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ABSTRACT

Two families of Ising models, one on the Ragomé lattice and the other on
the square lattice, are studied. The interaction is chosen to be a particular
mixture of ferro- and antiferromagnetic bonds. It is shown that the free
energy iIs analytic at every positive temperature. For the Ragomé lattice
models, the correlations in the totally symmetric equilibrium state are ana-
lytic and exponentially clustering at every temperature, including T=0.

AHHOTALMA

PaccmoTpeHbl gBa cewmeiicTBa mogenun MavHra, OAHO onpegeneHo Ha peweTke Ka-
rove, a Apyroe Ha KBagpaTu4HOWM peweTke. B3aummogeicTBume BbIOpPAHO KakK onpenesieH-
Had cMecb (eppoMarHUTHLIX U aHTUDEPPOMarHUTHLIX CBA3ei. [loka3laHO, 4YTO CBOOOAHasA
3Heprva aHanMTuU4YHa npu Bcex TemnepaTtypax. [Ana mogenu RaroMe koppenauum B Mosi-
HOCTbK CUMMETPUYHOM PaBHOBECHOM COCTOSHUA aHa/IMTUUHbI N NPUBOAAT K SKCMOHEeHLN-
a/IbHLIM K/lacTepam npu Bcex Temnepartypax, pgaxe npu T=0.

KIVONAT

Ebben a munkaban az Ising modellek két csaladjat vizsgaljuk: az egyik a
Ragomé-, a masik a négyzetracson értelmezett. A kdlcsdnhatasban ferro- és
antiferromagneses kotések vegyesen szerepelnek. Megmutatjuk, hogy a vizsgalt
model lek szabadenergiaja minden pozitiv hémérsékleten analitikus. A Ragomé
racson vett modellek esetében a teljesen szimmetrikus egyensulyi allapothoz
tartoz6 korrelaciok analitikusak és exponencialisan klaszter-képz6k minden
hémérsékleten, T=0-n is.



1. Introduction

The mathematical i1nvestigation of non-ferromagnetic
systems is much less extensive than that of ferromagnets.
Many of the appearing new problems can be traced back to
an incomplete knowledge of the ground state properties

of the system. This is the case with potentials contain-
ing competing interactions: terms which cannot be mini-

mized simultaneously. Antiferromagnetic bonds immersed

into a ferromagnetic 'see" represent a typical example.
When they occur periodically and in suitable arrange-
ments, a new quality appears: the infinity of periodic
ground states. Such models were candidates to describe
some properties of spin glasses and they were named
"frustration models™.

The aim of the present study is to discuss the
analyticity properties of the free energy and correlations
of some frustration models and to show examples when
the competition inhibits the phase transitions. The
method we apply to this end is the localization of the
zeroes of the partition function on the complex tanh @
plane. The Asano contraction (1] and [2]) and relating

theorems of Gruber et al [3] give bounds on the domain

of analyticity but these results are not well fitted to



the present problem.

In the most interesting cases of frustration, the
low temperature phase cannot be considered as a small
perturbation of some given spin configuration. This
excludes the possibility to perform a low temperature
expansion whereas high temperature (H.T.) expansion
remains a promising tool. The usual H.T. expansion for
Ising models results iIn an expression for the partition
function in terms of a set of variables {z"tanh g ]
where £ 1Is the inverse temperature, b is a finite set of
lattice sites and is the iInteraction among the spins
belonging to the sites of b. In fact, 2z~ is the mean
value of the product of these spins if is the only
interaction acting on them. The H.T. series 1is convergent
if zy is much less than 1 for all b and therefore if

is not very large. Now if B is the set of all bonds,
i.e. of those b for which J”~0, one may consider a dis-
joint cover of B with bounded subsets, B=U B1 (in con-
trast with the Asano contraction where the overlaps
among B1 are essential). It turns out that, apart from
unimportant factors, the partition function can be ex-
pressed in terms of spin correlations according to prob-
ability distributions each of which is determined by the

bonds of a single B1. Now the H.T. series thus obtained



is convergent for the small values of these correlations
which, i1n some frustration models, may be bounded by a
value well below unity for whatever large ftand hence
the H.T. expansion may converge at any positive tempera-
ture .

