

E. SVÁB
A.M. KADOMTSEVA I.B. KRINJECKIJ
M.M. LUKINA
V.M. MATVEJEV

> SPIN REORIENTATION TRANSITIONS IN Co^{2+} SUBSTITUTED ERFEO₃

Hungarian Academy of Sciences

CENTRAL RESEARCH INSTITUTE FOR PHYSICS

BUDAPEST

SPIN REORIENTATION TRANSITIONS IN Co²⁺ SUBSTITUTED ERFEO₃

E . Sváb Central Research Institute for Physics H-1525 Budapest 114, P.O.B.49, Hungary

A.M. Kadomtseva, I.B. Krinjeckij, M.M. Lukina, V.M. Matvejev, Moscow State University, Physical Department, 117234 Moscow,. USSR

> **HU ISSN 0368 5330** *ISBN 963 371 773 6*

ABSTRACT

The magnetic phase diagram for the \cos^{2+} substituted ErFeO₃ in the concentration range up to 5 at% was obtained from magnetic and neutron diffraction measurements. From the low temperature magnetostriction measurements the temperature dependence of the threshold field along the a axis induced by the spin reorientation $G_y + G_zF_x$ was measured and an estimation was made for
the anisotropy energy of the iron sublattice in the /bc/ plane, resulting in $K_{bc}^{Fe} = 0.2$ K. The calculations for the magnetic anisotropy originating
from the Co²⁺ ions give $K_{bc}^{CO} = 0.2$ K, which is considerably less than the
anisotropy constant in the /ac/ plane: $K_{ac}^{CO} = -120$ K.

АННОТАЦИЯ

Из магнитных и нейтрондифракционных измерений получена магнитная фазо-
вая диаграмма Co^{2+} , замещенного ErFeO₃ в области концентрации до 5 ат⁸. Из измерений магнитострикции в области нйзких температур определена температуризмерении магнитострикции в соласти пизми температур спродами железной под-
ная зависимость порогового поля и оценена энергия анизотропии железной под-
решетки в /bc/ плоскости, оказавшаяся равной $K_{\text{BC}}^{\text{ce}} = 0.2$ K.

KIVONAT

Mágneses és neutrondiffrakciós módszerrel végzett mérések alapján megadjuk a Co²⁺ helyettesitésü ErFeO₃ /max. koncentráció 5 at%/ mágneses fázisábráját. Alacsony hőmérsékletü magnetostrikciós mérésekből meghatároztuk a
küszöb tér hőmérsékletfüggését és megbecsültük a vas alrács anizotrópia terét a /bc/ sikban, amelyre $K_{bc}^{Fe} = 0.2$ K érték adódott. A Co²⁺ ionok mágneses
anizotrópiájára $K_{bc}^{Co} = 0.2$ K értéket kaptuk, amely jóval kisebb, mint az /ac/
sikban az anizotrópia: $K_{ac}^{CO} = -120$ K

INTRODUCTION

Erbium orthoferrite is the only orthoferrite in which the decrease of temperature leads to two types of spin reorientation transition of the Fe³ ions, namely: $G_{\mathbf{x}}^{\mathbf{F}}\mathbf{z}$ \rightarrow $G_{\mathbf{z}}^{\mathbf{F}}\mathbf{x}/\Gamma_{4}$ \rightarrow $\Gamma_{2}/$ near 90 K and $G_Z F_X + G_{ZY} F_X/\Gamma_2 \rightarrow \Gamma_{12}/$ near 4 K, whereby the latter **transition is accompanied by an ordering of the spins of the** erbium ions at mode $C_{Z}/\Gamma_{1}/$.

It is interesting to reflect on the character and the tempe rature of the spin reorientation transition /SRT/ in ErFeO₃, substituting the Fe³⁺ ions by ions having a strong effect on the magnetic anisotropy of the orthoferrites, e.g. for Co²⁺ ions **[1,2,3]. In spite of the great number of papers devoted to the 2+ study of cobalt substituted orthoferrites, the effect of Co** ions on SRT in ErFeO₃ has not been investigated intensively. In **particular, there are no data on the low-temperature magnetic transition or on transitions induced by external magnetic fields, etc.**

EXPERIMENTAL

Polycrystalline ErFe^_2xCoxTix03 /x=0, 0.005, 0.01, 0.05/ orthoferrites and single crystals in which the electronic neu-4 + trality of the molecules was maintained by substituting Ti ions instead of Fe³⁺ or F¹ ions instead of 0²⁻ with nearly the same Co²⁺ ion content were investigated. The single crystals were grown by the flux method. The concentration of co^{2+} , Ti⁴⁺ **and F ions was determined by X-ray fluorescence analysis. The polycrystalline samples were obtained by the usual ceramic technique .**

