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ABSTRACT

A program of quantization of relativistic local field theories in terms 
of Hilbert modules over non-commutative C*-algebras is outlined. The space- 
time of the considered systems should become a "quantum" one representable 
by a Hilbert space. Two suggestions are given that how this quantum spacetime 
might be determined.

АННОТАЦИЯ

Намечается программа квантования локальных теорий полей с помощью Гилбер 
товых модулей над некоммутативными С*-алгебрами. Пространство-временная струк 
тура рассматриваемых моделей станет квантованной, которая репрезентируется 
Гилбертовым пространством. Дается два предложения для возможного определения 
этой квантованной пространство-временной структуры.

KIVONAT

Körvonalazzuk a relativisztikus lokális térelméletek kvantálásának prog­
ramját nem kommutativ C*-algebrák fölötti Hilber modulusok segítségével. A 
tekintett rendszerek téridő-modellje "kvantáltá" válik, amit egy Hilbert-tér 
reprezentál. Két javaslatot adunk ennek a kvantum-téridőnek a lehetséges 
meghatározására.



INTRODUCTION

It is a serious problem of quantum theory to find a sound analytical 
formalism, satisfactory physically as well as mathematically, for handling 
field theoretic systems. Another, theoretically very important, unsolved 
problem of physics is the unification of quantum theory and (general) rela­
tivity. In our opinion the two problemes must be in a deep connection. Our 
proposal for the former problem is the investigation of topological module 
structures over *-algebras (in particular over C*algebras) [1]. The main 
goal of this paper is to show a possible way that the latter problem might 
be connected to the former in this new mathematical framework of quantum 
theory. For this purpose we first summarize our results, and outline a 
program that we call a "C*-module quantization" of local field theories.

Along the quantum logic approach of quantum theory [2, 3, 4, 5] we 
investigated in [6, 7] propositional systems for local field theories, using 
the new technique of lattice-valued logics. The uncertainties of principle 
in measuring processes made on field theoretic systems can be formulated 
intrinsically in these lattice-valued propositional systems. One can charac­
terize the classical and quantum, non-relativistic and relativistic cases of 
physical theories in a natural way in these logics.

The favorite candidate for realization of these lattice-valued logics 
is a Hilbert module over a C*-algebra A. This fact suggests that we may 
use a Hilbert module Я- for describing a local quantum field theoretic systemA
(instead of a Hilbert space). In [6, 8] we developed the Hilbert-module
formalism of non-relativistic quantum field theory. In this case Ц can be

3 ™constructed over the commutative C*-algebra CQ (lR ) of the bounded compex 
valued continuous functions which vanish at infinity on the configuration 
space Ik of the system.

The local propositional system of a relativistic quantum system is 
representable with a Hilbert module over a non-commutative C*-algebra A. 
Thus we should know the theory of Hilbert modules over non-commutative 
C*-algebras to be able to develop the Hilbert module formalism of a rela­
tivistic quantum field theoretic system.

The first physical problem in this direction is the determination of A. 
The lattice of self-adjoint projectors of A represents the lattice l of 
values of local propositions and thus A can be generated by l. Following from
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Einstein causality & must have a deep connection with the causal structure 
of spacetime M 2 * 4 [7 J. 4If one starts with the causal structure of IM to solve this problem 
then it can be shown (see in [9]) that the closed sets of the Alexandrov 
topology of spacetime constitutes a complete orthomodular, irreducible and 
atomic lattice £(M4), where the atoms are the points of IM4 . But this lattice 
does not satisfy the covering law [5, 10], and thus we cannot apply Piron's

4results to realize £(IM ), and there are other complications with this lattice 
l(IM4), too.

We get an another more intuitive starting point, which is also suggested 
by recent works of Marlow [11, 12, 13], to solve the problem if we recognize 
that the real object is a "quantum spacetime" QM4 (representable with a 
separable, as we should prefer, Hilbert space h (m  )), rather than a classical4one, which should reduce to the classical spacetime IM in a certain classical 
limit.

Along this line of thought we proceed with the following, physically4plausible, consideration: The arbitrarily small cells of spacetime IM cannot 
represent a physically observable reality (like the arbitrarily small cells 
of phasespace represent no measurable reality in quantum mechanics). There 
is a Heisenberg type uncertainty relation.

Дх Ax.  ̂ I  Íо 1 2
2for the coordinates of a point (event) x^e IM (considering now for simplicity 

a two-dimensional spacetime) with a new Planck constant fi characteristic 
for the spacetime (from a simple consideration "ft ~ 10 cms). The timelike 
and spacelike components of an event x(j cannot be measured with an arbitrary 
precicion. Thus we are led to consider the components of x(j as non-commutative 
quantities xq , x^ satisfying the commutation relation

2The corresponding Hilbert space H(lM ) should represent the quantum 2spacetime QIM which we looked for, and the algebra of bounded operators on 2H(|M ) should give the non-commutative C*-algebra A in Яд .
Some remarks: The idea that the spacetime coordinates would have to be 

operators in a semantically consistent quantum theory of fields was emphasized 
by von Weizsäcker [14, 15]. Thus the detailed elaboration of the above 
"canonical quantisation" of spacetime would be a kind of realization of this 
idea.