The mathematical basis of our statements iIs an

estimate on the values of a certain kind of polynomials,
which we present iIn Section 2. Applications follow 1in
Sections 3 and 4. Here we study two families of frustra-
tion models, one on the Ragomé and the other on the
square lattice. With the method outlined above we show
that the free energy is an analytic function of the tem-
perature for any The results are more complete
for the Ragomé lattice models: we prove that the corre-
lations iIn the totally symmetric equilibrium state

(that obtained with zero boundary condition) are analytic
and exponentially clustering at every temperature, in-

cluding 1/th=0.



2. Bounds on polynomials

We are going to consider polynomials of K complex vari-
ables, z ,...,z . Let Q= f1,2,...,k} and P(Q) denote
the set of all subsets of Q. We make use of two properties
of P(Q) -
() P@Q) 1is partially ordered with respect to the
inclusion. If GcP(Q) then inf G denotes the set of the
minimal elements of G-{01i
(r) P(Q) 1is a group w.r_.t. the symmetric difference of
its elements; if g.] and g2 are parts of Q then

9,92=19," 92M 9, g2)

is their symmetric difference.

Now let G be a subgroup of P(Q) such that it is
uniquely generated by inf G iIn the following sense:
for any g € G there is a unique set

@G, /==="W. ic inf g

such that

and

g=glv ... o gk
For any it Q let Nn(i) be the number of those elements
of inf G which contain 1 and exactly n-1 other points of

Q. For any n>0 we choose a number Nn iN (1) . Now the



following statement is true.

Lemma le

Consider the polynomial

r)= Bl M - 8

g «G leg g«G

and suppose that

£ N xT /7 (1-£)n1 < £
nyo

is satisfied by some x>0 and £<1. Then

(A- KE IR@I £ @+ £)K

it 1 £ x for all 1i40Q.
Proof

For any *tcQ let

G* = { g *G: gcec]

g((

rc = Z ZJ /RE(
i tg66G-.Gj

@



and

] = fIl,...,ilm. @

We have the fTollowing product representation of R.

.. K
R[K-1] (1+M[K-1]

#ij. K-1
R[K-2] @ I [K-2] *(1+r[K-1] *

|£I| "

A
bl
-
|
-
hd
\

The proof can be performed by showing that Ir«]if for
any 1€Q and <cgq, provided that \zai x for any j €0.
We do this by induction according to kIl , the number of

points in . For = 0 we have

if fi] 6 G

{ 0 otherwise.

Therefore, i1In the Tfirst case
Ir,gli X = N.I Xty Nn xn / (- £)n1 £ 1
n

Suppose now that Ir™ li£ 1is proved for any j and <x

with I*Ui. It is sufficient to show that Ir|*j] <£ ;



for other sets we get the result by permutation. Now
i+1
£ . / R . 6>
[il c [ -9 il
i+1 6 g «G[i+l]

where we used that g has a unique decomposition into the
disjoint union of the elements of iInf G. On the other
hand, if

9= [i+1,j2,...,jn} ¢ [i+1]

«

and
g'k *{132,...,.3k 1
then
. . +ro. .
ROl RLi1-g 1, CLi1-g'k ] @
where Igl = card g = n. Putting (7) into (6) one obtains
- [Te] -
rE; £ / ﬁ (u¢¥h_.k 8)
1+1 * 9 * inf Gu+1) k=2 9

For each rY in the denominator « has at most i1-1 points
and therefore 1is bounded by £ . Then Eqs(8) and (@ clear-

ly imply that r|*|] 1is bounded by £

Remark
From the group properties of G we used only that it is
closed w.r.t. subtraction: if g6G and g" feG, g" cg then

also g-gn €G.



In the following, we discuss a possibility to obtain
bounds on the polynomial R of Eq-(1), even if G is not
uniquely generated by iInf G.

