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ABSTRACT

Two families of Ising models, one on the Ragomé lattice and the other on 
the square lattice, are studied. The interaction is chosen to be a particular 
mixture of ferro- and antiferromagnetic bonds. It is shown that the free 
energy is analytic at every positive temperature. For the Ragomé lattice 
models, the correlations in the totally symmetric equilibrium state are ana­
lytic and exponentially clustering at every temperature, including T=0.

АННОТАЦИЯ

Рассмотрены два семейства модели Иэинга, одно определено на решетке Ка- 
гоме, а другое на квадратичной решетке. Взаимодействие выбрано как определен­
ная смесь ферромагнитных и антиферромагнитных связей. Показано, что свободная 
энергия аналитична при всех температурах. Для модели RaroMe корреляции в пол­
ностью симметричном равновесном состоянии аналитичны и приводят к экспоненци­
альным кластерам при всех температурах, даже при Т=0.

KIVONAT

Ebben a munkában az Ising modellek két családját vizsgáljuk: az egyik a 
Ragomé-, a másik a négyzetrácson értelmezett. A kölcsönhatásban ferro- és 
antiferromágneses kötések vegyesen szerepelnek. Megmutatjuk, hogy a vizsgált 
modellek szabadenergiája minden pozitív hőmérsékleten analitikus. A Ragomé 
rácson vett modellek esetében a teljesen szimmetrikus egyensúlyi állapothoz 
tartozó korrelációk analitikusak és exponenciálisan klaszter-képzők minden 
hőmérsékleten, T=0-n is.



1 . Introduction

The mathematical investigation of non-ferromagnetic 

systems is much less extensive than that of ferromagnets. 

Many of the appearing new problems can be traced back to 

an incomplete knowledge of the ground state properties 

of the system. This is the case with potentials contain­

ing competing interactions: terms which cannot be mini­

mized simultaneously. Antiferromagnetic bonds immersed 

into a ferromagnetic "see" represent a typical example. 

When they occur periodically and in suitable arrange­

ments, a new quality appears: the infinity of periodic 

ground states. Such models were candidates to describe 

some properties of spin glasses and they were named 

"frustration models".

The aim of the present study is to discuss the 

analyticity properties of the free energy and correlations 

of some frustration models and to show examples when 

the competition inhibits the phase transitions. The 

method we apply to this end is the localization of the 

zeroes of the partition function on the complex tanh (1 

plane. The Asano contraction ([1] and [2]) and relating 

theorems of Gruber et al [3] give bounds on the domain 

of analyticity but these results are not well fitted to
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the present problem.

In the most interesting cases of frustration, the

low temperature phase cannot be considered as a small

perturbation of some given spin configuration. This

excludes the possibility to perform a low temperature

expansion whereas high temperature (H.T.) expansion

remains a promising tool. The usual H.T. expansion for

Ising models results in an expression for the partition

function in terms of a set of variables { z ^ t a n h  ß j
where £ is the inverse temperature, b is a finite set of

lattice sites and is the interaction among the spins

belonging to the sites of b. In fact, z^ is the mean

value of the product of these spins if is the only

interaction acting on them. The H.T. series is convergent

if z, is much less than 1 for all b and therefore if b
is not very large. Now if В is the set of all bonds, 

i.e. of those b for which J ^ O ,  one may consider a dis­

joint cover of В with bounded subsets, B=U B1 (in con­

trast with the Asano contraction where the overlaps 

among B1 are essential). It turns out that, apart from 

unimportant factors, the partition function can be ex­

pressed in terms of spin correlations according to prob­

ability distributions each of which is determined by the 

bonds of a single B 1. Now the H.T. series thus obtained
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is convergent for the small values of these correlations 

which, in some frustration models, may be bounded by a 

value well below unity for whatever large ft and hence 

the H.T. expansion may converge at any positive tempera­

ture .

The mathematical basis of our statements is an 
estimate on the values of a certain kind of polynomials,

which we present in Section 2. Applications follow in 

Sections 3 and 4. Here we study two families of frustra­

tion models, one on the Ragomé and the other on the 

square lattice. With the method outlined above we show 

that the free energy is an analytic function of the tem­

perature for any The results are more complete

for the Ragomé lattice models: we prove that the corre­

lations in the totally symmetric equilibrium state 

(that obtained with zero boundary condition) are analytic 

and exponentially clustering at every temperature, in­

cluding 1 / fh =0 .
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2. Bounds on polynomials

We are going to consider polynomials of К complex vari­

ables, z , ...,z . Let Q= f 1,2,...,k } and P(Q) denote 

the set of all subsets of Q. We make use of two properties 

of P(Q) .

