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ABSTRACT

The unified model theory describing both the "order-disorder"™ and dis-
placive” ferroelectric phase transitions is investigated by introducing the
model pseudospin-phonon Hamiltonian. In the second part using the concept of
local normal coordinates the tunnelling is also taken into account. On the
basis of the self-consistent phonon-field and molecular-field approximations
a complete system of self-consistent equations for two order parameters
(average displacement of active atoms and average population of atomic equi-
librium positions) is obtained. The qualitative discussion as well as the
numerical analysis show that the ferroelectric phase transition (first or
second order) can be either the order-disorder, displacive, or mixed type,
depending on the dimensionless coupling energy between the atoms in the model
Hamiltonian.

AHHOTALNA

MpepnoxeHa o6o06WeHHas Mogenb A1 ONMUCAaHUSA CEerHeTO3N1eKTPUYEeCcKuX (Ha3oBbiX
nepexoAoB KakK Tuna '‘nopspok-6ecnopsigok’™, Tak M Tuna ‘'‘cMmeweHusa™. Bo BTopoii
yacTu 3(pdeKTbl, CBA3aHHbEe C TYHHeNnMpoBaHMeM, TakkXe ydTeHbl. Ha ocHoBe npubnuxe-
HUA CcaMOCOrnacoBaHHOr0 (OHOHHOFO MNOAS W MONEKY/APHOro Mofas nojslydeHa caMocor-
nacoBaHHasi cucTema ypaBHeHUA ANns ABYX NapamMeTpoB nopsiika /cpefHero cmeweHus
aKTMBHbIX aTOMOB U cpefHell 3acefieHHOCTUW UX paBHOBECHLIX MonoxeHwnin/. KaydyecTBeH-
Hbli aHa/IM3 U TaKke HyMepuyecKoe pelleHMe ypaBHEeHWi MNoKa3biBawT, UYTO CEerHeTo-
371eKTpUYEeCKuin has3oBbin nepexon /nNepBoro win BTOpPOro poga/ MoxeT ObiTb KakK Tuna
nopsigok-6ecnopsfok, Tuna cMeweHusi, TakK M CMellaHHOro Tuna B 3aBUCUMOCTM OT Be-
NIMUMHL 6e3pa3MepHO 3Heprum CBA3M aTOMOB B MOAE/IbHOM raMu/ibTOHUAaHEe.

KIVONAT

A ferroelektromos fazisatalakulasok targyalasara egy altalanositott mo-
dellt javaslunk, amely egyarant jo6l leirja a rend-rendezetlen tipusu és a
racstorzulassal jaré fazisatalakulasokat. A tanulmany masodik részében az
allapotok kozotti alagutazassal kapcsolatos effektusokat is figyelembe vesz-
szik. A self-consistent fonon-tér és molekuléaris tér kozelitéseket alkalmaz-
va a két rend-paraméter - az aktiv atomok &atlagos elmozdulasa és egyensulyi
helyzeteik atlagos betoltottsége - meghatarozasara egy self-consistent
egyenletrendszert nyerink. Az egyenletrendszer kvalitativ vizsgalatabdl,
éppugy mint a numerikus szamitasok eredményeibdl lathatjuk, hogy az atomok
redukalt kotési energiajatol fiuggben lehet ferroelektromos fazisatalakulas
els6-, illetve masodrendld és rend-rendezetlen tipusu racstorzulassal jaro,
vagy kevert tipusu.



1. INTRODUCTION

It is generally assumed that there are two basic kinds
of phase transitions in ferroelectrics, one being the
"order-disorder”™ type and the other being the "displacive”
type (see, for instance, [1] ). In the former case the phase
transition results from a statistical disorder of active
atoms among several (in the simplest case, two) equilibrium
positions, as determined for each cell by the remaining atoms.
In the latter case the phase transition is caused by lattice
instability against a certain atomic vibrational mode. Never-
theless, 1t has been shown iIn the last several years that both
types of fTerroelectric phase transitions can be described
within a single model and that there are not essential diffe-
rences between them [2] - [7/] - In the simplest case this
model 1s described by the Hamiltonian which iIs expressed as a
sum of single-particle energies, as determined by double-
-minimum potential wells, and the harmonic couplings between
active atoms in different cells. Then the character of the phase
transition depends on the ratio of the harmonic coupling
strength and the height of the single-particle potential barrier.
The nature of the phase transition described by such models

