5 r  Ai } '

\ “(q-3)x

2q
(4.26)

Ь ( 2 h + 2q / '2 " ■ 2q

and the energies of the two interésting levels are shifted to

E . = - (q- 2 )h - X 3 - / (qh v 2 + a=i xi
(4.27)

E i azi h .
\1 +(q-3)X, 

2q - / ( f h + ^ f f l )2 + ^  4

The effective field acting on the cell spins is still given by
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the energy splitting of the cell states, as in Eq. (4.24). 

The A^, and A^ type couplings between the cells are given

by the appropriate matrix elements between the cell states.

1 Cel1 [l+(q-l)a2][ q-2+2b*]
2 {A1(l+a)2b2 + 2(q-2)A2(l+a)ab + (q-2)2 A3 a2} ,

2 cel1 /l+(q-l)a2 (q-2+2b2)
Y ------ 2~ *3/2 { 2A1(l+a)fc>2 + A2[l+a)b(q-3+b2) +

+ 2 (q-2) ab ] + (q-2) A3 a(q-3+b ) } , (4.28)

A_ (4A.b2 + 4 A_ b(q-3+b2) + A,(q-3+b2)2 } .3 cell ,„-,2,2 1 2 3(q-2+2b )

Further iterations of these recursion relations do not lead 

to new couplings. Since in the original Potts model A^ = A2 = A3, 

it is easy to show that the choice

*2 = X*1 ' *3 = X A1 (4.30)

reproduces itself. Starting from an arbitrary A^ and x, which 

originally is equal to unity, the renormalized values for a cell 

are

1 Cel1 [l+(q-l)a2] [q-2+2b2]
[ (1+a)b +■x(q-2)a] ,

(4.31)

Á
cell

l+(g-l)a
ГТ-q-2 + 2 b

[2b+x(q-3+b )]
[ (l + a)b + x(q-2)a]

As mentioned earlier, the quantum decimation transformation 

is dual to this block transformation. Instead of introducing new

19
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nearest neighbor interactions, there three-spin couplings would 

appear. The effect of the transverse field would depend on the 

states of the neighboring spins.

These recursion relations have two trivial fixed points. 

Starting from the weak field case, h << Â  = Â  = Â  , the field 

renormalizes to smaller values, Â , Â  and A^ renormalizes to 

different values (x gets different from unity), but at the fixed
•k * * *point x=l again and h =0, while Â  = Â  = A^ can be arbitrary.

On the other hand, the renormalization of the strong field
*case, h >> A^ = = A^ leads to a fixed point, where h can be

* * *arbitrary and the Potts couplings vanish, Â  = Â  = A^ = О , but
*A^ and A^ vanish faster than A^ and x = O.

The two regions are separated by the critical value of the 

couplings, which from duality transformation is known exactly 

and should be at h = A/q. The critical couplings obtained in the 

present approximation are given in Table II for a few values of 

q. As it is seen from there, the numbers are better for larger q 

values and there they give the critical coupling to about 10 I 

accuracy. Since this is a first-order calculation, it is hoped 

that next corrections can give quite accurate result.

Starting from the critical coupling and from x = 1, a non- 

-trivial fixed point is reached. The couplings at this fixed 

point are also given in Table II. The position of the fixed point 

moves continuously with increasing q up to q^ = 6.81, where it 

jumps to h/A = “ , x = 00

t

к

i



A closer look at the recursion relations shows that this non 

-trivial fixed point is not the only one. For q < 4 + /3 there 

is no other fixed point, for q _> 4 + /3 , however, two new fixed

points appear. A convenient representation is to plot the fixed
2point values of h/Лх and 1/x for various values of q (see Fig.l) 

One set of fixed points is always on the line 1/x = О with

__h_ = (g-2)2 (g- 3)
2 2 2 A1 x q (q -2q-l)

(4.32)

The other set of fixed points moves away to finite x values and 

merges with the physically accessible fixed points of the Potts 

model at q^ ^ 6.81 and the two fixed points annihilate each other 

For larger q values the fixed point at x = °° becomes physically 

acce ssible.

This fixed point structure is very similar to that obtained

by Nienhuis et al.3"3 for their vacancy model. Their q is closerc
to the q^ = 4 exactly known number, but again this may be due to 

our first approximation. In the next section we will analyze 

whether the transition for large q is in fact a first-order

transition or not.
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V. ANALYSIS OF THE CRITICAL BEHAVIOR

Second-order phase transitions are usually described in

the framework of the renormalization group calculations in

terms of fixed points which are accessible on the critical

surface. The situation is not so clear for first-order transi-
2 4 2 5tions. There is a large class of magnetic systems ' , where

the first-order transition has been attributed to the absence 

of stable fixed points within the domain of stability of the 

model. This does not apply here, since there is always an 

accessible fixed point for any value of q.