(i) P(Q) is partially ordered with respect to the 

inclusion. If GcP(Q) then inf G denotes the set of the 

minimal elements of G—{0 i .

(ii) P(Q) is a group w.r.t. the symmetric difference of 

its elements; if g.] and g2 are parts of Q then

9,92=19," 92M 9 ,  g2)

is their symmetric difference.

Now let G be a subgroup of P(Q) such that it is 

uniquely generated by inf G in the following sense: 

for any g € G there is a unique set

(g-, / • • • 'Чу. i c inf g

such that

g± л gj= 0 if j

and

g=g1 v ... о gk .
For any it Q let N (i) be the number of those elementsn
of inf G which contain i and exactly n-1 other points of 

Q. For any n > 0 we choose a number Nn iN (i) . Now the
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following statement is true.

Lemma 1♦

Consider the polynomial

r (z )= 51 П z± ~ 51 zg И)
g « G l e g  g « G

and suppose that

£  N хП / ( 1 - £ )n_1 < £ (2)
n У 0

is satisfied by some x > 0  and £<1. Then

(1- t)K £ I R (z)l £ (1+ £ )K

if I £ x for all i 4 Q.

Proof

For any *tcQ let

G* = { g * G: gcec]

R- = Z zgg «
irc = Z zg / R e( (3)

itg6G-.(ij
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and

[i] = fl,...,i 1 ■ . (4)

We have the following product representation of R.

R [K-1]
,, к
(1+Г[K-1]

R [K-2]
#ij. K-1 
(1 Г [K-2] * (1+r[K-1] *

Д  " « í i - i ]  > (5)

The proof can be performed by showing that lr«|i£ for 

any i € Q and <* c. q , provided that \z a í  x for any j € Q. 

We do this by induction according to k l  , the number of 

points in . For = 0 we have

{ 0

if fi] 6 G

otherwise.

Therefore, in the first case

Irjli x = N. x t У N xn / (1- £ )n_1 £ i V I nn

Suppose now that Ir^ I i£ is proved for any j and <x 

with l*Ui. It is sufficient to show that lr|*j| <£ ;
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for other sets we get the result by permutation. Now

i + 1
[i]

£
i+1 6 g « G [i+1]

[i] -g / R [i] (6)

where we used that g has a unique decomposition into the 

disjoint union of the elements of inf G. On the other 

hand, if

g= [ i + 1,j2,...,jn } c [i + 1 ]
«

and

then

g'k * { j2 ,...,jk I

R [i] R [i]-g
»giПk = 2 (1+rjk[i]-g'k ] (7)

where Igl = card g = n. Putting (7) into (6) one obtains

ri+1[i]
£

1+1 * 9 * inf G ц+1)
/

igi
Пk = 2 (1+rjk[i]-g'k (8)

For each r̂ [ in the denominator « has at most i-1 points 

and therefore is bounded by £ . Then Eqs(8) and (2) clear­

ly imply that r|*| is bounded by £

Remark

From the group properties of G we used only that it is 

closed w.r.t. subtraction: if g 6 G and g^ feG, g^ c g then 

also g-g^ € G.
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In the following, we discuss a possibility to obtain 

bounds on the polynomial R of Eq.(1), even if G is not 

uniquely generated by inf G.

Let { q ^] , , M be a disjoint cover of Q:

N .
Q = U Q and Q П QJ = 0 if i*j. 

i = 1

Let G° be a subgroup of G, defined by

G° = { g € G: g П Q1 é G for any i } (9)

Consider the quotient group, G/G°. We show that under 

certain conditions it may substitute G in Lemma 1. Let

G1 = ( g t G :  g C Q 1 }

then, plainly, G^ is a subgroup of G° and also it is the 

projection of G° into Q^. In general, if A is a coset of 

G according to G° then

Pro j iA = { g h Q Í : g é A }  (10)

is a coset of PtQ"1") - the power set of Q* - according to 

G^. Any A € G/G° is uniquely represented by the set of 

those projections (10) which differ from the correspond-
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ing G : if

m . , í * for m ‘l1.... 4a = Proi A <
m l = Gm otherwise (11a)

then this set is

Now let

Q
N 
U 
i = 1

(11b)

where
Í 1 Í Q = (P(Q )/GX)-G

and let

S = [ s c Q  : s = sA for some A «• G/G° } (12)

 ̂iPlainly, if s t S then card(sfiQ ) i 1 for any i. The ele­

ments of S form a group: if s,s' €S then s = s , s'=sЛ о
for some A,В t G/G° ; let now

ProjiA = a1- and Pro^B = b*

then

ss’ » iaibi } i” 1 - fc1) i“ 1 e s

defines the group operation. Here
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i.i г , i i . .i 1a b  = {gg c Q : g t a  , g't b J

is a coset of PiQ1). The group S is isomorphic with G/G°.

