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ABSTRACT

A universal mass expression is derived for non-charm hadrons which unites 
GMO formulae for various multiplets. Mass splitting is achieved via the gener
ators of the 14-parameter ISU(3) group. The spectrum depends on three par
ameters which vary with the spin. Comparison with particle data shows a near
ly linear dependence.

АННОТАЦИЯ
Введено общее уравнение массы для неочарованных адронов, объединяющее 

GMO-формулы различных мультиплетов. Расщепление массы проводится генераторами 
группы ISU(3) с 14-ю параметрами. Спектр зависит от трех спинозависящих пара
метров. Сравнение с данными частиц дает приблизительно линейную зависимость.

KIVONAT

Általános tömegformulát vezetünk le nem-charmos hadronokra, amely különfé
le multiplettek GMO-formuláit egyesiti. A tömegfelhasitást a 14 paraméteres 
ISü(3) csoport generátorai végzik. A spektrum három, spintől függő paramétert 
tartalmaz, összehasonlitás a részecskeadatokkal közel lineáris függést szolgál
tat.



We derive a mass expression for non-charmed hadrons which connects Gell- 
-Mann-Okubo (GMO) formulae for various multiplets. Our expression is quad
ratic both in meson and in baryon masses,

M2 = m2 + m2 + m2Y + m2[1(1+1) - (jY)2 ] (1)

2 2 2with m the bare mass whereas mQ , m^ and are functions of the SU(3) Casimir 
labels A. and u, and of the baryon number B. These functions will now be cal
culated explicitly. Thus the spectrum generation will be achieved by three

2real parameters a, b and m , each dependent on the spin eigenvalue j.
The internal SU(3) flavor group with generators A^ is enlarged by in-

i K —eluding the translation generators d and their conjugates d^. The resulting 
14-parameter ISU(3) group has the Lie-algebra commutation rules

r-i ,k, ci.k ck,i
[v  V  = V j  - V *

Id1, Ajj] = 6*dj - ifijjd1 [d1, dj ] = 0 = [d1, d.] . (2)

tai- ■ Ж  -

In unitary representations, the A1 form a Hermitian and trace-less matrix.
This larger hadronic symmetry group is suggested by the Penrose theory of 

1 2twistors ' , together with the identification of internal-group infinitesimal 
operators with physical quantum numbers. We shall not make explicit use of 
twistor theory, however, in the present paper.

In the limit of perfect symmetry, the rest-mass is given by the Casimir- 
ian of the ISU(3) group^

m2 = 2d1di . (3)

We assume, as customary, that the physical masses are split by an operator 
belonging to a nonet:

2 2 ДМ = M - m = <a H3 I a> (4)
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We build up this operator H3 from the ISU(3) generators. Among the generators,
i — ^it is d and d^ which have matrix elements connecting different SU(3) multi- 

plets. We define the nonet operator

Лк = d dk (5)

Additional nonet operators may be obtained by contractions of Д^ with A^'s 
from left or right. Such chains of operators can be kept linear in Д^, by 
using the dyadic structure (5) to factor out SU(3) scalars. We use Okubo's 
notation3 for nonet chains of operators. For example, we write

(A.n.i.A)l - a V a»a£ (6)

The number of algebraically independent nonet chains is limited by 
Okubo's theorem3 which expresses the sum

(Д.А.А)Х + (А.Д.А)Х + (А.А.Д)Х (7)

in terms of shorter nonet chains. We find that the algebraically independent 
Hermitian nonet operators are Дх and

(A.A)j + (Д.A)d , i[(A.Ä)J - (A.A)d l , (A.A.A)*

i[(Д .A.A)X - (А.А.Д)Х ] , i[(A . Д . A . A) X - (А.А.Д.А)*]
(8)

In order to satisfy CPT symmetry, we must select positive C-parity oper
ators. The C-conjugation is described by the involution

C:

and by the operator product rule C(XY) = (CX)(CY) .
4The baryon number operator В defined by

.i.km В = 2Д. A.к i

(9)

(10)

has negative C-parity. Any odd functional f of the baryon number, f(B)=-f(-B) 
may be used to revert the charge parity of some operator. The resulting oper
ator would not, however, contribute to the masses of В = О states. If we ex
clude them, we find that there is a unique combination of operators (8) with 
positive C-parity:

ГХ = 2fRf1 - 3(dkfX + ^ d 1) + AX + 6XB , (11)

i к i 2where we employ the notation f = d and A = m /2.
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We select as our mass splitting nonet operator the linear combination

H* = аД* + br£ . (12)