2 6Nienhuis and Nauenberg have introduced an important new 

concept, the discontinuity fixed point. There are systems 

where the first-order transition can be described in terms of 

the behavior around a special fixed point. A sufficient condi

tion to get a discontinuity in the order parameter or other 

derivatives of the free energy is to have a fixed point, where 

the thermal and magnetic eigenvalues of the RG transformation 

are equal to b^, where b is the scale factor in the RG transfor 

mation and d is the dimensionality. A fixed point where the 

eigenvalues are equal to b^ is called discontinuity fixed point

The calculated values of the eigenvalues are given in

Table II. As one can see both the thermal and magnetic eigen-
dvalues tend to 2 as q “ but they are not equal to b for any 

finite value of q. Nevertheless one can argue, that the fixed 

points, which become accessible for q>q^ » are discontinuity 

fixed point and describe a first-order transition.
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f

i

We have calculated the critical exponents v, z, ß and a 

in the same way as in Sec. III., while has been determined

numerically from the behavior of the gap. For q = 7, 8, 9 we 

could not calculate the gap exponent for computational reasons. 

We could not reach the trajectories which would come close 

enough to the fixed point, to see the asymptotic behavior. The 

values of the critical exponents are given in Table III.

It is seen that the numerically calculated v. satisfiesA
the scaling law given in Eq. (3.24). Furthermore 2ß/v = z is

also satisfied.

For q > q.

yt = 2

the thermal and magnetic eigenvalues

(q-2)2 
(q-3)2

are

(5.1)

„ q-3ym = 2 „ 0m q - 2 (5.2)

and the dynamical exponent z is obtained from

(n + 1)
, - z

A U)l

(n + 1)

(n)

<T> < T >

(q-3)
(q-2)

(5.3)

It follows from these expressions and from Eq. (3.17) that 

(1 + z) v = 1

and therefore Eq. (3.25) gives a= 1 . We argue that a= 1 is

the indication that the fixed points for q > q^ are discontinuity 

fixed points, they describe first-order transition.

When q -+ q^ , the specific heat exponent a -* i . This means 

that the critical exponent for the entropy goes to zero, i.e. 

the entropy gets a step function like temperature dependence, 

a discontinuity, when q^ is reached. This discontinuity persists

for any q > q
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VI. DISCUSSION

In this paper we have presented a RG treatment of the

quantum version of.the 2-d Potts model. Our RG calculation gives

a crossover from second-order to first-order transition as the

number of components increases, in agreement with the known

exact results. The fixed point structure of our RG transfor-
13mation is very similar to that obtained by Nienhuis et al.

The renormalized Hamiltonian has two couplings, h/A and x, the

latter one being generated during the renormalization only.

Below a certain critical value of the number of components, q ,c
there are three fixed points, two of them at finite values of 

the couplings, one at infinity. The two fixed points at finite 

values merge at q^ and annihilate each other and thereby the 

infinite fixed point becomes physically accessible. At this 

fixed point the specific heat exponent a = 1 and we argued that 

this is an indication of the first-order nature of the transition. 

We want to emphasize that our RG transformation is a standard 

one and no ambiguity was built in, contrary to the modified 

majority rule of the vacancy model of Nienhuis et al.'*'̂ .

Our renormalization group transformation generated a new 

coupling x / 1. The coupling was introduced in the represen

tation defined by the states of Eq. (2.9). In terms of the

original Potts states the new coupling will flip simultaneously 

two neighbouring spins. One can try to construct a classical 

2-d model whose transfer matrix would correspond to our renorma

lized Hamiltonian. This classical model will contain four-spin
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coupling on a plaquette, but the strengths of the possible 

four-spin terms are all related to each other. It seems that 

the introduction of the four-spin couplings has the same effect 

as the introduction of vacancy variables and allows to describe 

the crossover from second-order to first-order transition.

The value obtained for 4C ' 9C = 6.81, is somewhat far

from the exact result = 4. This is the consequence of taking

two sites per cell and keeping for each cell the q lowest lying

states only. Improvements could be obtained either by taking

larger cells or by taking into account the higher lying states
1 6in a perturbational way as proposed for the Ising model by Urn 

, . 17and Hirsch and Mazenko . In the first case diagonalization of 

large matrices would be needed, while in the second case an 

extremely large number of new couplings would be generated.

We feel that both methods would give a slight improvement of 

qc , leaving our conclusion on the crossover from second-order 

transition to first-order intact.



30

ACKNOWLEDGEMENTS

One of us (J.S.) is grateful to E. Fradkin for many 

useful discussions and to R. Pandit and M. Ma for their help 

in the numerical calculations.