S is ordered w.r.t. the inclusion and inf S is the set of 

the minimal elements of S— {0] ; inf G/G° is that part of

G/G° which is isomorphic with inf S.

The cover of Q can always be chosen so that inf S 

uniquely generates S, in the sense we used it earlier 

( indeed, for instance, covers with at most three sub­

sets all have this property). This can be told as 

inf G/G° uniquely generates G/G°. To G°, one can assign 

a polynomial analogous to (1):

N
R°(z) = 5 1  zg = П I  . zg (13)

g 6 G° i = 1 g t G

Now one obtains the following result.

Lemma 2.

Let Q={1,...,K) , G be the subgroup of P(Q) and a cover 
(q )̂ . , be given so that, with G° defined by

(9), inf G/G° uniquely generates G/G°. Let, moreover

Nn (i)=card {A i inf G/G° : Proj^A^ G^ for k = i and for 

exactly n-1 other values of к }
(14)



and N be chosen so that n

N 1 N (i) for 1=1,...,N (15)n n

Suppose that (2) holds with these and with some x > 0 

and £ < 1 . Let R and R° be the polynomials defined in 

(1) and (13), respectively. Then

(1-C)N_1£ I R(z)/R°(z)l c (1+£)N-1 (16)

provided that

I £  Z9 / Z Z9 I Í X 
g 6 a g c G

for any 1 6 ií N and a1 * .

Proof
/4Let S be the group (12) and for any a (Q, let i be a3.

complex variable assigned to a. Consider the polynomial

t ( i )= I П $ a = Z  b s
s « S a i s s t S

It is easy to show that
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T ( i ) = R (z) / R°(z) (17a)

1 Aiif, for any 1=1,...,N and a t Q , one makes the substitu­

tion

± = 21 ± zg / L. i zg (17b)
a g e a g e Gx

Hence, one has to prove only that the bounds (16) are
Avalid for T ( b) if lí x for any a € Q. We introducecl

the following notations: let с t 1 ,...,N } , then

S et = { s « S :  s c U  Q1 }
i««c

s = fi< {l,...,Nj : s A Q 1 / 0 } 

s «

/ T, (18)
s * S . ... ;i«sос У ti\

The Equations (18) are analogous to Eqs (3), just as

N-1
T = П (1+t,*1 ) 

i = 1 1 J
(19)

and

i+1
[i] z

s t inf S

ISI

[i + 1]
S / n <1+tH i - s .k ); i + 1 € s k=2 UJ s K

(20)



are analogues of Eqs (5)and (8), respectively. In (20), 

is the kth point of s,

s = [i+1,j2,...,jn J

and

s'k = Í j2 ,...,jk 1 ;

the cardinals of s and s are the same: Is I = is; I .

Noticing that

N (i) = card i s t  inf S: Isl = n and s H Q 1 Ф 0 } n 1

one can conclude the proof by showing, in the same way 

as in Lemma 1, that

I t^ ( S ) I é Í (21 )

for any 1 £ i í N, <■ [ 1 ,. . . ,N

So far, we considered only the subgroup G of P(Q); 

now for any D€p(Q)/G, one can define

R° (z ) = Z  zg 
g e D

In view of applications, it is interesting to obtain bounds 

also on RD/R. To this end, let us continue the earlier 

discussion. In fact, G° of Eq.(9) factorizes not only G 

but also the whole P(Q). Meanwhile, it factorizes the ele­

ments of P(Q)/G distinctly. For D í P(Q)/G, let
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D/G° = { A f P(Q) /G° : A C D  ) .

Now we extend the definition of , as given in Eqs (10), 

(11), to any A í P(Q)/G° and consider the set

D , 1S = I s c Q: s = s for some A « D/G° )A

A polynomial

TD ( S ) • T .D
s * S

can be assigned to SD ; it is easy to show that

TD ( i ) = RD (z) / R°(z) (22)

if i is given by Eq.(17b). Equation (22) is a generali­

zation of (17a): for D=G the two equations coincide. 

Dividing (22) by (17a) one obtains

R°(z)/R(z) = T D ($)/T(S) (23)

For D € (P(Q)/G)-G, let inf S denote the set of minimal 

elements of SD . Any s € SD can be written as

s = s1 о s 2

s! ns2= 0

S^ € inf S f s2 4 S (24)
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though, in general, this decomposition is not unique.