was examined approximately by applying both the Curie-Weiss



molecular-field method and the self-consistent phonon-field
method [2] - [8] . It was shown [7] by comparing the
results of both methods that for a weak lattice coupling the
character of the phase transition is closer to the order-disorder
type, which is more consistently described by the molecular-
-field approximation; Tfor a strong lattice coupling the phase
transition has to be related to the displacive type, which can
be reasonably described by the self-consistent phonon-field
approximation. Such a consistent description can be understood
under the circumstances that in the order-disorder transition
statistical fluctuations of active atoms onto their equivalent
equilibrium position play the main role, which is accurately
enough described by the pseudospin model 11 , 91 - [I15],
while in the displacive transition the dynamical correlations
of atomic displacements turn out to be more essential, so the

self-consistent phonon-field approximation is more efficient.

However, for a complete description of the ferroelectric
phase transition one has to take into account both mechanisms
simultaneously in the frame of an universal model. Note, that
such a physical concept is essentially different from that con-
tained in the model where the pseudospin-lattice interaction is
introduced so as to comprise more adequately the dynamics of

hydrogen-bonded ferroelectrics [13] - [15] .

In the present lecture a general model for ferroelectric
phase transitions [16] , [17] is discussed by introducing two

order parameters associated with the motion of active atoms:



the average population o7iT) for one °Ff two equilibrium
positions (@ = +, -), as determined by the pseudospin approach,
and the average displacement na(T) with respect to the center
of the cell, which is determined by the self-consistent phonon
scheme. As a consequence, the ferroelectric phase transition

can be either of the order-disorder type, when 0+(TC) = a_(TC),
or of displacive type, when n+(Tc) = n_(Tc) = o , but it can
also have a mixed character, depending on the relations between

energy parameters introduced iIn the model (Section 2 - 7).

However, 1in the first part of this lecture the single-
-particle tunnelling motion of active atoms has not been expli-
citly taken into account. The 1incorporation of the tunnelling
motion as an additional degree of freedom leads to collective
excitations which may have a soft mode character [11] or cause
the appearance of a central peak [18] ., [19] - Since the
tunnelling energies (of the order of the ground state quantum
splitting) are usually much smaller than the characteristic
phonon energies, the role of such excitations 1is predominant
at low temperatures @ v Kg T) - On the other hand in addition
to a renormalization of the pseudospin-energy parameters of the
De Gennes type [9] , the higher phonon excitations can lead to
the structural phase transition of the displacive type (against
a certain vibrational mode) at higher temperatures. So, in the
second part of this lecture we take into account self-consistently
(within the variation approach of Bogolyubov [20] ) the exci-

tations of both types (displacive and order-disorder) -so as to



comprise both the tunnelling and the higher phonon oscillations
of active atoms in the frame of a hybridized pseudospin-phonon
model Hamiltonian, separated in corresponding variables. This

is achieved by representing the cooperative atomic motion as a
slow tunnelling process among several (in the simplest case, two)
equilibrium positions in addition to familiar phonon-like
oscillations around some momentary rest position [21] . On the
basis of the self-consistent phonon-field and the molecular field
approximations a complete system of coupled equations for two
order parameters (average displacement n b Moy > and average
localization a ) 1is obtained. A qualitative discussion as

well as a detailed numerical analysis [21] , [22] show that the
ferroelectric phase transition (of first or second order) can be
either of the order-disorder, or of the displacive or of the
mixed type, depending predominantly on the ratio of the two-
-particle potential to the single-particle one and, iIn a lesser
degree, on the ratio of zero-point vibrational energy to the
height of the single-particle potential barrier. The possible
structural phase transition of both types at zeroth temperature

(quantum limit) is also discussed (Section 8 - 11).2

2. MODEL HAMILTONIAN

It is usually possible in describing ferroelectric phase
transitions to separate a group of atoms whose character of mo-
tion depens essentially on temperature, so that one could
attribute them to the occurrence of the phase transition. In

doing so the action of remaining atoms is replaced by an average



static fTield, to a fTirst approximation at least. Therefore we
shall consider a simple model where only the motion of active

atoms i1s taken into account:

P2

H= 1 (-1 + VR +y | O, - £ . .1

Here Pi and Ri designate the momentum and coordinate referring
to the active atoms, and V(Ri) is a single-particle potential
coming from remaining atoms, whereas ®@®" - R,) is the potential
of the pailr interaction between active atoms in different cells.