Let {q7] ., , M be a disjoint cover of Q:
N .
Q= U Q and Q NQJ =0 if i*j.
Let G° be a subgroup of G, defined by
G° = {g€G: gNQléG for any i} (©))]

Consider the quotient group, G/G°. We show that under

certain conditions i1t may substitute G iIn Lemma 1. Let
Gl = (gtG: gCQ1}

then, plainly, G” is a subgroup of G° and also it is the
projection of G° into Q*. In general, if A is a coset of

G according to G° then
ProjiA={ghQTl :géA} (10
is a coset of PtQ'l) - the power set of Q* - according to

GN. Any A €G/G° is uniquely represented by the set of

those projections (10) which differ from the correspond-



am: Proim A < P
m I = Gm otherwise

then this set 1is

Now let
N
Q u
i=1
where
] 1 ]
Q = (PQ )/GX)-G
and let

S =[scQ : s=sA for some A

for m“11..__ 4
(11a)
(11b)
«©G/G° } (2

A=
Plainly, if stS then card(sfiQ') 11l for any i. The ele-

ments of S form a group: if s,s”™ €S then S=s; , S'=S

for some A,B tG/G° ; let now
ProjiA = a}+* and Pro”~B = b*
then

ss” » 1aibi} 1”1 - fcl) i“1l e s

defines the group operation. Here
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aio'i = fgg ’C Qi : gtai, g t bi ﬁ

is a coset of PiQl). The group S is isomorphic with G/G°.
S i1s ordered w.r.t. the inclusion and inf S is the set of
the minimal elements of S—{0] ; inf G/G° 1is that part of
G/G° which 1is isomorphic with inf S.

The cover of Q can always be chosen so that inf S
uniquely generates S, iIn the sense we used it earlier
( indeed, for instance, covers with at most three sub-
sets all have this property). This can be told as
inf G/G° uniquely generates G/G°. To G°, one can assign

a polynomial analogous to (1):

N
R°(z) =51 zg = N I . 29 a3)
g 6 G° i=1l gtgG

Now one obtains the following result.

Lemma 2.

Let Q={1,...,K) , G be the subgroup of P(Q) and a cover
@™ ., be given so that, with G° defined by

(@), iInf G/G° uniquely generates G/G°. Let, moreover

Nn (i)=card {A 1 inf G/G° : Proj”A™ G for k=1 and for

exactly n-1 other values of Kk }

as



and Nn be chosen so that

N, LN () for 1=1,...,N (15)

Suppose that () holds with these and with some x >0
and £<1. Let R and R® be the polynomials defined in

(O and (13), respectively. Then
(1-CH)N_1£ 1R(2)/R°(2)1 c (1+£)N-1 (16)
provided that

1 £ 29/ Z Z9 11 X
gb6a gcG

for any 1611 N and al™*
Proof

A
Let S be the group (2) and for any a (Q, let i3 be a

complex variable assigned to a. Consider the polynomial

ce(id= | M s$sa= 2z bs
s«S ais stSs

It Is easy to show that
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T(i) = R@) /7 R°(2) (17a)
i, 1 Ai ;
if, for any 1=1,_...,N and a t Q , one makes the substitu-
tion

+= 2+ g/ L i zg (17b)

a gea g eGx

Hence, one has to prove only that the bounds (16) are
A
valid for T (b) if dll’ x for any a€Q. We introduce

the following notations: let c tl,...,N} , then

Set= {s«S: scU Q1 }

1««C

s =Ffi< {I,...,Nj :sAQ1/ 0}

/ T, as)
s*S ;1«S

ay ti\

The Equations (18) are analogous to Egs (3), jJust as

N-1
T = n (1+t,*1 ) (19)
i=1 13
and
i1 =
= S / n <l1+tHi-s Kk
0 stinfs - j+1€s k=2 gy-s >

[i+1] (20



are analogues of Eqs (b)and (8), respectively. In (20),
is the kth point of s,
s = [i+1,j2,...,Jn J
and

sk = 1j2,...,jk1;

the cardinals of s and s are the same: Isl =51 .
Noticing that

Nn(i): card ist inf S: Isl=n and sHQ1 ¢ 0 }

one can conclude the proof by showing, iIn the same way

as iIn Lemma 1, that

-

1t~ (s)I él )

for any 1 £i 1N, al1l,...,N

So far, we considered only the subgroup G of P(Q);

now for any D€p(Q)/G, one can define

R® ()= z zg
gebD
In view of applications, it is interesting to obtain bounds
also on RD/R. To this end, let us continue the earlier
discussion. In fact, G° of Eq.(9) factorizes not only G
but also the whole P(Q). Meanwhile, it factorizes the ele-

ments of P(Q)/G distinctly. For D1 P(Q)/G, let
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D/G° = {A FP(Q) /G° : ACD ) .