It is a well known idea of Heisenberg that quantum uncertainties should 
emerge in the spacetime metric in small spacetime regions but the spacetime 
points remain unchanged, i.e., the null cones should become "smeared out" 
in the quantum area. Then the relation of cause and effect, the causality
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becomes indefinite.
In the twistor theory of Penrose [16, 17], spacetime points arise as 

secondary concepts corresponding to linear sets in twistor space, and they, 
rather than the null cones should become "smeared out" on the passage to a 
quantized relativity theory.

It is straightforward to see that both the spacetime points and null 
cones should become "smeared out" in the above "canonically quantized" 
spacetime. Thus this quantization of spacetime would involve both ideas 
mentioned above and would take a step forward relative to each, simply 
unifying them. We could say in connection with causality that this is a 
macroscopic concept and microscopically is unobservable (in about fi sized 
regions).

4Finally, it seems so that this quantum spacetime QM provides a kind of 
a super relativity principle suggested by M. Davis, who established a rela­
tivity principle of quantum measurements is [18], because the geometrical

4symmetry group of QM is a kind of "blend" of the Lorentz and unitary groups.
We would like to note that we choose a pragmatic and positivistic 

attitude to find first a mathematically consistent formalism for the rela­
tivistic quantum field theory and the hard problems of a complete interpreta­
tion is left for further research. 2

2 .  A "QUANTUM LOGIC" APPROACH OF LOCAL FIELD THEORIES

To solve the acute difficulties of quantum field theory (divergences 
and others), at least partly, we think that one should find, first of all, a 
mathematically well defined kinematical picture in which we can then implement 
the dynamical principles. In such a kinematical picture, the uncertainties of 
measuring processes made on physical fields (or on observables) must be 
reflected intrinsically in the resulting mathematical structures. The uncer­
tainties of principle consist of the following two components:

1) The measurings of two different observables on a (small) region of 
the physical space ft (or, ideally, at a point xGft) can disturb each other.
(in non-relativistic quantum mechanics this is the only considered case) .

2) The measurings of observables in two different regions of the physical 
space ft (or, ideally, at two different points x^, x 2 € ft) can disturb each 
other. (This is characteristic for a relativistic quantum field theory).

Einstein causality (or local commutativity) which refers to the second 
case restricts the possible regions (or points) to the light like or timelike 
separated ones.

Our starting point in [6, 7] was the quantum logic approach to axiomatic 
quantum theory [2, 3, 4, 5]. First we considered the classical local field 
theory. The space of the all possible values of local observables (the observa­
tion space of Birkhoff and von Neumann [2] of a local physical system P(ft) is 
a submodule of R^(ft), where R(fi)is a real valued function algebra on ft.
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The experimental local propositions (briefly, local propositions or 
only propositions) of P(ft) correspond to the subsets (of certain type) of 
the observation space RN (ft). From a brief consideration it is found that we 
preserve all information of the measurements in the simplest way if we allow 
a new "logical" value (called true-false value) for local propositions SN (ft) 
(see in [7 ] ) .
Now one could say that SN (ft) is

x) false if its value is the empty set ф, 
xx) true-false if its value is a subset ш of £2; SN (ft) is true on ы 

and false on Cw.
xxx) true if its value is the whole set ft.

We get the result that the local propositions of a classical physical system 
P(ft) take their values in the power set P(ft) and we are led to consider the 
system of propositions of P(ft) as a "Boolean-valued logic", (in connection 
with this see the Boolean valued models of set theory in [19, 20]).

Following this conclusion we supposed (keeping in mind the two components 
1) and 2) of the uncertainties of measurements) that the set £={a, b, c, ...} 
of values of the local propositions of a general physical system P(ft) is a 
complete orthomodular lattice (CROC in terminology of Piron [5]) with union 
V, intersection Л and orthocomplementation ', and every experiment was called 
a local proposition, which leads to an alternative of which the terms are 
the elements of a CROC SL. Let X  = (А, В, C, ...} be the system of local 
propositions of a general P(ft). Guided by practical reasons we imposed on /, 
following Gudder [4] and Piron [5], such axioms that X  became a CROC with 
union U, intersection П and orthocomplementation , and with maximal element 
1 and minimal element 9. Then the notion of lattice (CROC)-valued logic was 
defined operationally introducing the mathematical concept of a value function 
which assigns to a local proposition A G X  its value a in £. A value function 
v is a unitary c-morphism from £ onto £ such that the condition A x В 
v(a ) _l v (b ) is fulfilled. Thus a triple {&,£,V) is called a CROC-valued logic 
if X and £ are CROCs and V is the non empty class of value functions from £ 
onto £ such that V a G £ 3 Aa G /v(Aa) = a V v G V. It is clear that the 
element Aa is unique.