P. and R. can be also considered as local normal mode coordinates,

describing the critical dynamics (see [1], [30]), as in Section 8.

The potential V(Ri) may have two or more minima which pro-
vide the possibility of occupying for active atoms those states
in the cell. For simplicity, let us assume that there are only
two states in each cell, so the atomic coordinate may be repre-

sented (below the transition temperature) as fTollows:

* _* + >+ - -
R. "S£. +0.. 5. +0.. S. 2-2)
i | i ii
Here designates the center of the cell, and =1 or 0

and o1 =1 -072=0 or 1, according to whether the atom
occupies the + or - state, respectively. The projection ope-

rator itself can be expressed by the pseudospin operator

; @ + aon.) , -3)

which #s introduced as an independent variable, commuting with



the atomic displacement (s*) and momentum p*“ operators. To
elucidate such additional pseudospin degree of freedom one has
take explicitly account of tunnelling effect being described

by x-component of the pseudospin operator [23]

of

The atomic displacement in the state a , Si , can be
written as a sum of a static displacement bA and a thermal

fluctuation u*“ ,

\ @-9

where the symbol < ee- > stands for a statistical average with
the Hamiltonian (2.1). A generalization and further discussion

of the representation (2.2) - (2.4) will be given iIn Section 8.

Therefore the representation of the atomic coordinate, as
given by Eq. (2.2), enables one to take iInto account, at fTirst,

the atomic random distribution over two equilibrium positions

in the cell, using the operator o“ , and secondly, the thermal
atomic fluctuation u“ in the neighborhood of a given equilibrium
position. In describing order-disorder phase transitions the

latter variably are usually neglected, whereas iIn describing

displacive phase transitions i1t iIs assumed that all atoms have
the identical equilibrium positions in the cells (a = + or
a= -); thus the operator a*“ takes the same value at each

site 1. In our generalized model we will be able to study



both types of phase transitions using the full representation
(2.2) . Such a physical picture is iIn agreement with recent com-
puter simulations and i1t is also appealing for reason of uni-
versality [18]. It should be pointed out that the representation
(2.2) for atomic coordinates as a sum of pseudospin and phonon
variables was proposed by Vaks and Larkin [47] in their dis-
cussion of order-disorder type structural phase transition (see
also [1], 8 6.). We generalize their representation to consider

as well the displacive type phase transition.

Having iInserted the expression (2.2) into Hamiltonian (2.1),

we can write i1t as TfTollows:

+a 2 e
H= 1 o { 21 (P> + Y(Ex+s*) } +
i,ot m
2.5)
a a < =>4
o A ax.a%dJ <V |g+S'i—Sg)
ot,3
The equilibrium positions of lattice atoms b = < > are
determined using the equilibrium condition in the form
1 (3/3t) < P* (® > = <[P* H]l1>=0 )
which leads to the equation
vu.+s ) > +
3 SZ(
@.6)
+ I < at o (£ _AV é*a )@) 0
- - + ~ > =
R 5 g@ 1 3 1



Furthermore, since the atomic displacements with respect
to the center of the cell are usually small, | |«1 - |EAE£.] ,
the potential energy in Egqs. (2.5 and (2.6) can be expanded in

terms of displacements as follows

V(E+ SP = . V(E ) (2.72)
n=o £,
e
oG, -E; + 8- 8 =
(2.7b)
@ > >
E-E£) -

n=o of.