In the samples of single crystalline Co²⁺ substituted erbium **orthoferrites, the temperature dependence of magnetization and magnetostriction were measured in the temperature range between 2 and 350 K. The spontaneous magnetization was determined by extrapolating the magnetization isotherms recorded with the help of differential coils and by measuring the torque curves with the help of a strain-gauge anisometer. The magnetostriction was measured by using a special strain-gauge in fields up to 60 kOe.**

Neutron diffraction measurements were performed on the powder samples in the temperature range 80 - 700 К at the WWRS-M reactor in Budapest using a monochromated neutron beam of 1.14 8 wavelength.

RESULTS

Neutron scattering provides a sensitive method for investigating the antiferromagnetic order of the iron sublattice [4]. The spin reorientation can be observed by measuring the intensity of the magnetic reflections /011/ and /101/ - indexed in the P_{hnm} space group -, the intensity of which depends on the **direction of the magnetic moments of the Fe^+ ions.** *Fig. 1* **shows the temperature dependence of the magnetic reflections /011/ and** $\frac{101}{101}$ for the $\text{ErFe}_{1-2x} \text{Co}_x \text{Ti}_x \text{O}_3$ system with different Co^{2+} concentration. In pure ErFeO₃ the reorientation takes place at **T = 100 К within a temperature range of 12 K, whereas in the r** presence of Co²⁺ ions the spin reorientation is shifted towards **higher temperatures and the range of reorientation is broadened. In the case of compounds with x = 0.005 and 0.01 the initial** T₁ and final T₂ temperatures of the reorientation were found to be T_1 = 180 K, T_2 = 320 K and T_1 = 280 K, T_2 = 400 K, respect**ively. The magnetic phase diagram of the studied system as shown in** *Fig. 2* **describes the two different phases with the antiferro**magnetic moment along the a axis /G_xF_z/ and along the c axis $\log_{\mathbf{Z}} \mathbf{F}_{\mathbf{X}}$ of the orthorhombic crystal, respectively. For the com- $\texttt{position with } \mathbf{x} = \texttt{0.05} \text{ the spin configuration } \mathsf{G}_{\mathbf{Z}}\mathsf{F}_{\mathbf{X}} \text{ is observed}$ **at all temperatures up to Néel temperature.**

 $-2-$

The results of the magnetic measurements carried out on single crystals are shown in *Fig. Z.* **It is apparent that the** substitution of the Fe³⁺ ions by Co^{2+} ions, similarly to the **case of polycrystalline samples, strongly influence the magnetic** anisotropy and increases the temperature of the spin reorienta**tion; however, the temperature range determined by neutron diffraction for powder samples is somewhat wider than in the case** of single crystals. The strong influence of the Co²⁺ ions on **the magnetic anisotropy of the orthoferrites and on the SRT temperatures /see ref. [4]/ is due to the extremely high con**stant of anisotropy of the \cos^{2+} ions: K_{ac} = -120 K, which is considerably higher than the anisotropy constant of Fe³⁺ ions: K_{ac}^{Fe} = 0.21 K and has an opposite sign.

On decreasing the temperature below the SRT, the magnetic behaviour of cobalt substituted erbium orthoferrites is like that of the pure ErFeO₃ in many respects. The magnetic moment **along the a axis of the crystal decreases first: it equals zero at the compensation point, after which it begins to increase and reaches a maximum at the ordering temperature of the erbium ions. A further decrease in temperature causes the magnetic moment to decrease again.** *Fig. 4* **shows the temperature dependence of the ferromagnetic moment along the a axis for the compositions with x = О and x = 0.01. For Co substitutéd erbium orthoferrite, the temperature of compensation agrees with that observable for** pure ErFeO₃ $/T_K = 45 K/$, and the magnetic moment reaches its $maximum \space \sigma_a = 9.5 \space emu/g$ at 3.4 K then it decreases with decreasing **temperature down to 7.8 emu/g at T = 2.1 K. This decrease of the magnetic moment is apparently connected with the reorientation** of the iron spins from the $G_{Z\overset{\ }{F}_X}$ to the $G_{Z\overset{\ }{Y}}{F}_X$ mode just as in the **case of the pure erbium orthoferrite. Note that the SRT in the Fe sublattice takes place simultaneously with the ordering of** the spins of the Er^{3+} ions $\text{T}_{R2} = \text{T}_{N2}/$, because for $\text{T} < \text{T}_{R2}$ the spin configuration of the Fe³⁺ ions is the G_{zy} mode, of the Er^{3+} ions it is the C_z mode, and they are compatible, i.e. the appear**ance of one mode induces the formation of the other. Magnetostriction measurements support the presence of reorientation transitions in the investigated single crystals.** *Fig. 5* **shows**