The definition shows that only those CROCs can occur as a propositional 
lattice L in a CROC-valued logic (.£,£,V) which contain a sublattice isomorphic 
to £, and this expresses the lattice-valuedness of the local propositions.

From practical reasons it was imposed on i, the atomicity axiom with the 
covering law [5] (but the role of this axiom is not vital). Then a CROC-valued 
logic (,£,£, V) is called a CROC-valued propositional system whenever L and £ 
are propositional systems, and classical if X and £ are distributive (Boolean).

The decompositions of CROC-valued logics into irreducible and weakly 
irreducible ones (see in [6, 7]) shows that:

1) Every CROC-valued propositional system is the direct union of 
irreducible CROC-valued propositional systems, and a CROC-valued propositional
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system is irreducible if its center pair (C,c) = ({©, 1}, {O, 1}). Further­
more, a CROC-valued logic is the direct union of irreducible CROC-valued 
logis if its center pair (C,c) is atomic.

2) Every CROC-valued logic (£,SL,V) is the direct union of weakly irre­
ducible CROC-valued logics:

(/,,£,V) = у U a,fL,Vj’ where ca v a (ca is the center of ^a) , and
a CROC-valued logic is weakly irreducible if С ~ c in its center pair (C, c).

Also for the realization of CROC-valued propositional systems, respec­
tively, CROC-velued logics it is enough to know the realization of irreducible 
CROC-valued propositional systems, respectively, of weakly irreducible CROC- 
-valued logics. (The results under 2) suggest that we may drop the axiom of 
atomicity in a more general consideration).

The above results allow us to classify the CROC-valued logics [7] and 
to characterize the different cases (classical and quantum, non-relativistic 
and relativistic) of local field theories. The two types of non-compatibility 
relative to measurement processes (1, and 2, above) can describe intrinsically 
in the CROC-valued propositional systems.

a) The local propositional systems of the classical (both non-relativistic 
and relativistic) local physical systems are classical CROC-valued proposi­
tional systems (if there exists such a propositional system).

b) The local propositional systems of non-reltivistic local quantum 
systems are CROC-valued propositional systems (if they exist) with distribu­
tive value lattices.

c) The local propositional systems of relativistic local quantum systems 
are CROC-valued propositional systems (if they exist) with non-distributive 
value lattices (see in [6, 7]).

The states, symmetries and (local) observables can be defined in a 
similar way to the corresponding definitions of Piron [5] with some modifica­
tions (mainly in the relativistic cases) [7]. Comparing with the algebraic 
approach we have shown that the postulates of isotony and local commutativity 
of Haag and Kastler [21] are satisfied by our propositional systems and the 
spacetime covariance can be implemented in natural way in these propositional 
systems.

On the other hand it is clear that one could control with the determina­
tion of the algebraic structure of local algebras generated by the CROC-valued 
propositional systems (or CROC-valued logics) the other postulates of Haag 
and Kastler in which they postulate the C*-algebraic properties and structure 
of the algebra of local observables. Some results in [6, 8] suggest that the 
requirement of the C*-algebraic postulate for the algebra of local observables 
on a physical system reduces the range of this approach essentially to the 
non-relativistic quantum field theoretic cases (apart from the cases of free 
fields) .

Finally, let us give examples for CROC-valued logics.
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Let Г be a set then (5>(9(Г)), (р(Г), V) is a classical CROC-valued 
propositional system, where the elements of V are generated by the real 
valued functions Г IR (if Г is countable) [7].

2) Let Нд = (н,a ) be a faithful AW*-module of Kaplansky [22] with a 
commutative AW*-algebra A generated by a complete lattice £(a ) of its projec­
tors. Then (g)(H ), £(A), V) is a weakly irreducible CROC-valued logic, where 
(Р(НД) denotes the set of all AW*-submodules of Нд [7 ].

3) Our conjecture as a general example for a weakly irreducible CROC- 
-valued logic with a non-distributive l is the following: Let Нд = (Н,А) be 
a faithful Hilbert module over the non-commutative C*-algebra A generated 
by a CROC Si (a ) of projectors. Then (*?(Нд) , £(A), V) is a weakly irreducible 
CROC-valued logic, where (Р(Нд) denotes the set of all closed submodules of

HA |7)-
As a generalization of these examples we may expect that all weakly 

irreducible lattice-valued logics are representable in this way via a Hilbert 
module (Л?,А,ф), where ÍL is also a left module over the C*-algebra A and ф is 
definite Hermitian form, constructed on (#,A), taking values in A.

3 .  A C*-M0DULE QUANTIZATION OF LOCAL FIELD THEORIES

The above example (example 2)) suggests that we use a Hilbert module 
Нд = (н,А,ф), in the description of a local quantum system P(ft) in a similar 
way as a Hilbert space is used in the Hilbert space formulation of a quantum 
mechanical system.

