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ABSTRACT
Within the folding model approach to the microscopic optical model po­

tential the nonlocal kernels are generated for projectile energies at 45 MeV 
and 95 MeV. Single particle ground state densities are used which simulta­
neously reproduce charge densities from electron scattering. To display im­
portant ingredients the nonlocal potential, for further use, exact phase 
equivalent forms are generated and used to evaluate differential cross sec­
tions with a local OMP code.

АННОТАЦИЯ

В рамках модели-фольдинг микроскопическим методом был определен нелокаль 
ный оптический потенциал при энергиях 45 и 90 МэВ. При этом использованная 
плотность одночастичных состояний репродуцирует й плотность зарядов, изулечен 
ную из рассеяния электронов. Для определения важнейших свойств потенциала вы­
числен нелокальный и эквивалентный по фазе локальный вид потенциала. Определе 
ны дифференциальные сечения рассеяния нуклонов с использованием этого потенци 
ала.

KIVONAT
A folding modell keretei között mikroszkopikus optikai potenciált, a 

megfelelő nonlokális kernelt állítottunk elő 45 és 90 MeV energiákon. A fel­
használt egy részecske állapot sűrűségek egyidejűleg reprodukálják az elekt­
ron szórásból nyert töltéssürüséget. A potenciál fontos sajátságainak kimu­
tatása céljából a nonlokális és további, konkrét reakcióanalizisekben való 
felhasználásra az exakt fázis equivalens lokális formáit számítottuk ki. Lo­
kális OMP code alapján megadtuk a differenciális hatáskeresztmetszetet.



1. Introduction

Recently great efforts have been made to compute quanti­
tatively the complex optical model when starting from a realis­
tic free internucleon potential1 .̂ These efforts resulted in 
nonlocal potentials, which were transformed into local equivalent 
potentials to make the results more transparent and easier com­
parable with phenomenological OMP. Thereby the definition and
construction of exact phase equivalent potentials was most re-

27warding . It permitted to understand the phenomenologically 
observed energy dependence and gave evidence for a -t -dependent 
repulsive core, which is beyond standard -C - inde pendent Saxon- 
Woods parameterzations. Detailed analyses and applications made 
clear that the predicted -C-dependence may only be discernable 
for projectile energies above 100 MeV. Its effect is manifest 
in a backangle rise of the angular distribution. The results
outlined in this note are generated with theoretical ingredients

1 2 3/as described in another papers ’ ’ '.

2. Theoretical background

The sutdy of interacting nucleons in infinitely extended
nuclear matter is well established and approximate treatments
for finite nuclei seem justified. Methods developed by Brückner
and Bether /ВВ/ have thereby been widely applied and the theory
with calculational procedures for the understanding of nucleon-
-nucleus elastic scattering starting from a realistic NN force

1 2  3is on from ground ’ ’ .
The approach pursued in our studies is based on the evaluation 
of the effective internucleon t-matrix from the free NN inter­
action. The real and imaginary optical model for nucleons we 
calculate to first order in the effective NN interaction with 
an improved version of the local density approximation /LDA/ in 
a fording approach with single particle target densities. The 
model relies on the quite general approach to generate in first 
approximation the OMP as á sum of a direct term and a nonlocal 
exchange term
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The coordinates A  and A refer to projectile coordinates with 
the summation of single particle wave functions we represent 
the hest possible /Hartree-Fock/ particle densities - diagonal 
and mixed densities - for protons and neutrons. The basic 
ingredients of the LDA enters here in the choice of t^ and tg 
which are mixtures of direct and exchange effective NN inter­
actions. In principle it should be calculated in the finite 
system with its full structural details. The hypothesis is 
made that this effective- interaction can be approximated by 
the one corresponding to the local density and energy dependent 
situation in nuclear matter. This effective interaction is our 
version of LDA.
The interaction contains automatically real and imaginary parts 
and the correct features of the finite range of the interaction. 
This is important since the ranges are different for real and 
imaginary parts and the relative spin and isospin channels. Any 
other approximation inherent in the nuclear matter approach in 
computing the effective interactions remains unaltered to 
previous calculations.

The stationary Schroedinger equation

Д\|/ (h>, <4. ) 1- (b-
)dt

72/

for the single particle OMP scattering solutions is most easily 
solved in the standard partical wave decomposition, where the 
numerical problem is reduced to an ordinary second order inte- 
grodifferential equation, viz. ext

f c o ' f ^ ) u
о L /3/
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The diagonal potential contains the standard homogenous 
charged sphere Coulomb potential and the spin orbit potential3which we kapt in a local form .
The multipole decomposition of the nonlocal OMP is formally ob­
tained for a rotational invariant symmetric potential from

U  ,h. )« - K?1) ■+ )

= S- , (r, (A) Xl£')

1 Ы
bir

Л 1 .
h)AA fi

Л /

The local direct potential is subsummized into the nonlocal 
knockout exchange potential which represents the proper source 
of nonlocality. The energy dependence in /1/ results from the 
small energy dependence of the effective interaction. The multi­
pole decomposition, eq. /к/ is technically straight forward but 
is numerically quite involved due to required energy and density 
interpolation of numerically stored effective interactions.

The folding integral for the direct potential is simple 
and was generated with a Gauss-Legendre integration routine 
when performing the radial and angular integrations.

U D
po 1 L z.