The cover of Q can always be chosen so that inf G/G°

uniquely generates G and also, the decomposition (24) is

unique for any D e(P(Q)/G)-G and s*D. (This is true,

for example, for the trivial cover {Q\ and the cover
1 2with two disjoint sets Jq ,Q ) .) Assume that the cover, 

we have chosen to Lemma 2, satisfies these conditions. 

Then we can write

T° ( X ) /Т ( * ) = Z  Vs T /т
sTinf S° iN]

where we applied the notations (4) and (18) (notice 

that T^N j=T). The analogue of Eq.(7)gives then

T°( S ) /T( $ ) = Z
S fc inf

ISIП
k = 1

(1+tjk[Nj-s'k * (25)

Let now

n card {s t inf Isl =n j (26)

From Eqs (21), (23), (25) and (26) we find

I RD (z )/R(z )|£ 21 №  хП/ (1 - £. ) nnn
(27)
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provided that i U x  for any $  ̂ given by (17b).
a a

In the following sections we apply these results to 

obtain bounds on Ising partition functions and correlations. 

Let Z  be a lattice and or : Z i 1 be a spin config­

uration. The potential of a finite subsystem of spins is 

defined as

H (S)= - Z  J. П 6r(x)= - Z  Jb 6-Ь (28)
0 b i B  x t b  b t B

where В is a finite family of finite subsets of Z

Now H defines the probability distribution of the spins

on

A = U  b
b t B

and the corresponding partition function can be written 

as
1Д 1 „Zß= £  exp (-(i Hß ( в ) ) = 2 ( П cosh/iJfa) R

criA b t B

Here R is defined by the H.T. expansion as

R= Z  П  tanh/SJb (29)
g * G b t g

and G is the "High Temperature Group" [3]:
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(b^,...,bk ) fr G

if and only if b^ fr В and b^b^...bk= 0 (bc=(b uc)- (b nc) ). 

Now R can play the role of the polynomial (1) if one iden­

tifies the set of bounds В with the set Q and the complex 

variables z^ , i fr Q, with

z = tanh ft J, , b fr B. (30)b b

Furthermore, if DfrP(Q)/G, then there is a d c A  such 

that

П b = d
b t g

for any g t D: the cosets can be indexed with the subsets 

of the lattice. Now if

R d = 21 П tanh J,
g « D b « g

then

5 d / r  = < 6 d > B

where <.> denotes the mean value according to theО
probability distribution defined by the potential (28).

The bound (27) then refers to 6̂"d > _ . The variables,В
introduced in (17b), also correspond to correlations:
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let В1 с В and G i= G Í1 Р(вЬ . The cosets of Piß"*-), accord­

ing to G^, can also be indexed with the subsets of

л1 - и ь .
b £ B

Let b С Д 1 correspond to a € P (B"*-)/G^; then

$ . = < * b > j (31)
a в1

where the mean value is taken according to the probabi­

lity distribution

~ exp (- /* H .(6'))= exp ( fb £  J. & b) .
B b * В

d. DIn the following, we write T and instead of T 

and i , if d , b c j  are the subsets corresponding to thecl
cosets D and a, respectively; also we omit the tilde:

R and Ra will refer to the polynomials of of Eq.(30) .
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3. Frustration models on the Ragomé lattice

The Ragomé lattice is a plane lattice built up from regu­

lar triangles and hexagons so that every edge is shared 

by two different types of polygons. Therefore, if 0

only for nearest neighbour pairs (nnp), their set В can 

be covered with the set of pairwise disjoint tri­

angles :
_i .. 1 .2 , 3,В = (b ,b ,b )

where b are nnp forming a triangle. The elements of the 

H.T.Group can be visualised as graphs of even order, and 

the members of inf G are the simple (non-crossing) poly­

gons. Now inf G does not generate G uniquely because 

crossing graphs have more than one decomposition. It is 

easy to see, however, that {BiJ may play the role of the 

cover {q M  of Lemma 2: if G° is the subgroup associated 

with the cover tВ =0̂ " 1 via Eq. (9) then G/G° is uniquely 

generated by inf G/G°. (This is true because every lattice 

site belongs to only two triangles and for any A fcG/G°, 

has at most one element common with P(B^)/G*.)Let us 

consider now and the cosets of P(B^) according to G*. 