We developed a quantization formalism of non-relativistic local field 
theoretic systems in [6, 8] in terms of a Hilbert module, with an introduc­
tion to the theory of Hilbert modules as topological modules. In these cases
the Hilbert modules (#B, Ф), the "state modules", can be constructed over the

^ 3commutative C*-algebra Cq (R ) of all complex valued continuous functions which
vanish at infinity on the configuration space R3 of the system (or over C(ft)
if the system under consideration is concentrated on a compact subset ft of 
3 3R ). R is equipped with the usual Euclidean distance topology and with the3geometrical symmetry group E . ф is a definite Hermitian form from # x #

3 1/2 A Ato A = Cq (R ) and generates an А-valued norm ф(Х,Х) ' = | | X | | on S i ,
in which Üд is complete.

The local and global aspects of the considered systems are studied in 
detail in [6, 8]. The local states are represented by the elements of Si 
(with A-norm 1 on a compact subset ft in for bound states of the system),
The local observables are represented by self-adjoint (module) operators on 
itд an<3 the local symmetries are represented by (A-) unitary operators on #д 
(an А-unitary operator leaves the form ф invariant). The global aspects of the 
system (global states, observables and symmetries) are generated by the 
corresponding local aspects via the "states" of the C*-algebra A = Cq (R3)
(or C(ft)), which are generated by regular Borel measures on IR3 (or on ft), 
as it is well known from a theorem of Segal [23]. (We note that one may
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interpret these states of A as the states (possible preparations) of the 
measuring apparatuses (see in [8])). This procedure of the description of 
the quantized system suggests the name "C*-module" quantization; this approach 
would be a kind of "blend" of the C*-algebraic and Hilbert space approaches 
of quantum theory.

It is an interesting fact that many unitarily inequivalent Hilbert
spaces, representing the global states, observables and symmetries of the
system, correspond to the same Hilbert module of local states (HilbertA 3spaces belonging to inequivalent regular Borel measures on IR ). Also it seems 
that the Hilbert module which describes the system locally is an invariant 

> concept under local canonical transformations (represented by A-unitary
operators) while it incorporates the globally inequivalent representation 
spaces of the system.

к Let us see briefly the concrete quantization procedure of a Lagrangian
local non-relativistic field theory using a Hilbert module as a "state module".

a) The system is given classically by its Lagrangian density:

JL = £(cp(x,t), Vcp(x,t), <p(x,t), t)

where (p(x,t) : IR3 x R -*■ IR. The energy density and energy are

3#(ф,тт) = ТГФ - £(ф,тт), H = / ^(ф, тг) d х.
К3

(тг = ) (for the sake of simplicity here we neglect the contribution of Уф
in i) . 3b) Now the "state module" is (На,ф), where A = C (R ) and
ф : H. x H, + C (RJ) is a definite Hermitian form, and H has an oi-sequenceA A О A
of orthogonal elements (if the system is concentrated on a (large) compact3subset Ü of IR then this sequence is orthonormal) . The infinitesimal time 
evaluation of the system is determined by the Schrödinger equation of the 
form:

iti = Ж(ф ,1т)Ф(ф ,ь )
»

/V

where Ф(ф,г) 6 H , it : H ■* H is an А-linear (module) operator such that
Л * ** A A**

* it = X. (self adjoint) and ф ,и : Нл H are А-linear operators such thatг A Athey satisfy the C.C.R.:
A A

[тт,ф] c=-ih 1.

л 2 The form of £ is given by its classical counterpart #(ф,тт). If H =L [Р(П),бф]
3 A 3is the Hilbert module of square integrable functions on R(R ) to C(R ) then

A A ^

Ф = Ф* and тг = - ifi -г—  .
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If the "state vector" 4>(cp,t) satisfies the condition

/ ф(Ф,Ф)1/2 d3x = / I IФ I L  d3x = N
3 3 AR R

then we could say that 4>(cp,t) represents N "particles" in Нд .
This formalism is the natural generalization of the usual quantum 

mechanical one and its locality mature is striking. If we consider the 
system on SI (on the completion of the union of all compact subsets of R ) 
then the algebra of the (quasi-) local bounded observables of the system 
P(S2) is given by 0 ( н д ) (the set of bounded module operators on Нд ) which 
is a C*-algebra with center isomorphic to A = C(S2). Thus the connection 
with the Haag-Kastler field theory is clear.

Further advantages: we can formulate the interaction via the Lagrangian 
formalism, and the concrete computations of local and global quantities can 
be carried through without divergences.

On the other hand the analysis is [6, 8] suggests that most of the 
mathematical concepts and methods used until now are applicable only for 
the relatively simple non-relativistic quantum systems.

In the more realistic case of relativistic local quantum field theory 
one should look for new mathematical methods and techniques.