Now we extend the definition of , as given in Egs (10),

(11), to any A 1 P(Q)/G° and consider the set
D
S =1scQ: s=s, for some A « D/G°%

A polynomial

TD(S ) = TD
s*S
can be assigned to SD; it is easy to show that
TD(i ) = RD(@) /7 R°(2) 2

if 1 1is given by Eq-(17b). Equation (22) is a generali-

zation of (17a): for D=G the two equations coincide.

Dividing (22) by (17a) one obtains

R°(2)/R(z) =TD($)/T(S) (23)

For D € (P(Q)/G)-G, let inf S denote the set of minimal

elements of SD. Any s €SD can be written as

s=slo s2

sl ns2= 0

sc€inf s, , ¢ 4)
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though, 1i1n general, this decomposition is not unique.
The cover of Q can always be chosen so that iInf G/G°
uniquely generates G and also, the decomposition (24) is
unique for any D e(P(Q)/G)-G and s*D. (This is true,
for example, for the trivial cover {Q\ and the cover
with two disjoint sets Jql,Q2 ) ) Assume that the cover,

we have chosen to Lemma 2, satisfies these conditions.

Then we can write

T (X)/T(*)= yA Vs T /T
sTinf S° iN]

where we applied the notations (@ and (18) (notice

that TANJ=T). The analogue of Eqg.(7)gives then

1S1 -

To(SYT($)= 2 Mn @3 .. (25)
S £inf k=1 [Nj-s™k
Let now
card {s tinf Isl =n j (26)

From Egs (1), (23), (2?5 and (26) we fTind

IRD @)/R(z)IE 21 N xN/ (@- £)n @n
n
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provided that iUx for any $ ~ given by (17b).
a a
In the following sections we apply these results to
obtain bounds on Ising partition functions and correlations.
Let Z be a lattice and o :Z i1l be a spin config-
uration. The potential of a finite subsystem of spins Iis

defined as

H (S)= - Z J. n erx)= - <Z Jb 6b (28)
0 biB xth btB

where B is a finite family of finite subsets of Z

Now H defines the probability distribution of the spins

on
A= U b
btB
and the corresponding partition function can be written
as

n1 .
ZR=£ exp(-@HR (B ))=2"" ( i cosh/id@® R

CriA btB

Here R is defined by the H.T. expansion as

R= Z n tanh/SJb (29
g*G btg

and G i1s the "High Temperature Group"™ [3]:
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(b™, .. .,bk) ¥G
if and only if b~ ¥B and b~b~.._bk= 0 (bc=(buc)-((Gnc) ).
Now R can play the role of the polynomial (@) if one i1den-
tifies the set of bounds B with the set Q and the complex
variables z~ , 1 ¥Q, with

z, = tanh ftJ b ¥B. (30)

b b’
Furthermore, i1f DfrP(Q)/G, then there is a dcA such

that
M b=d
b tg
for any g tD: the cosets can be indexed with the subsets

of the lattice. Now if

Rd: Z. |_| tanh J,

g«D b«g

then
5d/ r = <6d>8B

where <.> denotes the mean value according to the

0]
probability distribution defined by the potential (28).
The bound (27) then refers to 76'd> e The variables,

introduced in (17b), also correspond to correlations:
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let B1c B and Gi= G ﬂP(Bb . The cosets of PiI*-), accord-

ing to G, can also be indexed with the subsets of

nil- n b .
b £B

Let b C 4 1 correspond to a € P B*)/G”; then
$ . = <*b> j GD

where the mean value 1iIs taken according to the probabi-
lity distribution

~ exp(/AH _(6"))= exp(b £ J. &b) .
B b *B

In the following, we write Td' and instead of TD

and i if d,bcj are the subsets corresponding to the

d ’
cosets D and a, respectively; also we omit the tilde:

R and Ra will refer to the polynomials of of Eq-.(30) .
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3. Frustration models on the Ragomé lattice

The Ragomé lattice is a plane lattice built up from regu-
lar triangles and hexagons so that every edge is shared
by two different types of polygons. Therefore, 1if 0
only for nearest neighbour pairs (nnp), their set B can
be covered with the set of pairwise disjoint tri-
angles :
8'= ®'.p% 0%

where b are nnp forming a triangle. The elements of the
H.T.Group can be visualised as graphs of even order, and
the members of iInf G are the simple (hon-crossing) poly-
gons. Now inf G does not generate G uniquely because
crossing graphs have more than one decomposition. It is
easy to see, however, that {BiJ may play the role of the
cover {gM of Lemma 2: if G° is the subgroup associated
with the cover tB =0™'1 via Eg. (9) then G/G° 1is uniquely
generated by inf G/G°. (This is true because every lattice
site belongs to only two triangles and for any A fcG/G°,

has at most one element common with P(B")/G*_.)Let us

consider now and the cosets of P(B”) according to G*.