The corresponding quotient group is

Р(вЪ /Gi= {g 1, a 1 ,a2,a3 )

where
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Gi= {0 , {b1,b2,b3 ) )

and

ak- (bk,lbe,bm )l
with (к,-C,m) = (1,2,3) and its cyclic permutations. The со-

)c кset a can be indexed with the nnp b ; the variable, as-
кsigned to a through Eq.(17b), is

. =(z, + z z  )/ (1+z , z z )
b b b' b b bv b

(32)

where z^ are given by Eq.(30). According to (31), for

real non-negative values of (i , 3 , is a pair correlation
к bfunction belonging to the nnp b . It is useful to intro­

duce the variable w^ with the equation

w^ = tanhlJ^I (b (33)

Then (32) becomes

=sgn Jh (w + p (i)w w )/(1+p(i)w , w w ) 
b bK b< b bK bl bm

where

p(i) = П sgn J, (34)
b 6 B1

Let us notice that (34) simplifies to
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= (sgn Jfa) wi/(1-p(i)wi+w^) (35)

if w =w. for all b í  B^. This can be reached by choosing b i
IJ, I to be the same for all nnp in a given triangle, b

Let now
N iв = U в1

i = 1

and consider the function

* ( P ) = lim * ( (i ) (36a)
N -* «о

with

^ N ( (i ) = d/N) log[R( P ) /R° ( (i ) ]

N_1 i+ 1= (1/N) X T  log (1 + t f. , ( /» ) ) (36b)
i=1 1 J

Here R is defined by (29), R° corresponds to (13):

N
R°( P)= П (1+p(i) П  . w ( /S) ) (37)

i = 1 b i B 1

i + 1and t щ  ( /% ) is determined by R and R° through Eqs(17)- 

(20) and (30) . Apart from a term analytic in for 

(b t [0,oe ) , 4х ( ft ) is the specific free energy of the 

system; we know the existence of the limit (36a) for real 

/Ъ if the potential is periodic. Notice that S' ( ) depends
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on (b only through ^ . We have the following result.

Theorem 1

Consider a periodic nnp potential on the Kagomé lattice 

which satisfies the condition that for any triangle В*

lJb! = U b ,l for b,b'í B* 1 . (38a)

Then

(i) S' ( ) is an analytic function inside the domain

2) ={^€(C :|ib (/^)l<0.34 for all nnp b )

(ii) the limit

lim 
N -*

o * d > В < e d > (39)

exists and is an analytic function of (i inside 2) , for

any finite subset d of the lattice; moreover,

K ő 3  * *’ « * * > - < « %  < / 2 >|< 106 e'0 -09 <Md 1«d2> (40)

holds in S ( ^ (d̂  distance between d^ and d^) •
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Remarks

1. The theorem refers to a family of potentials. Apart 

from the freedom in choosing IJ^I to be different in dif­

ferent triangles one can choose the signs p(i) and

q(k)= sgn П  Jb
b « kth hexagon

independently. This is a general property of two dimen­

sional lattices.

2. Let us consider the case when

p (i) = -1 for all B1 . (38b)

From (35) and (38a,b) it follows that l^b l £ 1/3 for any 

real (5 . As a consequence, S' ( (b ) and the correlations

in the totally symmetric equilibrium state are analytic 

at any real and they can be analytically continued to 

1 / (b = 0, even preserving the exponential clustering.

It is easy to check that to any potential satisfying 

(38a,b) there exist infinitely many periodic ground 

states. The simplest example is the antiferromagnet,

Jb= -1 for all nnp; this corresponds to q(k)=1.

The plot of the domain

|w/(1+w+w^)| < 0.34,

relevant in the case (38b), is shown on Fig.1.
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Proof

(i) A brief inspection may convince us that for Nn of 

Eq.(15) the following values can be chosen:

N = n 0 for n odd and n= 2,4,8

N6 = 3, N l(T 15, N 12= 6

N2n=: 2П for n > 7 ft

Putting these values and x = 0.34, £ =  0.1 into (2)

one finds that the inequality is satisfied. The state­

ment is then a consequence of the uniform boundedness 

of { p N ( fi )] in $  and Vitali's convergence theorem 

(or, the convergence of 'p in <S can be proved directly, 

using (21) and (36b) ).

(ii) The existence and analyticity of the correlations 

^ Cf d } follow from the uniform boundedness of 13
in the domain á) and from the H.T. existence of the 

limit (39) . The former is a consequence of (27) and the 

estimate

Nd i 2n (41)n

which is valid for any d e 2  . (A direct proof of the 

convergence in ®  , using Eq.(25), is also possible.)

For |dl odd, the correlations vanish identically.

If |d^| and ld2 l are odd numbers then
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l < 6 d l U d 2 >| í 4.1 e-0.27?(d1(d2)

follows immediately from (27) and (41) and the fact that

d l ü d 2 N = 0n

for n < q ( d , d 2) .