We may alternatively write as

“ii - i V i 'S + b,Ai*skBi> 'A , В
(13)

where

and^

r i _ -Д Co = f1 r ^3 = fkAi 1 Ak (14)

a -3b 0
-3b 2b 0 • (15)
0 0 0

The matrix elements of operator may be evaluated by use of the Wigner-•3 o  ̂ o
-Eckart theorem <b | I a> = <a; (1,0) |bxb || £_,||a> where (1,0) denotes the 
s-quark state with SU(3) quantum numbers { (X,u),YIIz} = {(1,0), - ^oo} and 
<b11 Cn || a> is a reduced matrix element (RME) independent of the quantum num-D
bers П = {YIIzl. Substituting Eq.(13) in (4) we have

AM2 = I ддВ<а I Со I b x b  I £□ I a> = 
b , А, В 2 B

= Ь АВ<Ь|СД |ахЬ|С2|а> = (16)

= IgAB<a; (1,0) 3 I b>2<b II CA I| a x b  I] II a >

The values of the quark coupling Clebsch-Gordan coefficients <a;(l,0)J |b>5have been worked out by Asherova and Smirnov . On inserting these values and
coefficients (15) in Eq.(16) we obtain our mass formula (1) with the functions
2 2 2 m , m and m2 given by

2 = (А.+2Ц) (A.+2u+3)„2 (3+2Я+ц) (6+2Л+Ц)? (А-ц) (3-Х+ц)„2|.
0 9ц(Л.+Ц+1) 9 (A+2) (A+u+ЗГ 9A(u+2) b+t)B

2 = Щ З / 1 2 ____2X,+И+?/2___ 2 _ Arp_-J/2 2
1 3u (A.+u +1)N 3(A+2) (X+u+3)1 3X(u+2)b D
2 _ -N2___________ P2 S2
2 uU+u+l) " (A+2) (A+u+3) X (u+2)

(17)

The quantities N2, P2 and S2 containing the RME's are defined

N2 = I g BN
A,В A ”B p" = l g >A,В A В S2 = I g.“s

A,В
B_2A 

A bB
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nbA = CA|| MlXX,U-l|| CBII ^M>'(U!1S '2)

plA = <*+1'U|| CA|| XuxX+i ,u|| CR|| Хц> (I+'i) -(X+uT2)' (18)

s^A = <x-i ,u+i II CA || xuxx-i ,u+i II Cgll Хи>11^1и 5?1 )X(u+2)

The RME's of operators ц  have been calculated, using the ISU(3) algebra, by
6Perjés and Sparling . These are

21 (iß+j+1+y)(|b-j+y)
1 (u+1)(X+u+2)
,21 _ (jB+j-l-x)(|B-j-2-x) 
’l (X+l)(X+u+2)
21 (ÍB+j+z)(yB-j-l+z)
*i = - ...fc+iVOT+i-)..-

(19)

where

2X+uY = ------ —3 У = X+2yi z =Z 3 (20)

These RME's satisfy

21 21 21 
N1 + P1 + S1 = 1 (21)

and they are non-negative within unitary representations of ISU(3).
The RME's of operators £2 and can eas:i-ly produced by using defini

tions (14) between states |a> (chosen with the lowest weight) and |b> =
= |Х+1,и/П>:

<Ь И C2 {I a> = - ^ < b | |  Cx l| a>

<b И C3 I) a> = (lA±ü)2<b I) C l || a>
(2 2 )

The remaining RME's are obtained by choosing |b> = |X-l,u+l> and |b> = |X,u-l> 
with the results

A X+2u+6„l 
3 1 » 3 ,

vl _ 2Х+Ц 1 p3 =2 3. ‘ 1 3

S2b2
X-u+3„l 

3 bl s3 = b3

(2Х+ц) -1 
9 *1 (23)

Inserting the values (15) and (23) in Eqs.(18) we compute the contribu
tion of the RME's in the mass matrix elements:
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N2 = {a +2b[(y+2)2-3(y+2) ]}N21

P2 = {a +2b[x2+3x]}P21 (24)

s2 = {a + 2b[ (z + 1)2-3(z+1) ]}s21 .

All the coefficients in our mass formula (1) can now be explicitly cal
culated. For a given spin j and with suitably chosen values of the parameters 
m, a and b, we insert the RME's (19) in expressions (24) which we use, in 
turn, for evaluating the coefficients mQ , m^ and m2 given in Eqs.(17).