The corresponding quotient group 1is

P(Bb /Gi= {gl1, al,a2,a3)

where
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Gi= {0, {b1,b2,b3))
and

ak- (bk,lbe,bm )l
with (k,Cm)=(1,2,3) and its cyclic permutations. The co-
set a): can be indexed with the nnp bK; the variable, as-

signed to a® through Eq.(17b), 1is

. =(z, +zz Y A+z ,z z ) G2
b b b* b b bv b
where 2z~ are given by Eq.(30). According to (31), for
real non-negative values of @ ,3 , is a pair correlation
function belonging to the nnp b¥ . l?t is useful to intro-

duce the variable w™ with the equation

wN = tanhlJ™ @ 33)

Then (32) becomes

=sgn Jh (w +p@w w )Y@+p(idw ,w w )

b bK b< b bK bl bm
where
p(i)y = Tl sgn J, (34)
b6B1

Let us notice that (34) simplifies to
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= (sgn Jf) wi/(L1-p(i)wi+w®) (35)

if wb:w.i for all bi B~A. This can be reached by choosing
IJ,bI to be the same for all nnp in a given triangle,

Let now

B = NJ Bi
i=1

and consider the function

(36a)
N =0
with

AN (C@)=d/N) log[RC P )/R® (G)]

=) T 1og @+tth (4) )
i=1 1

(36b)

Here R is defined by (29), R° corresponds to (13):

N
ReC P)= N (@+p(1) 1
i=1

1_w N ) €D

and tfu,+1(/’/o) is determined by R and R° through Eqs(17)-

(20) and (30) . Apart from a term analytic 1in for
bt [0,0e), 4x(ft) is the specific free energy of the
system; we know the existence of the limit (36a) for real
/b if the potential 1is periodic. Notice that S ( ) depends
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on (G only through ~ . We have the fTollowing result.
Theorem 1
Consider a periodic nnp potential on the Kagomé lattice
which satisfies the condition that for any triangle B*

b = Ub, for b,b"f Bt . (382)

Then

(@ S ( ) is an analytic function inside the domain

2 ={"€(C :]Jib(/™)I1<0.34 for all nnp b)

(ii) the limit

lim o*d>B <ed > (39)

exists and is an analytic function of @ inside 2 , for

any finite subset d of the lattice; moreover,

K6 3% «**>-<«% < / 2>|< 106 e"0-09 <Md1l«d2> (40)

holds in S o @ distance between d*» and dV) -



-23-

Remarks
1. The theorem refers to a family of potentials. Apart
from the freedom in choosing 13 to be different in dif-
ferent triangles one can choose the signs p(i) and
q(k)= sgn T Jb
b « kth hexagon
independently. This is a general property of two dimen-

sional lattices.

2. Let us consider the case when

p@G) = -1 for all B1 . (38b)

From (35) and (38a,b) it follows that I1~bl £ 1/3 for any
real G . As a consequence, S (@) and the correlations
in the totally symmetric equilibrium state are analytic
at any real and they can be analytically continued to
1/ = 0, even preserving the exponential clustering.
It is easy to check that to any potential satisfying
(38a,b) there exist infinitely many periodic ground
states. The simplest example is the antiferromagnet,
Jb= -1 for all nnp; this corresponds to q(k)=1.
The plot of the domain

|w/(1+w+wN)] < 0.34,

relevant in the case (38b), 1i1s shown on Fig.1.
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Proof

(@) A Dbrief inspection may convince us that for Nn of
Eq.(15) the following values can be chosen:

N =0 Ffor n odd and n= 2,4,8

n
Ne= 3 niqr o N12= 6
N2n=: 2n for n >7

Putting these values and x = 0.34, £= 0.1 into (@

one finds that the inequality is satisfied. The state-
ment is then a consequence of the uniform boundedness

of {pN(HA)] in $ and Vitali®s convergence theorem
(or, the convergence of ™ 1iIn <S can be proved directly,

using (1) and (36b) ).