For |dj,| and I d21 even, the weaker bound (40) can be 

obtained. The proof is lengthy and we leave it to an 

Appendix.-
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4. Frustration models on the square lattice

Again, we confine ourselves to nnp potentials. Consider
2the squares of J. forming an infinite chessboard and 

let B* be the set of the four nnp bordering the i th 

black square:

B1 = f b1,...,b4 } .

Now U B 1 covers the whole set of nnp. Due to the cross­

ing graphs, inf G does not generate G uniquely while 

G/G° (where G° is defined by (9)) is uniquely generated 

by inf G/G°. Using the variables introduced in (33) and 

(34) we find
4

V = sgn J .  (w +p(i) f~l w . )/(l+p(i) П  и w ) 
b b b j = 2 b3 b € B X D

and

V, = (sgn J .J _)(w w +p(i)w w )/(l+p(i) П  w )
C b1 b^ bX b^ bJ b4 b € В1 Ь

where c is a diagonal pair of sites in the i th black 

square. If wfo=wi for all b t Bi and p(i)=-l then 

vanishes and

^ b= (sgn Jb)wi/(l+w^)= (sgn Jb ) . (42)

Let ^ ( ft) be defined for the present group G and cover 

B, by Eqs(36) and (37). We obtain the following theorem 

for *( ß ) .
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Theorem 2

Consider a periodic nnp potential on the square lattice 

which satisfies the conditions (38a,b).

Then 'p ( (I ) is an analytic function inside the domain 

S)sq ={(**<£ * lib l < 1/2 for all b ] .

Remarks

1. The theorem refers to a family of potentials. I |

may vary from square to square and the signs

q(k) = sgn П  Jb
b € к th white square

can be chosen independently. For periodic potentials 

satisfying (38) there are infinitely many periodic ground 

states. The simplest examples can be obtained by fixing 

1J^l= 1 and choosing either q(k)=-l or q(k)= 1. These 

give the so called "odd" and "chessboard" models, respec­

tively, whose free energies were calculated exactly and 

found to be analytic for any positive temperature ( [4] , [5] ) .

2. The analyticity of 'f' ( fb ) follows for any real fi-
2nite (J . The domain |w/(l+w )l 4. 1/2 is shown on Fig. 2.

We cannot prove the analyticity and clustering of the cor­

relations for all (!> € [0, oo) , the reason of which becomes 

obvious from the proof of the theorem. However, these 

properties could be shown, with the method applied for 

the Ragomé lattice, in a relatively large H.T. domain.
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Proof

Asymptotically, Nn= 2n is an upper bound for N^(1) and 

one would find difficult to improve it. On the other hand, 

as (42) shows, | ̂ 1  = 1/2 if l/(i =0. One should choose 

x= 1/2 in Eq.(2) in order to obtain analyticity for all 

/i € [0, ). However, with these and x the inequality

(2) cannot be satisfied for any £ <■ 1.

We need to use some special properties of the lat­

tice and the potential. Let us rewrite the formula (18) 

for t^ , i 4«  , with a change of notations as indicated 

at the end of Section 2.

1 = Z £ Z xs/т = У X Tb /Т* , i b b „Ь 6 /A1 , °b <X /l<xb 6 В s • S Ь € В

SÄ  = { S C U  
j*ot

BD: IsOB^I £1 and П b'= b }
b'ts

(43)

Now t^ depends on (i through the set of variables

\  ̂k~ *sgn Jb ^  fcj k=l 2 ' each belonging to a
_ksquare В .

Below we show that, with a suitable choice for the 

numbering of the set {в1 } , one can obtain the bound

I t*+J ( f )l Í 1/2
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for all i, if I fk l é 1/2 for all к.

(i) if 0 í fk " */2 f°r k then it is possible
to define a potential and some (Ь i 0 so that they deter­

mine just these fk through Eqs (33) and (42). As a con­

sequence, /TÄ is a correlation and

where
b € В 5ь <вь > В«к

В « '  и  в 3 • 
j €*

Now if n(i, <̂ ) is the number of those vertices which are 

shared between B 1" and the squares of В w then

( f > I *Í1 if n(i, <x ) i 3

1/2 if n(i, ot ) <2 (44)

because jt 0 for at most two or one b é B 1, respectively.
Os.