 $-3 -$

the field dependence of the magnetostriction isotherms recorded for ErFeO₃ below T_{R2}. It is seen that, the application of an **external magnetic field parallel to the a axis of the crystal leads to magnetostriction deformations, whose measure and sign** $\frac{1}{\sqrt{2}}$ correspond to the spin reorientation $G_{ZY}^+ + G_{Z^*Y}^-$ [5,6]. The break points observed on the magnetostriction curves /H_{thresh}/ corre**spond to the end of the SRT. The temperature dependence of the threshold field for ErFeO^ is observable in** *Fig. 6.*

DISCUSSION

As was shown in refs. [7] and [8] the value of the threshold field and its temperature dependence considerably depend on the ratio of the interactions between Er-Er ions and Er-Fe ions an they show the best agreement with the experimentally observed H/T threshold curve for Δ_{1ET-ET} = 3.2 K and Δ_{1ET-Fe} = 1.3 K where Δ_1 represents the splitting of the basic doublet of the **3+ 1 Er ions in the Cz phase. The estimation of the Er-Er and Er-Fe interactions eneables us to determine such important parameters as the anisotropy energy of the Fe sublattice in the (be) plane of** the crystal resulting, $K_{b,c}^{Fe} = 0.2$ K. We obtained similar phase diagrams indicating the transition G_{av} + G_{z} for the Co²⁺ substituted erbium orthoferrites as well. From the value of T_{N2} observed in the substituted ErFeO₃ - supposing that small amounts of impurities /Co²⁺, Ti⁴⁺/ do not change significantly the par**ameters of the interactions between Er-Er and Er-Fe ions -, one can estimate the anisotropy caused by the impurities and separate** the magnetic anisotropy of the Co²⁺ ions themselves. It is **remarkable, however, that the substitution of non-magnetic ions /in our case the Ti ions/ into the orthoferrite lattice, which can be considered as magnetic vacancies, may lead to essential changes in the magnetic anisotropy [9,10]. The presence of a magnetic vacancy leads to decompensation of the isotropic component of the Er-Fe interaction and to the appearance of a** strong exchange field H^{vac}, acting on the Er³⁺ ions surrounding

 $-4 -$

the vacancy splace. It is apparent that H^{VaC} has a direction **parallel to the vector of the antiferromagnetism G and thus the energetically most advantageous orientation will be parallel** to the direction of the maximum susceptibility of Er^{3+} , i.e. to the $\frac{c}{c}$ axis of the crystal /configuration Γ_2 /. The additional **anisotropy stabilizing Г***^* **which appears in the presence of vacancies of x concentration, has the form:**

D

0

$$
E_{an} \approx 4 \cdot x \frac{\chi_c - \chi_b}{2} (H^{vac})^2
$$
 (1)

By using the values of ref. [11] for the susceptibility data χ_{α} = 6.10 $\chi_{\rm b}$ = 10 μ and taking into account that H^{rac} \approx $\approx 10^4$ - 10⁵ Oe [9], we obtain for the anisotropy caused by the **titan ions:**

$$
E_{an}^{vac} \approx 2.10^6 \text{ erg cm}^{-3} = 0.5 \text{ K} \quad . \tag{2}
$$

To determine the total anisotropy energy caused by the impurities $\frac{2^{2+}}{100}$ and Ti⁴⁺ ions in the (bc) plane, we can write using the analogy of ErFeO₃ after ref.[7], that

$$
(1-8x) [2K_{\text{bc}}^{\text{Fe}} - f(\frac{\Delta_1^2}{1-\lambda g^2 f} - \Delta_2^2)] + 2.K_{\text{eff}}^{\text{imp}} = 0
$$
 (3)

where K^{Fe} denotes the anisotropy of the Fe³⁺ sublattice in the (bc) plane; $2\Delta_1$ and $2\Delta_2$ are the splitting of the basic doublet of the Er³⁺ ion caused by the Er-Fe interaction in the configurations Γ_1 and Γ_2 , respectively; λ is the constant of the Er-Er interactions, $2\lambda g^2$ means the splitting of the basic doublet by **the Er-Er interaction at T=0; the quantity f is connected with the temperature of reorientation (T = 3.4 K) . From eq.(3) we get for the effective anisotropy constant due to the impurities** the value of $K_{\text{eff}}^{\text{imp}} = 0.7$ K. The magnetic anisotropy originating from the \cot^{2+} ions /single ion + exchange \cot^{2+} - Er^{3+} / can be **obtained by subtracting** K^{vac}_{eff} **= 0.5 K from** K^{imp}_{eff} **= 0.7 K resulting** $K_{\text{bc}}^{\text{CO}}$ = 0.2 K. This value is considerably less than the anisotropy constant of the Co^{2+} ions in the (ac) plane, being $\text{K}_{\text{ac}}^{\text{Co}} = -120 \text{ K}.$