(*.) -Zr( Í S Ф .
О Л  7 /L * /5/
I

ij’L ' 'I

with Sl. specifying the occupation number in the single particle 
orbit /1 j/ for protons/neutrons /ХГ/. The radial wave functions
Ф*, . _/r/ are solutions of a Frahn-Lemmer type nonlocal bound

1 ,T • 1/3state potential with parameters V =-72 MeV, r=1.2 A ' fm,
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a=0.65 fm, and the range of nonlocality =0.8 fm. Coulomb 
and spin orbit potentials are kept in the standard local form 
with Vlg=7 MeV, Rlg=l.l A1/3 fm, alg=0.65 fm.
The exchange potential is best directly generated in its multi­
pole decomposition

In the limit of no-spin/isospinflip this expression assumes the 
form

JUL

i-

' ,Cc9 h j ,T1[ V* -  p ?
V*. V X ) S ^  x £ / T >*■
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Together with a multipole expansion of the effective interaction

^  V (Í_).K ii'j) /8/А Л A ”y
we obtain

p 1 2.r i. 
<1

ш СЛ } <c \oo \L о у
e у

w * " т ♦ * / » >

>- V e(X,л l>t
Л f I / j_ cW

Л

- С - з О С ' - k )

/9/



The isospin /proton/neutron/ of the projectile enters through 
the index p /for projectile/ on the Kronecker symbol <3 andp »сaccounts for like or unlike projectile and target nucleons. As

STalready mentioned, the required multipoles tx /r,r’/ are com-
ST ^puted from tabulated values t" /s,kp,E/. To eliminate possible 

errors in interpolations we apply a double transformation and 
obtain

± % ,  Ы) -tЛ ' о О

- 5 -

The multipole expansion of the local direct potential is 
straight forward and yields an L independent purely diagonal 
one :

CtJk*
ц (ь)SĈ / и /

Since standard phenomenological OMP analysis uses local 
potentials it appears desireable to further delineate proper­
ties in the language of local potentials. We therefore outline 
the salient features of the transformation of a Schroedinger 
equation with a nonlocal potential eq. /3/ to a Schroedinger 
equation with a local potential

'J - ^  4 /^ / i« /

The local potential V ^ /г/ is said to be equivalent to the non­
local kernel Ĉ L/r,r’/ if it can be completely specified in 
terms of eq./З/ and its solutions and if it analytically 
reproduces observable features as a function of energy.
The transformation for the nonlocal equation is described in 
ref. 2,3.
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3. Results

24Mg is known as rotational nucleus with relative large 
ground state deformations. Since the numerical results are 
intended to be applied in DWBA /p,d/ calculations we neglect 
the deformation and generate spherical OMP’s. The ground 
state density for protons and neutrons are described within an 
independent particle model. It is shown in fig. 1 where we 
compare it with the charge density extracted from electron 
scattering experiments. Nucleon charge form factors are in­
cluded, recoil effects are neglected. The shell model para-

4/meters are taken from literature ' Vq=-62.09 MeV; ro=1.33 fm;
a =0.72 fm; U, =10 MeV; r, =1.1 fm; a, =0.6 fm. о Is ’ Is ’ Is
Occupation numbers were chosen S^.=j with the exception 
Sld3/2=3,4; S2sl/2=0,6‘

The folding model uses the energy arid density dependent 
t-matrices with fully complex central and non central components. 
The effective interaction has been generated within the self- 
consistent Briickner-Bethe theory of infinite nuclear matter with 
the Hamada-Johns ton Potential 2ls input^.

24 / ,The nonlocal potentials are computed for Mg /p,p/;
95 MeV 2-̂ Na /p,p/; 45 MeV and 2^Mg /n,n/; 45 MeV. Derived 
therefrom we generated phase equivalent potentials for the 
relevant partial waves. The spin orbit potentials are local, 
Table /4-6/. The transition from local to nonlocal solutions 
requires multiplication of wave functions with the damping 
function /Perey effect/. We restrict our representation of 
this damping function to L=o, since Í > о damping functions 
differ only by 10 to 15 °/° were wave functions are practically 
negligible small. For completeness the table values are 
graphically represented in figs. /2-8/.
The angular distribution for elastic scattering of 95 MeV 

24protons on Mg is shown in fig. 9, which is predicted by the
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calculated ^-dependent microscopic local equivalent optical 
potential. Л comparison with experimental data will show larger 
deviation as we are accustomed from phenomenological fits. This 
should not discourage to adjust (he strength within 10-15 %.
In particular the spin orbit potential may by chosen pheno­
menologically since the microscopic potential is the least 
accurate. Microscopic potentials in general are designed to 
reproduce global features and not detailed fits.
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Figure captions

Fig. 1 Ground state charge and matter densities

Fig. 2 Я-dependent real central potentials of 95 MeV 
protons for Mg

Fig. 3 Я-dependent imaginary central potentials of
2495 MeV protons for Mg

Fig. 4a 95 MeV proton local spin orbit potentials for
24Mg generated with expressions developed in ref.

Fig. 4b The real part of the proton damping function
24(Perey effect) for Mg at 95 MeV 

23Fig. 5 As fig. 2 for Mg and 45 MeV neutrons
23Fig. 6 As fig. 2 for Na and 45 MeV protons
23 24Fig. 7 As fig. 3 for Na + p and Mg + n at 45 MeV

23 24Fig. 8 As fig. 4a-b for Na + p and Mg + n at 45 MeV

Fig. 9 95 MeV elastic scattering angular distribution for
24Mg predicted by potentials shown in figs. 2-4
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