By the way, we note in connection with the theory of Hilbert modules 
that many interesting connections exist between the topological module 
structures (essentially these are the natural generalization of topological 
vector space structures of functional analysis) and other mathematical 
structures, for example the direct integral and direct product spaces of 
functional analysis and even the differential geometric structures: a vector 
bundle is also a topological module over a commutative ring, the cross-sec­
tions of the bundle, the vector fields, are the elements of the module.
Thus e.g., a Hilbert bundle is also a special Hilbert module. (н д above gives 
the direct integral Hilbert space H = / H where H^ is a Hilbert space at

3 r3the point x 6 R with the same ш-sequence of basic elements as Нд has. 
Furthermore Нд is a Hilbert bundle with fiber H^ at the point x, too).

The next step along this line of thought would be the generalization of 
the above formalism to the local relativistic quantum field theory. We should 
like to outline a program now in this direction.
I, The classical configuration space of the system P(ft) is fi <= M 4 (considering 
now only flat spacetime), this system is given classically by the Lagrangian 
density

■t = -£(cp(x) , э^ф(х) ,x)

where x 6 ft, tp(x):ii -*■ R or C .
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For simplicity, let us consider only scalar fields. Now the energy-momentum 
tensor field and the energy-momentum 4-vector are

X (Ф,п ) = п Э cp Vív u u v guvi(<p' V '

= / T  do' 
a uv

II, Quantization: What is the "state module" (Нд ,ф)? Following, more or less
directly, from the second type of uncertainties in measurings, mentioned in
Sec. 2., A cannot be C(ß), also a commutative C*-algebra, now. A is a non-4commutative C*-algebra and we should replace ÍÍ с  И with a "non-commutative" 
one (spacetime).

We note that the simple notion that a C*-algebra is just "C(i2) for a
non-commutative fi" is used quite fruitfully in the theory of C*-algebras [24].

4 4"Also we should replace M with a "quantum spacetime QM . Thus our first
4problem is the determination of QM , and by this, A.

We give some suggestion in the next two sections how this problem might 
be handled.
a) Once we have OM^ and A then the next problem is the determination of

4scalars, vectors, tensors of the geometrical symmetry group of QM , denotedл  л  4
by (p(<p is the Poincaré group of QM ) .

Then we should translate all classical concepts and quantities (and the 
field equations, too), such as, e.g., Д ф ,Э^ф ) and ^ ( ф , ^ )  into this new 
language:

ЛФ,ЭиФ) -*• ЛФ,ЭиФ),
/ч л  л

'У (ф ,тс )-*•']'' (ф,тх ) . J\iv U uv u

This would be a "first quantization".
b) If we have A, then we construct (н ,ф) over A as a left module with an 
w-sequence of basic elements, and we represent 5>+ on Нд . The local "spacetime 
evolution" of the system would be determined by the Schrödinger equation of 
the form (this is my conjecture):

Л Л Л
Л A A A A A i

ih6 (dx) Ф(ф ,х ) = Т(ф,п;)ф(ф,х) , x e QM

where 6(d x) denotes the infinitesimal generator of the "spacetime" transla-4tion on QM . Some classical field theoretic argument suggests the following 
covariant form:

A A A

1Лд(и^)фУ(ф,х) = 7 uv(cp»Tlu),1,V((p'x)
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< л  А  '' л
where х € ОГГ, 4>v ((p,x) G Нд , Нд Ид and selfadjoint, п.̂ , ф : Нд-> Нд
such that they satisfy the C.C.R.:

« Ä Л
[n ,ф] <= -itigЦ M*

л
where g^ is in a connection with the conventional propagator. The form of
Л Л А Л7" is given by its first quantized counterpart (Ф/Гс̂ ) . If Нд is represent­
ed by an appropriately generalized "function module" J? [ R(QM4 ),6(p] then we 
might have

A AA A A A g  ^
Ф = Ф* and u = -itig —— .

u u öG
/ч

If the "state vector" <Dv ^,x) satisfies, for example, the condition of the 
form

/ g ф(Ф ,®Y)doV = / ф(Ф ,®Y)d3x = N 
о Y V Y

4 Y лwhere о is a "spacelike" hyperplane in QM , then we might say that Ф (ф ,х ) 
represents N "particle" in Нд . This would be a "second quantization" with 
clear locality nature in this approach.

4 .  SPACETIME STRUCTURE FROM LATTICE-VALUED PROPOSITIONAL SYSTEMS

In this section and the next one we should like to give suggestions for4the possible ways out of the problem of the determinations of QM and A. First 
we give an abstract way for handling the problem, while in the next section 
a more physical suggestion will be given.