The above considerations are valid for concentrations less than 1 %. For high concentrations /above 10 %/ the Er^{3+} ions will be placed in a random field of the vacancies H^{Vac} and the influence of H^{VaC} will be distributed almost throughout the **whole crystal which leads to a completely non-ordered state** in the rare earth sublattice. The non-ordered Er^{3+} ions do not induce a C_z phase and the strong anisotropy of the magnetic **vacancies can maintain the** Γ configuration of the crystal down **to the lowest temperatures.**

FIGURE CAPTIONS

¢

 ϵ

٠

- *Fig. 1. Temperature dependence of the (Oil) and (101) magnetic reflections for the ErFe1_9 Co Ti* **0,** *powder samples with x=0, 0.005 and 0.01²* $\frac{1}{2}$ *x x 0*
- *Fig. 2. Magnetic phase diagram of the* E *rFe_{1-2x}Co_xTi_xO₃ system in the temperature range 80 - 650 К*
- *Fig. 3. Temperature dependence of the weak ferromagnetic moment along the c_ direction (») and along the a direction (o)* for Co^{2+} substituted ErFeO₃ single crystals in the *temperature range 80 - 360 К*
- *Fig. 4. Temperature dependence of the magnetic moment along the* \underline{a} direction for ErFeO₃ (\bullet) and ErFe_{O.99}Co_{O.01}^O₃ (o) *crystals in the low temperature range*
- *Fig. 5. Magnetostriction isotherms for ErFeO in magnetic field ^ó parallel to* **a** *axis*
- *Fig. 6. Temperature dependence of the threshold field along the <u>a</u> axis in ErFeO₃ induced by the SRT* G_{yz} *+* G_gF_x

 $-8-$

 \propto

 $\pmb{\theta}$

 ϵ

 $Fig. 5.$

.

Ø.

 ϵ

REFERENCES

- **[1]L.G. Van Uitert, R.C. Sherwood, E.M. György, H. Groodkiewicz, Appl. Phys. Lett. 1£, (1970) 84**
- **[2] L. Holmes, L.G. Van Uiter, R. Hecker, J.Appl.Phys. 42, (1971) 657**
- **[3] K.P. Belov, A.K. Gapejev, A.M. Kadomtseva, I.B. Krinjeckij, M.M. Lukina, T.L. Ovchinnjikova, Fiz.Tverd. Tela,** *lb_,* **(1974) 2422**
- **[4] K.P. Belov, A.M. Kadomtseva, E. Krén, M.M. Lukina, V .N. Milov, E. Sváb, Zh. Eksp. Teor.Fiz., 72^, (1977) 363**
- **[5] K.P. Belov, A.K. Zvezdin, A.M. Kadomtseva, I.B. Krinjeckij, V.M. Matvejev, Fiz .Tverd. Tela. , 19_, (1977) 259**
- **[6] A.M. Kadomtseva, I.B. Krinjeckij, Physics and chemistry of magnetic semiconductors and dielectrics (Moscow State University Press, Moscow, 1979)**
- **[7] I.B. Krinjeckij, V.M. Matvejev, T.M. Letnjeva, E. Sváb, Proc. of the Sov. Conf. of Magnetism, Harkov (1979)**
- **[8] V.M. Matvejev, to be published**
- **[9] A.K. Zvezdin, A.M. Kadomtseva, M.M. Lukina, V.N. Milov, A.A. Muhin, T.L. Ovchinnjikova, Zh. Eksp. Teor. Fiz., 63, (1977) 2324**
- **[10] K.P. Belov, A.K. Zvezdin, A.M. Kadomtseva, R.Z. Levitjin, Reorientation transitions in rare earth magnetics. (Nauka Press, Moscow, 1979, in Russian)**
- **[11] K.P. Belov, A.M. Kadomtseva, N.M. Kovtun, V.N. Derkachenko, V.N. Milov, V.A. Khochlov, Phys. Stat. Sol./а/,** *36^,* **(1976) 415**

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Krén Emil Szakmai lektor: Cser László Nyelvi lektor: Harvey Shenker Gépelte: Beron Péterné Páldányszám: 450 Törzsszám: 80-758 Készült a KFKI sokszorosító üzemében Felelős vezető: Nagy Károly Budapest, 1980. december hó

 $63,111$