(i1) The existence and analyticity of the correlations
NCFd} fTollow from the uniform boundedness of B

in the domain & and from the H.T. existence of the

limit (39) . The former is a consequence of (27) and the

estimate

Nd i 2n (41)

which is valid for any d e2 . (A direct proof of the
convergence in ® , using Eq.(25), 1is also possible.)
For |dI odd, the correlations vanish identically.

IT |d* and 1d21 are odd numbers then
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1<6dlUd2>] T 4.1 e-0.272(d1(d2)

follows iImmediately from (27) and (41) and the fact that

for n <q (d,d2).
For |&4,] and 121 even, the weaker bound ((40) can be

obtained. The proof is lengthy and we leave it to an

Appendix.-
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4. Frustration models on the square lattice

Again, we confine ourselves to nnp potentials. Consider
the squares of ‘12 forming an infinite chessboard and
let B* be the set of the four nnp bordering the 1 th
black square:

Bl = fbl,...,b4} .
Now UB1 covers the whole set of nnp. Due to the cross-
ing graphs, inf G does not generate G uniquely while
G/G° (where G° 1is defined by (9)) is uniquely generated
by inf G/G°. Using the variables introduced in (33) and
(3) we find

4
V =sgnJd. W +p(i) H Y/ (+p@G) N wmw )

b b b Jj=2 b3 b€BX D
and

V, = (sgn J .J D w +p(idw w )/(I+p(i) N w o)
C bl bA  bX br bJ b4 b€B1l b

where c is a diagonal pair of sites iIn the i th black
square. If wio=wi for all b tBi and p(i)=-1 then

vanishes and

Npb= (sgn Jb)wi/Z(1+wM)= (sgn Jb) . (42

Let N (ft) be defined for the present group G and cover
B, by Egs(36) and (37). We obtain the following theorem

for *(RB).
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Theorem 2

Consider a periodic nnp potential on the square lattice
which satisfies the conditions (38a,b).
Then (@) is an analytic function inside the domain

S ={(**<€ * libl< 1/2 for all b ] .

Remarks
1. The theorem refers to a family of potentials. 1 |
may vary Tfrom square to square and the signs

qk) = sgn 1 Jb
b €k th white square

can be chosen independently. For periodic potentials
satisfying (38) there are infinitely many periodic ground
states. The simplest examples can be obtained by fixing
1I~M= 1 and choosing either q(k)=-1 or q(k)= 1. These
give the so called '"odd" and '"chessboard"™ models, respec-
tively, whose free energies were calculated exactly and

found to be analytic for any positive temperature ([4].15])-

2. The analyticity of T (H) follows for any real fi-
nite @ . The domain |w/(|+w2)l4.1/2 is shown on Fig. 2.

We cannot prove the analyticity and clustering of the cor-
relations for all @€][0,00), the reason of which becomes
obvious from the proof of the theorem. However, these
properties could be shown, with the method applied for

the Ragomé lattice, iIn a relatively large H.T. domain.
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Proof
Asymptotically, Nn= 2n is an upper bound for N~(1) and
one would find difficult to improve it. On the other hand,
as (42) shows, I"1 = 1/2 if V/(i =0. One should choose
x= 1/2 in Eq-(2) in order to obtain analyticity for all
N€ o, ). However, with these and x the inequality
(@ cannot be satisfied for any £ al.
We need to use some special properties of the lat-

tice and the potential. Let us rewrite the formula (18)
for t~ , 14« , with a change of notations as indicated

at the end of Section 2.

1:bZGBi Fo £ . S0 :I:?é:B % 1A

sef8

SA = {SCcU BD: IsOB~I £1 and M b*= b}
J*ot b*ts
43)

Now t~ depends on @G through the set of variables

\ Nk~ *sgn Jb ™ fgy k=1 2 " each belonging to a
square Bk.
Below we show that, with a suitable choice for the

numbering of the set {Bl1} , one can obtain the bound

1t*+J (F)I T 1/2
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for all 1, 1if Ifkl é 1/2 for all k.