In the lattice-valued propositional system (jS,i.,V) of a realativistic 
local system, the conceptual uncertainty of second type in measuring process­
es (see in Sec. 2.) is expressed by the non-distributive character of £. 
Einstein causality determines the distributive sublattices of SL, thus the
structure of £ is in a deep connection with the causal structure of the 

4spacetime M .
4If one considers the causal structures of M then one can show that 

the closed sets [defined by (J+(p) П J (q)) U (j+ (q) П J (p))] of the 
Alexandrov topology of the spacetime constitute a complete orthomodular and 
atomic lattice £(IM̂ ), where the atoms are the points of (see [9] for the
proof and definition of the union and intersection and orthocomplementation 
in £(M4)). The center of £(M4) consists of the empty set and the whole M 4, 
thus £(M4) is an irreducible atomic CROC. But the covering law [5] is not 
satisfied by £(M4). Hence £(lM4) is not a propositional system and Piron's 
theorem is not applicable to realize £(M4), i.e. £(M^) is not realizeable by 
the set of all closed subspaces of a generalized Hilbert space. An another
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complication with this lattice £(M4) is that the light like separated regions 
of M 4 correspond to compatible elements of £(M4) thus massless fields would 
exclude from the quantized theory if £(M4) is used as a lattice of values of 
local propositions.

We could approach the problem, abstractly, from an axiomatic point of 
view. Let the local physical system be given by a lattice-valued propositional 
system. Also we start with abstract, physically justifiable axioms and the 
corresponding structures (now these are the lattice-valued propositional 
systems (logics) (£, £,V)), and we look for the corresponding physical (pheno­
menologically observable) systems with their configuration spaces (spacetimes)
together. We saw in [7] that the lattice £ is in direct connection with the

3 4usual physical spaces IR , respectively, M . We may expect that £ determines 
the physicsal space of the system corresponding to the abstract (<£, £,V) .
Thus we are led to the following question: What kind of "spacetimes" follow 
from lattice-valued propositional systems i.e., from the different, abstractly 
determined £' s?

Now, given £ in a concrete (,£, £,V) with its abstract structure and with 
its symmetry group Then the mathematical space that realizes Si with its
"power structure" (power-set for a Boolean propositional system or Ф(н) for 
an irreducible propositional system, for example) gives the corresponding 
physical space (configuration space or spacetime) and the symmetry group 
generated by gives the geometrical symmetry group of this physical space.

We can divide into two parts of the problem:
1) Si is distributive, i.e., the corresponding (Z, £,V) describes a non-rela- 
tivistic quantum system. In this case, Si should determine the configuration 
space of the system. The time is handled separately as an absolute one.
2) £ is non-distributive, i.e., the corresponding (<£, £,V) should describe a 
relativistic quantum system. In this case, Si should determine the "spacetime" 
of the system.

We now consider briefly the case 2, and we suppose that (£,£,V) is a 
CROC-valued propositional system. In these cases £ is a propositional system 
and, if it has at least four atoms, representable via a (generalized) Hilbert 
space Н(Я), following from Piron's result, where Л is the set of the atoms 
of £.

(When П is countable, H(£2) is separable). Now the symmetry group of £ 
generates the unitary group of H(i2) [5]. We get that in a wide class of 
lattice-valued propositional systems the "spacetime" is represented by a 
Hilbert space H(i2) and the corresponding symmetry group is the unitary group 
of H(i2). This fact suggests that we consider the "spacetime" represented by 
H(i2) as a "quantum spacetime". Physically observable quantities of this 
q-spacetime are represented by self adjoint operators on H(ft). Thus the observ­
able time and space coordinates should be represented by operators on H(fi) 
and the spectrum of this time operator should determine a chronology for the 
corresponding observer (cf. [11]).



For these "quantum spacetimes" to be realistic and phenomenologically
allowable, they should satisfy the "correspondence principle" that they4reproduce the classical spacetime M in a classical limit; e.g., the lattice 
of closed subspaces of н(П) reproduces the causal lattice i(M^) of IM̂  in a 
limit (the distributive sublattices of ф(н(П)) determine spacelike hyper­
planes in И ).

In these cases the determination of the non-commutative C*-algebra A in 
Нд is very simple; it is the von Neumann algebra generated by the projectors 
of H(Q).

5 .  A "CANONICAL q u a n t i z a t i o n " OF SPACETIME

4We suggest now a more physical way for the determination of QM and A.
We start with the following physically plausible consideration: The arbitrary

4small cells of spacetime M cannot represent a physically observable reality 
(like the arbitrarily small cells of phasespace represent no measurable 
reality in quantum mechanics). The spacetime events, the elements of M , do 
not correspond to measurable objects. Thus Heisenberg type uncertainty rela­
tions of the form

АхоАх^ £ j fi, i = 1, 2, 3 (5.1)

4should hold for the coordinates of a spacetime event x^ G IM with a new Planck
constant h characteristic for spacetime. The timelike coordinate of x^
together with its spacelike coordinates cannot be measured with arbitrary
precision, while separatly can be measured! The great empirical success of
non-relativistic quantum mechanics which presupposes the Euclidean space
geometry without further assumptions could justify the assumption that the
spacelike coordinates of an event can be measured with arbitrary precision.
(We note here that this assumption should be dropped if an elementary length
does exist in nature) . In connection with the magnitude of fl we get from a

-37simple consideration that fi ~ 10 cmsec, considering the characteristic
distances Ax ~ 10 cm in nuclei and the characteristic time of resonances 