31

REFERENCES

1. R.B. Potts, Proc. Cambridge Philos. Soc. 4 8 , 106 (1952).

2. R.J. Baxter, J. Phys. C6, L445 (1973).

3. M.P.M. den Nijs, Physica 95A , 449 (1979).

4. R.B. Pearson, to be published. В. Nienhuis, to be published

5. R.V. Ditzian and J. Oitmaa, J. Phys. A7̂ , L61 (1974) г

D. Kim and R.I. Joseph, J. Phys. A8̂ , 891 (1975) .

6. M. Yamashita, Progr. Theoret. Phys. 6_1, 1287 (1979) .

7. V.M. Zaprudskii, Zh. Eksp. Teor. Fiz. 73 , 1174 (1977) ;

/Sov. Phys. JETP 4£, 621 (1977)/.

8. L . Mittag and M.J. Stephen, J. Phys. A7_, L109 (1974) .

9. D.J. Amit and A. Shcherbakov, J. Phys. CT_, L96 (1974) ?

R.K.P. Zia and D.J. Wallace, J. Phys. A8, 1495 (1975);

J. Rudnick, J. Phys. A8_, 1125 (1975) .

10. G.R. Golner, Phys. Rev. B£, 3419 (1973) .

11. C. Dasgupta, Phys. Rev. B]Ĵ , 3460 (1977) .
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FIGURE CAPTION

2Fig. 1. Locations of the fixed points on the h/Ax versus

1/x plot. q is a parameter of the curves. Fixed 

points on the straight lines can be reached from 

the x = 1 Potts line. The fixed points on the 

dotted lines are accessible for a more general

model only.
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CAPTION OF TABLES

Table I. The thermal and magnetic eigenvalues of the RG

transformation and the critical exponents of the 

q-state Potts model, obtained by a self-dual RG 

transformation.

Table II. The critical and fixed-point values of the couplings 

obtained with a block transformation for several q 

values and the thermal and magnetic eigenvalues of 

the RG transformation.

Table III. The critical exponents obtained with a block trans

formation with two sites per block.





Table I

eigenvalue s
q thermal

A t
magnetic

A m
V z

2 2 1.707 1 0.5

3 2.268 1.683 0.846 0.550

4 2.500 1.667
(

0.756 0.585

5 2.708 1.655 0.696 0.612

6 2.899 1.645 0.651 0.633

7 3.076 1.637 0.617 0.650

8 3.243 1.631 0.589 0.665

9 3.400 1.625 0.566 0.678

10 3.550 1.620 0.547 0.689

00 00 1.500 0 1

critical exponents
zv = v . A 6 ß/v a

0.5 0.228 0.228 0.5

0.465 0.211 0.249 0.689

0.442 0.199 0.263 0.802

0.426 0.190 0.274 0.878

0.412 0.184 0.282 0.937

0.401 0.178 0.289 0.982

0.392 0.174 0.295 1.019

0.384 0.170 0.300 1.050

0.377 0.166 0.304 1.076

0 0 0.415 2



Table II

q
critical
couplingh

A

f i x e d p о i n t e i oenvalueя
h

“ ’ 4
X

P"T h thermal
Xt

ma gne tic
Amx2 1 2

2 0.638 0.638 1.000 0.638 1.596 1.652

3 0.373 0.392 1.115 0.315 1.778 1.635

4 0.260 0.297 1.193 0.209 1.966 1.621

5 0.199 0.258 1.307 0.151 2.177 1.607

6 0.161 0.257 1.513 0.113 2.455 1.592

6.81 0.139 0.407 2.253 0.080 3.020 1.567

6.82 0.139 00 oo 0.060 3.184 1.585

7 0.135 00 oo 0.060 3.125 1.600

8 0.116 00 00 0.060 2.880 1.666

9 0.102 00 00 0.059 2.722 1.714

10 0.091 00 00 0.057 2.612 1.750

СО 00 oo 0 2 2



Table III

q V -1у = V z z V

2 1.483 0.674 0.551 0.818

3 1.205 0.830 0.581 0.700

4 1.025 0.975 0.607 0.622

5 0.891 1.122 0.631 0.563

6 0.772 1.295 0.659 0.508

6.81 0.627 1.594 0.705 0.442

6.82 0.598 1.671 0.671 0.401

7 0.608 1.645 0.644 0.392

8 0.655 1.527 0.526 0.344

9 0.692 1.445 0.445 0.308

10 0.722 1.385 0.385 0.278

oo 1 1 0 0

VA ß/v ß a

0.82 0.276 0.409 - 0.301

0.70 0.291 0.350 0.095

0.62 0. 303 0.311 0.353

0.56 0.316 0.281 0.546

0.51 0.329 0.254 0.720

0.47 0.352 0.221 0.931

0. 336 0.201 1

0.322 0.196 1

0.264 0.172 1

0.223 0.154 1

0.26 0.193 0.139 1

0 0 1
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