©O) if o1 fk ™ */2 f°r k then it is possible
to define a potential and some (i 0 so that they deter-
mine just these fk through Egs (33) and (42). As a con-

sequence, /TA is a correlation and

5b <Bb > B
b €B K

where

B«*™ [ B3 e
J €=

Now if n(i, < 1is the number of those vertices which are
shared between BZI'and the squares of Bw then
>

if n(i, «x) i3
(f>1~ [ . _
/2 if n(i, o) <2 44

because _ jt O for at most two or one béB1l, respectively.
1)) Let
t.h t»- s; n e n n/z n !1
S<S((”|i)b,s =<3 b«s <SS
i«s

where e” is defined for each nnp so that



-30-

-1 1if b 1s the lower nnp of some B*

eb=< 1 otherwise

Clearly, tM 1is a function of the form of (18) or (43):

it corresponds to a particular choice for the signs of the

interactions. One can show by elementary methods that

for all s€inf S. Now let Ofi ¥ ¢é 1/2 for all k, then

tJ-(S) *0 “45)
for all <« and 14a . Indeed,

byvyt-s-k* >

Het> _SZEinI §n A Jﬂes
(46)

i*s

Now

s =4{i1,J2,...,jn }

is a set of indices of squares which form a ring by join-

ing via vertices. The numbering can be chosen so that

neighbouring indices belong to joining squares. Therefore,

n(gk.*-s"k) = ngJk,oC-fj2._... jkt) <3

which i@mplies

I « 1 (47)
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by Eq.(44). Equations (46) and (47) then prove (45).

ain) Let 1(1 denote the set k=1 2

Suppose that Jf 1 1 1/72 for all k. Then

It*( F) é - t3-C 11 ) (48)

This can be shown by induction. For, t»~ = 0 if I&143;
if e =11,2,3) and Bl,...,B4 surround a white square
then

4

In the n th step,

Kn/n-="1ll-it" ({1i1n

Lo N
ul rz%*nﬁs & 3 k2

o s | IJ’K )
* 2 n ifil/n u+t: <'fi n
s £inf s-u(l 3 k=2
its
- - tj-C in )

Here we applied the induction together with (47).

av) Consider now the set (B1 ,82 ,---3 which covers

all nnp of the lattice. Let the numbering be chosen so

that B* joins Bi+” through a vertex and the whole set
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forms an infinite spiral of squares. Then

nCi+l,[i])i12

and (44) implies that

“t Yl (W )- 1/2

This, together with (48) proves that

It 1(f) * 12

for all 1. The remaining is an application of Vitali*

theorem or a direct proof of the convergence of +N

in JOSq , using (36) and (49).

(49
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Appendix. Exponential clustering

Let d~,d2 cA be disjoint sets with even number of points.

Now we have to estimate

d d di d9
{<5 16G 2>, - <6 1>B <6 2>,
di° d2 di _d2_ _2
(T T-T 1T/ 71 (A-D

This can be done by dividing (A.l1) into terms and

estimating them distinctly.

S T[N]-s m TI+T2

where

Vv

N N _q
s~ £ inf s s2 ginf 592 152 Taur=ires

2in22=0

and

= >
2 y' d vd
SE£inf S

TINI -S

the prime indicating that no part of s is an element of
dl
inf S _ If s occurs iIn the summation for T2 then Isli®™ ,

the distance of d» and d2 , and
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IT./TJ1 2 2x/(1-£))H)nN= (-y)"1 y? (A.2)
1 n

Here we used the bound (41) and

liSI*x"s*

a, Iz E
y= 2x/(1- £) (A.3)
On the other hand,
le sz = Ux + U2
where
o 5 5
1= £ dl Z d 5. =1 1evn)-s2
sN € inf S s2€ Inf S
i2¢ 0
and
V d Z d2 iSI s 2 T[N]—s M-ij

€ Inf S s2 £inf S

-1n-2 *0

Now 1f (s”™,S2) occurs in the summation for U2 then
13~,1+1321 -We can use the simple estimate

card {5",82) € inf s9' = inf s9%:isn +5821= N} £n

(A-%
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to obtain the bound

IU/T2]< JL nynC @y)2~n (A.5)
n

Let us consider TTN-UN

Tru= N a, & i <T[NIT [N)-S
sx€iInf S s2€ Inf S

slI0 s2= 0

"M -Si TM-s25= ,51  A(Ts2
(A-6)

where T = T> Writing up the difference in the paren-
theses explicitly, one can see that many terms cancel out.