-24At ~ 10 sec.
Thus we are led to consider the coordinates of a spacetime fourvector 

xy as non-commuting quantities
Л Л Л Л Л

x -> x = (x ,x.,x_,x.) (5.2)U u ' о 1 2 3' 4 '

which satisfy the commutation relation



13

>

where uv (5.4)

This means that we may consider the coordinates of a four-vector x as
4 ^self-adjoint operators on a Hilbert space h (m  ) with identity operator

41. It follows at once that the 4-dimensional vector space M becomes a
4"non commutative" vector space QM s

M 4 -* QM4: = {x I x = (vx)ueu , <ev ,eu) = 6^,

v^ e R, x^'s are selfadjoint operators on H(M ), satisfying (5.3)} 
with the scalar product:

л л  л v л лц< x , x > = < x e , x e > = x x .— M* Vi
4Now the pseudo metric of !M becomes an operator equation:

where

, u U w  v v4 S s = <3UV(X - У ) (x - У )

Uv

1 0 0 о
0 -1 0 о
0 0 -1 0
0 0 0 -1

(5.5)

(5.6)

The equation (5.5) should determine the metrical properties of QM4 via its 
eigenvalue problem; (the spacelike, light like and timelike regions of QM4). 

Now the transformations leaving the equations (5.3) and (5.5) invariant
A i

should give the elements of geometrical symmetry group 3> of QM4 (the Poincaré 
group of the "quantum spacetime"). The transformations leaving the following 
indefinite form

/ov2 ,Л2Ч 2 ,л3.2(X ) - (x ) - (x ) - (x )
А Л

and (5.3) invariant should define the "Lorentz" subgroup L of 9. Such a 
transformation has the following general form:

.11 .u „U Л VA -1= Л. x = Ux U , UU = 1, (5.7)

u л v лwhere Л^'s are real numbers transforming x as a vector, while U is a unitary
operator on H(m 4) transforming xv as an operator on H(M4). Hence we have the
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following two conditions determining the elements of L:

u ug x x = g x*Yx'v = Л >  Л У >  лаq Л x ^UV Y A x a = q X X  
^ Yd

Л Л /4 , Л A „ /\ , л/V Tx' ] =
x Y 'Aa

a nx ] = [xU ,X ].

A simple computation gives from (5.8) and (5.9):
/s
a = «TUЛ g A / и< c

ŶOL Y 4uv a f

IId< < >  AYa ATV. II
< <

Y a '

(5.8)

(5.9)

(5.10)

(5.11)

Л A

We see that only those Lorentz matrices Л are the elements of L which
A

leave the anti-symmetric matrice A invariant. This leads to a breaking of the
Lorentz invariance in the "quantum spacetime" QM4 . (Such a symmetry breaking

2 лwould not appear in a 2-dimensional QM because in this case A is the anti- 
-symmetric tensor (_^ q ))•

At the present stage of our work we do not know the immediate conse­
quences of this symmetry breaking. Nevertheless, we see that the geometrical

4symmetry "group" of QM is a kind of blend of the Lorentz and unitary groups 
and thus we might get in this way a "superrelativity" principle suggested 
earlier by M. Davis [18].

A

Finally, let us give a representation for x .
4 2 3 ^Let H(M ) be the Hilbert space L (IR ) then the following operators*

satisfy the C.R. (5.3)

xo =
Э

Эх. Эх, Эх. Х1 = xr 2* х 3 = 3‘

Also in this approach the separable Hilbert space L^(lRJ) represents the 
"quantum spacetime" H(M4); the unit vectors in L2(lR3) might be interpreted 
as the "events of the quantum spacetime". The time operator x q has a continu­
ous spectrum which defines a chronology for the corresponding observer. It is
worthwhile to note that the time operator x q has a discrete spectrum in a
finite universe (in space) (as is well known from the practice of q. m.).

This quantum spacetime would satisfy easily the "correspondence principle"
4 4mentioned in the foregoing section, because QM is reduced to M if we take 

the "limit fi -*■ 0".
We note that the detail elaboration of the above ideas is the task of 

the further research.

This representation is due to Prof. T. Nagy.
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6 .  ON SOME CONSEQUENCES

We now list some immediate consequences of the above "canonical" quan­
tization of spacetime. 4a) Relativistic mechanics on QM : We could consider the relativistic point4mechanics on QM such that we replace the spacetime coordinates x with

A U
operators x^ in the spacetime dependent classical formulas. For example, the 
energy-momentum four vector of a particle classically is defined by the 
formula:

p = _ 3S(x) 
y 3xP

where S(x) is the spacetime dependent action of the particle, and thus the 
corresponding operator is

Л
Л A

эу S(x) .

Now the Hamilton-Jacobi equation becomes the operator equation

3̂  S(x)3yS(x) - m = 0

for a free particle and
A A A  А А А Л Л л ,, Ал

(3yS(x) - еА^(х))(3yS(x) - eAu(x)) - m = 6
А А

for a particle moving in an external field A^(x). If S(x) is known (e.g., 
from its classical counterpart; the reason for such a choice might be that
A A

S(x) is classical for large scale comparison with fi) then this equation 
provides a nontrivial eigenvalue equation for the mass of the particle. When 
ift would have a discrete spectrum we might interpret the corresponding states 
as "spacetime excitations".