(ii) Let

t.h t »- s; п  e n  n / z
S < S «„|i)b,S =‘3*
i« s

П
b«s Л h3« s

where e^ is defined for each nnp so that
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еь=<
’-1 if b is the lower nnp of some B‘ 

1 otherwise

Clearly, t M is a function of the form of (18) or (43): 

it corresponds to a particular choice for the signs of the 

interactions. One can show by elementary methods that

П
b € S eb = -1

for all s € inf S. Now let Oí f é 1/2 for all k, then

t J-( S) * 0 (45)

for all <x and i 4 a. . Indeed,

H « f > - z  f s Л  b  v y ^ - s - k '  f >>s É inf S ... jes J k=2 л ̂ IH
i*s (46)

Now

s = { i, j2 ,...,jn }

is a set of indices of squares which form a ring by join­

ing via vertices. The numbering can be chosen so that 

neighbouring indices belong to joining squares. Therefore,

n(jk.*-s'k) = n(jk,oC-fj2....jkt) < 3
which implies

I « 1 (47)
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by Eq.(44). Equations (46) and (47) then prove (45).

(iii) Let 1(1 denote the set k=1 2

Suppose that jf^l i 1/2 for all k. Then

I t*( f )| é - tJ-( I fI ) (48)

This can be shown by induction. For, t^ = 0 if I «* I <■ 3;
1 4if e* = l1,2,3) and В ,...,B surround a white square

then

ll, 2,3)' lf1l l f 2Mf3l l f 4l -t 4
U,2,31( 1(1 ) .

In the n th step,

u i < r >u П  к л / п ' 11- i t ^  ( { i nT £. C? lr — ОS * inf S jts J k=2

• si j,г к* 2_ n  if i 1/ n u + t : < 'fi и
s £inf s- u(il 3 k=2

its

- - t j-( i n  )

Here we applied the induction together with (47).

1 2(iv) Consider now the set (в ,B ,...} which covers 

all nnp of the lattice. Let the numbering be chosen so 

that B* joins B i+  ̂ through a vertex and the whole set
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forms an infinite spiral of squares. Then

n(i+l,[i])í2 

and (44) implies that

-t Yi] ( W  ) - 1/2 .

This, together with (48) proves that

I t 1̂ 1 ( f )| * 1/2

for all i. The remaining is an application of Vitali' 

theorem or a direct proof of the convergence of + N
in J0 , using (36) and (49). sq

(49)

s
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Appendix. Exponential clustering

Let d^,d2 c A  be disjoint sets with even number of points. 

Now we have to estimate

d d 
{<5 1 G 2 d l d9

>„ - <6 1>B <6 2>,

d l ° d2 di d2 2_ ( T  T - T  T )/ T (A.l)

This can be done by dividing (A.l) into terms and 

estimating them distinctly.

di w d9_ 1 2 c—T = 2—

s é inf SV d2
S T [N]-s ■ Tl+T2

where

V ^  dl d2 ^ 1 5 2 TCNJ"=1"®2s^ £ inf S s2 fc inf S

2 i n 22= 0

and

= у >2 d vd
S £ inf S

T [Nl -S

the prime indicating that no part of s is an element of
dlinf S . If s occurs in the summation for T2 then Isli^ , 

the distance of d^ and d2 , and



IT./TJÍ Z  (2х/(1-£))П= (l-у)"1 y ? 
1 n

Here we used the bound (41) and

liSl * x ' s'

I ti, I 4 E
y= 2x/(l- £ )
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On the other hand,

dl d2T T = Ux + U2

where

“1= £ d.
s, sZ d 5 1 5

s^ € inf s 1 s2 € inf S

i2‘ 0

Inl­

and

V  d Z  d2 iSl s 2 T
€ inf S s 2 fc inf S 

- 1 П -2 * 0

[N] -s

Now if (s^,S2) occurs in the summation for U2 then 

13^,1+1321 . W e  can use the simple estimate

dl d2card {(5^,82) € inf S * inf S : is^ + »s2I = n} £ n

(A.2)

(A. 3)

-1 T tN)-s2

M-ij

(A.4)
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to obtain the bound

I U / T2| <. JL n yn C (1 у) 2  ̂
n

(A.5)

Let us consider TT^-U^ .

TTr ui= ^ a, ä ̂ i <T[NJT [N)-S -s, 
sx € inf S s2 € inf S

sl0 s2= 0

- TМ -Si TM-s2,= , 5 1 A('l's2)
(A.6)

where T =  T> Writing up the difference in the paren­

theses explicitly, one can see that many terms cancel out. 