Omitting a lengthy iIntermediate speculation, we present

the surviving terms:
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nnu ( Q): ( EIV$S) TENJ-Sj-Sj-v TCN)-Sj-s2

,E [ [ o
& 'VZ))‘EV12 p=f ¢ 8§ Vi POINI -5 -5 vy NS oS5V,

(vlf\}g.,v?:.)€v123 111 By PSTHY-S1 S5 VY Tl 3175V,

(A.7)
With the definition

[S] ={ fs], ---,sE\ cinf S: sJns!=0 for ¥ ~ j) ,
the sets V , VA2 123 are 9iven as follows:

Vag={ [sl].- --sE]ts] : st A (s~*s~fl for 1=1,___,kK

and st (Is.» 0 , st \s:~ O for some 1£j£k ]

VI={isi" * *"skn* tS[N]-s -1M~1~ 0 for i=1"***"kJ

V2=TI8I" " **S]H6 ~S[N]-s~: —i~-20 0 for i=1"*~ k)

V12= T (vr v2)TVI.V2=V jdV j M)

where

V103# { <vi*v2 v3, tvl "v2* tsm - Si —_52j = (V1,v2).(vl.v2)-vi12

and £ ( unv2) ~ 0 for any s « and

and s /i N0 ,sNv2 ji O for some se |
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Dividing (A.7) by T and applying (A.3) we fTind

-2 is,i -2 is2i N
= ’ vi
14 Sl V2|1 (£) (y/2)
VEV V12wV!123
(A.B
L o 123
where ivi= 51 isi . Let M , M and M be the num-
s *y n n n
bers of elements with length n 1in VO , V12 and 123 ,
respectively. It iIs easy to show that
y = IS-1 + Is_I+n
M , M12 é 2 1 2
n n

M123 Ny 2 + S21'Mm ™min [m/2 , (n-m) /76} -i-(n-m)

m
G 1+1i1s I+ 9n/8
NT -2
and therefore
io m is,i +1s I+ 9n/8
Mn: M;+ Mr|12+ M%ZS a 9-2 1 2 (A.9)

Moreover, i1f L(s”,s2) denotes the distance of the supports

of s and s2 , then

an 0 for n<2L(s.Isz_) (A.10)

because ever)_/L V€ Vowvlzov123 connects 51 and s2 with at

least two chains of triangles. From (A.8)-(A.10) one finds

11 (S1,s2)/T2] é 9(1-21/8y) 1@/ (1- £ )2§ SV + SZC1/8y)2L(S:L.s2)

(A.11)
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Another trivial bound comes from (19) and (21):

H-jHI2I
I (s1,s2)7 T21< 2(1- t) (A.12)
Now we are able to estimate (TT*-UMN)/T . Let \ be some
positive number; we get
(Tj-un/T = H * S $ A(sl,s2)/T/
(s1,s2):
is™ + 1s21
S1 S9 5
| b A(sl,s2)/T?
(s1,s2):
1S11+ Is21
- A<+ A>

Using (A.3),(A.4) and (A.11) together with
NEI1s2)>N - «s™ - 1891
we find that
IA<I da(x, £) b(x, £ ;9)

a(x,£)= 10.7(1- £-29/8x) (1- £)-1(1-21/4x)_1x

bX,£:;1)= 2@ 1)/4 x2"> (1-£)"2 (A.13)

To obtain a bound for A > , we apply (A.3),(A.4) and (A.12).

These give
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- -2
IA>1T 2 (1-y) y

Now we put
x= 0.34
£= 0.1

which were found to satisfy (2), and choose \ so that

b(x,£ ;1) = @x/(- 1))y .
Sustituting these values into Eqs (A.2) ,(A.5), (A.13)

and (A.14) we obtain

C \T2/TI +1U2/T2]+LA< I +] A> I

L g0« o-0-091« _ Jp6_ -0.09¢

which 1is true for all B and therefore gives Eq.(40).

(A.14)
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Fige 1

The domain of analyticity (outside the shaded region)
on the complex tanh 1 I3 plane, for the Kagomé lattice
models



Fig. 2

The domain of analyticity (outside the shaded region)
on the complex tanh 1J, I8 plane, for the square lattice
models
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