In this way we may get a kind of "relativistic quantummechanics".4b) Field theory on QM : As we mentioned in Sec. 3 along the C*-module quantiza­
tion program of local field theories, we may translate all classical concepts 
such as Lagrangian density, the principle of least action, field equations 
etc.

A A A A

-£(ф , э ф ) г(Ф, э ф )|_L Н*
л A A A i A A A A A

0 = 6 S = 6/d х /(ф , Э^Ф) 0 = 6 S = 6/d х .£(ф , Э^Ф)
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э б I
и бЭиФ

ы
6ф

Л 6Х7Г*—*
6Эиф

в

4 4using QM instead of the classical M .
In our C*-module quantization program of relativistic local fields this

procedure would mean the "first quantization".
c) Quantum gravity: We recommend QM4 for local coordinatization of the 
general "quantum" spacetime manifold. In the development of a "quantum" 
differential geometry (Riemannian geometry) the first steps have been taken 
by A. R. Marlow in his recet works [13, 25]. We hope that we can arrive not 
too long at a more concrete "Riemannian geometry" of quantum spacetime with4the use of the above suggested concrete "quantum" Minkowski space QM . It can 
be seen that the Einstein equations can be translated into this "quantum" 
language once we have the quantum Riemannian geometry. The main problem 
would be in this direction the determination of the antisymmetric quantity
Л

in the curved quantum spacetime, which should determine the commutation 
properties of local coordinates.

7 .  REMARKS AND CONNECTIONS WITH OTHER APPROACHES

a) The lattice-valued quantum logic was introduced by us simply general­
izing the usual two-valued quantum logic approach of Birkhoff and v. Neumann 
and Gudder and Piron, following the conclusion that the experimental local 
propositions of a classical local field theory assume truth values in a 
Boolean algebra. Nowadays G. Takeuti [26] introduced a quantum set theory 
generalizing the Boolean-valued models of Scott and Solovay [19, 20] to 
L-valued Models where L is the lattice of closed subspaces of a Hilber space 
H. He has shown that a) a reasonable set theory holds in L-valued models and 
b) as a special result, the real numbers in an L-valued model correspond to 
the self-adjoint operators on H. Now is is clear that 1) the quantum set 
theory of Takeuti is in a close connection with the lattice-valued quantum 
logic („£,£,V) of us. For, if i = L then V) provides a special example
for L-valued models; the value functions in V are elements in the universe

of the corresponding L-valued model. Furthermore 2) the functional 
analysis based on quantum set theory may provide the theory of modules over 
operator algebras (*-algebras) and thus we could develop the theory of 
topological modules over C*-algebras (and so the theory of Hilbert modules) 
in an elegant and satisfactory way using the mathematics based on quantum 
set theory (and we could say similar remark about the quantum differential 
geometry).

We note that D. Finkelstein introduced in this conference a new quantum 
set theory different from that of Takeuti; he quantizes the Frége bracket 
while Takeuti quantizes the characteristic function.
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ß) M. Davis in [18] interpreting in a possible way the model and result 
of Takeuti (result b) above) established a relativity principle in quantum 
mechanics introducing Boolean reference frames in it; he used the complete 
Boolean subalgebras of L as reference "frames". The quantization of a classi­
cal theory means in his context the application of appropriate Boolean valua­
tions to the formulas ("sentences") of the theory. Now it can easily be seen 
that the conceptual framework of quantum theory suggested by M. Davis is in a 
straightforward connection with the approach to quantum theory proposed 
independently by us (and summarized in Sed. 2. and 3.). Davis suggested two 
directions for further research. One of these is that there should be a 
relativity theory combining special relativity and quantum theory in which 
the underlying group combines the Lorentz and the unitary groups. We already

4mentioned in Sec. 5 that the quantum spacetime QM might provide such a rela­
tivity theory; Boolean reference frames (complete Boolean algebras) corre-4spond to spacelike hyperplanes in QIM . The second suggestion of Davis concerns 
quantum field theory (and quantum gravity). The elaboration of our lattice- 
-valued quantum logical and C*-module quantizational approaches to field 
theory might be a kind of realization of this suggestion.

y) In connection with the quantum spacetime of microworld, we want to 
mention that the S-matrice picture of Heisenberg suggests such a quantum 
spacetime representable with a Hilbert space H(lM4), too; the incoming states 
on a spacelike hyperplane at t = - 00 provide a basis for H(lM̂ ) and the 
(renormalized) propagator function (determining.the transition probability) 
is proportional with the scalar produce of H(M^). The asymtotic completeness 
(H^n = H = HQut) in this context simply means that the physical system has 
a unique (quantum) spacetime. As a final remark we hope that we can report 
before long about the further progress.
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