Our procedure may first seem to offer a wide range of applications. Yet
we meet severe limitations in its use. The strongest constraint follows from
the unitarity of the ISU(3) representations. The allowed range of quantum
numbers in unitary irreps has been obtained in Ref. 6. We now recall that the
inequality X+u 2j holds for ISU(3) unitary irreps. The unitary singlet
(X,u) = (0,0) can only occur with vanishing spin. The octet (1,1) has only
the spin values 0, 1/2 and 1 whereas the decuplet (3,0) can have spin values
not exceeding 3/2. Regge recurrences and the vector singlet do not lie in
unitary ISU(3) points. Several propositions have been made to incorporate

6 8these hadrons in the present scheme ' but it is not yet clear which of them 
if any is acceptable.

Another problem is posed by the SU(3) mixing. This means effectively 
that singlet masses are uncertain to the degree the mixing angle is. In con
clusion, our mass formula can reliably be tested with the octets of pseudo- 
-scalar and vector mesons, the spin-1/2 baryons and with the j=3/2 baryon de
cuplet .

For octets we obtain

where

2 2 21 2 21n> = 4aN:-L+4(a+8b)Pr-L+bBО 3 1 Э 1
2 1 21 1 21 1 21mf = ±aN7x - i(a+8b)P, + ±(a-4b)S, + bJL Z X d X о 1
2 1 21 1 21 1 21 m2 = - ±aN^ - y±(a+8b)P^ + ±(a-4b)S^

N21 = |<B/2+j+2)(B/2-j+l)

P^1 = |(B/2+j-2)(B/2-j-3)

S^1 = i(B/2+j)(-в/2+j+l)

(25)

(26)

For triangular SU(3) representations the mass formula (1) greatly simplifies. 
We obtain for the baryon decuplet with j=3/2, (A.,u) = (3,0) and В = 1:
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м2 = m2 + i(a+5b) + (у|а - ^b)Y . (27)

We now want to use the experimental values of the masses M to determine 
the values of the parameters m, a and b. Without a further assumption, how
ever, this is only possible with the baryon octet. A least-square fit to the 
octet masses yields the ratio (Table 1)

b/a = -0.066 + 0.013 . (28)

Clearly, the contribution of operator Г3 to the mass is small.
In order to test the sensitivity of the parameter values to the mass 

data, we repeat the fit with different assumptions. For example, we may gen
erally ignore the isosinglet particle in an octet because of possible mixing 
problems. Calculation of the baryon octet parameters with Л ignored, results
in a drastic reduction of standard errors. This is because the GMO fit con-

2tains now only the experimental mass errors. The values of m and a do not 
change appreciably with respect to the corresponding least-square standard 
errors. However, the parameter b does change. Conversely, we may say that the 
masses vary little with the ratio b/a.

The masses in the meson octets and in the decuplet are also insensitive 
to the ratio b/a. We shall exploit this phenomenon and adopt the value (28) 
throughout. (The remaining multiplets contain insufficient data for evaluat
ing b/a from the experimental masses. Cf. Eq.(27), for example.) In this way

2we are able to calculate m and a for the pseudo-scalar and vector meson
octets and for the j =3/2 decimet (Table 1) .2As expected, the mass parameters m and a do vary with the spin. It
would be of interest to model this variance. A further insight is obtained

2from the experimental values of Table 1 if we plot m against a (Figure 1) . 
The nearly linear behaviour of the parameters found in this way gives a hint 
that the twistor particle model in which our mass formula originates may con
tain valid ingredients of hadron structure.
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j

1/2 
octet 
(least- 
-square 

fit)

1/2
octet

(Л omitted)

0

octet5̂
(q omitted)

1
. x)octet

(cp omitted)'

3/2

decuplet5̂
(least-
-square)

3 9 -2.81 -2.998 1.43 -0.703 -4.12
(GeV)z ±0.09 ±0.006 ±0.07 ±0.05 ±0.17

b 9 0.186 0.229
(GeV)Z ±0.03 ±0.002

2ITl n 1.96 1.9612 -0.117 0.942 2.85
(GeV) ±0.08 ±0.0028 ±0.05 ±0.02 ±0.13

Table 1
2 9Fit of ISU(3) parameters to experimental mass values . 

Errors in middle columns contain only experimental mass un
certainties since the number of mass data is insufficient 
for a least-square fit.

V )
With input value b/a = -0.066; Cf. text

3/2+DECUPLET
*

1|2+0CTET ^  ^  ^

inr^dGeV*)
■ 3

2

\
r O C T E T ^ * ‘\

-1 0 1 <-a(G€W*)
a o ctet ^

Figure 1
Experimental values of the mass parameters 

m% and a {least-square fit used for baryon octet)
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