Omitting a lengthy intermediate speculation, we present

the surviving terms:
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Д ('s2) = ( П $ s )
V € V S é VО

T ENJ-Sj-Sj-v TCN)-Sj-s2

£ П ( П 5 S)T,
rl'V2) t V 12 1=1 S Í V i

/ \ xT • ■» [N]-s.-s.-v. [Ni “ S ..-S--V_(V-,v_) é i = l s e V. - 1 - 2 - 1  L J -1 -2 -2

+ 2 1  П  < П  5 S)T rNl-s -s -v -v Т ГМ-з -s -v(v. ,v0,V-)€V._ 1=1 SéVj LNJ -1 -2 -1 -2 LNJ -1 -2 -31' 2' 3' 123

(A.7)

With the definition

[S] ={ fs|, . . . ,s£\ c inf S: s| n s_!= 0 for i ^ j) , 

the sets V , V^2 ?v 123 are 9iven as follows:

Vq={ [s|, . . . , s£] t [s] : s! (1 ( s ^ s ^ f l  for i=l,...,k

and s! (ls.^ 0 , s! f\ s:_̂  0 for some 1 £ j £ к ]

Vl={ ísi' * * * 'sk^* tS [N]-s - 1 П ~1^ 0 f°r i=1'***'k J

V2=í ÍSÍ' ' * ‘ 'S]H 6 ^S [N]-s^: —i ̂  —2^ 0 f°r i=1'*’“ 'k )
V12= í (vr v2) t Vl.V2= V j d V j M )

where

v = U  s 
s e v

V 123'“ { <vl'v2'v3, t v l ' v2* ts m - s,-sj = (v1,v2).(v1.v2)-v1 -2 12
and £ П ( и v2) ^ 0 for any s « and 

and s Л  ̂ 0 , s П v2 jí 0 for some s e |
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Dividing (A.7) by T and applying (A.3) we find

I Д (Sl,s2)/T2| í (l-£ )-2 is,i -2 is2 i ^
(y/2) IV I

V € V V 12wV!23

(A.8)

where ivi= 51 isi . Let M , M and M be the num-n n ns * v
bers of elements with length n in V , V,_ and ,о 12 123
respectively. It is easy to show that

.123

, ~ IS-I + Is_I +n
M° , M12 é 2 1 2n n

м 123 ^ у  2 + •S2I “l'm ^min [m/2 , (n-m) / 6 } -i-(n-m)
m

(s I + is I + 9n/8
^ 7 - 2

and therefore
i о m  is,i + is I + 9n/8

M = M°+ M l2+ M 123 á 9-2 1 2n n n n (A.9)

Moreover, if L(s^,s2) denotes the distance of the supports

of s^ and s2 , then

M = 0 for n<2L(s.,s_) n 1 2 (A.10)

because every v€ V wV.-oV.,, connects s, and s_ with at 1 о 12 123 1 2
least two chains of triangles. From (A.8)-(A.10) one finds

I Д  (Sl,s2)/T2| é 9 (1-21/8y ) 1 (2/ (1- £ ) Z)24 ,Sl‘ + ‘S2'(2l/8y)2L(S;L,s2)

(A.11)
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Another trivial bound comes from (19) and (21):

I Д (s1,s2)/ T2I < 2(1- t )HS-jl—IS2I (A.12)

Now we are able to estimate (TT^-U^)/T . Let \ be some

positive number; we get

(TTj-U^/T = H  *
^ , s 

is^ + Is21
(s1,s2):

(s1,s2): 

IS1I + I s 2 I

S $ A ( s 1,s2)/T/

S1 S9 5
l Ъ A ( s 1,s2)/T^

- A < + A >

Using (A.3),(A.4) and (A.11) together with 

^ (Sl ' s2) > ̂  - «s^ - is9i

we find that

I A<l á a(x, £ ) b(x, £ ; •) ) 

a (x, £ )= 10.7(1- £ -29/8x )(1- £ )- 1 (l-21/4x)_1х

b (x, £ ; 1 )= 2 (9 1 )/4 x2 "> (1- £ )"2 (A.13)

To obtain a bound for A > , we apply (A.3),(A.4) and (A. 12). 

These give
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- 21 A >l Í 2 (l-у) у (A.14)

Now we put

x= 0.34

£= 0.1

which were found to satisfy (2), and choose \ so that

b(x, £ ;1 ) = (2x/(l- Í ) )Л .

Sustituting these values into Eqs (A.2) , (A.5), (A.13) 

and (A.14) we obtain

I -< I

c \ T2/TI +IU2/T2| +1 A< I +| A> I

-0.091« . ln6 -0.09«ь 60 « e л < 10 •e '

which is true for all В and therefore gives Eq.(40).
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Fig • 1
The domain of analyticity (outside the shaded region) 

on the complex tanh l I 3 plane, for the Kagomé lattice
models
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Fig. 2
The domain of analyticity (outside the shaded region) 

on the complex tanh IJ, Iß plane, for the square lattice
models
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