To the lowest approximation it suffices to keep only the
first few terms, thus writing the single-particle potential in

the fTorm
V(Ei+ S*) = Y(£x) - J A(G?) + J B(s™) 2.8)
where the parameters A and B define, respectively, the

2
height of the potential barrier Ug = A /4B and the distance

between the two minima 2SS = 2(A/B)



It is sufficient to take into account only the harmonic

terms in the pair iInteraction (2.7) ,

<
011, + SP) = 0 (£;-£,) 2.9)
by taking ¢ (- - £ ) =0 . Moreover, 1in agreement with [5] and
[7] we will assume that atomic displacements are experienced
along a given crystal axis (@ one-component order parameter),
although the full spectrum of optical lattice vibrations is
referred to a three-dimensional case. The part of the Hamiltonian
(2.5) which depends on atomic displacements in the present

approximation takes the form

r a ), 2 a2 B -=»ai
r/%tol’{ K(P) g <> +t 1 s> >+

(2.10)

The equilibrium conditions (2.6) for this Hamiltonian,
using the molecular-field approximation for the pseudospin sub-

system and assuming its independence of the phonon subsystem

<cB (S7-Se) > . <SY > g <Sp>= (b ,-b_) __
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may be written in the form

3 v
Aba + B< (§i)>+ (ba - b—a) °_a 1 *1§ =0

(2.6a)

Having chosen the positive direction of the displacements along

the axis b+ and using the approximation

+

'a3 3
< (S?) > = 'ba + 3ba < (u?) > ,

the equilibrium conditions may be represented by
n, - @a -3 ya) n, + h, +n) fO o, = 0 .
Here the dimensionless quantities are introduced
= (B/A) b» ; ya = (B/A) < (u*) >
FTOA 0ij 6 - 0 = Td=0o

and the average population of the state a

in the agreement with the expression (2.3).

2.11)

(2.12)

(2.13)
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The analysis of the equilibrium conditions (2.11) shows
that in addition to the zero solution n+ = n_ = o0 , correspon-
ding to the paraelectric phase, the solutions na” ° also are
possible. In the case of small values, f <« 1 , there can exist
two equilibrium positions, the magnitudes of which are close to
one another (h, - n_ = ofO <<1), and there also exists the
solution o0 =0, corresponding to complete disorder for an
order-disorder phase transition. For values of the coupling
parameter F £ 0,25, only one nonzero solution can exist at
all temperatures, fTor example, nt~ o (for complete atomic

order, a = + 1). In this region of the coupling parameter only

a displacive phase transition is possible.

3. PHONON SUBSYSTEM

Let us determine the phonon spectrum and average values of
the atomic displacement correlation functions using the Green®s-
-function method developed in the theory of strongly anharmonic
crystals [24] , [25] . Consider a displacement-operator Green®s

function of general type

« ui M ; u () »

G-D

- -i) (t-t ")

2T

where ordinary notation is used. The above Green®s function des-

cribes the atomic displacement correlations at the lattice sites
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i and j, iIn arbitrary states, because here it is u® = a* u* +
+ a” u- . Let us also introduce the Green"s Tfunction for a fixed

atomic state a at the site 1 by inserting o0? =1 :

D . . t-t7)= “(t (- 2
g, (FEDT Cut@® FouE) >, (3.2
which 1is necessary for the definition of an average quadratic

atomic displacement in the state a ,
— 0} .
< W) >=/ coth ZkB ™ (G 5 Im Dy (a)’i_(W+ ie) ) (3.3)

Taking into account that the Green®s functions (3.1) and (3.2)
contain the statistical average with the full Hamiltonian (2.10),
thus including also the average over all atomic states, and since

those functions depend only on the difference between the atomic
N\

coordinates S. - S, - L
1 3 1
expansion in terms of the reciprocal lattice vectors <<$ as

- £é , we will write their Fourier

follows:

iq(t.-t,>

w =71 1Hle 1 3 D (W (3.4)

D ran .3 NA

The equation of motion for the Green®s fTunction (3.2), using

Hamiltonian (2.10), has the form



13

- T bt - v B
- A-10 « s“ ;u,(t)y >+ B<x< () ; u (t)» (3.5)
tf
oi*~ st >
The Green®s function << 07 >u,(”) > on the right-hand side

describes the correlation of atomic displacements at sites K
and JjJ under the condition that the atom at the site 1 1is in
the state a [ =1 1in Eq. (3.5) ]. However, since ki in
the sum (3.5), it is possible to neglect the correlation between
the states a and y for atoms at sites Kk and i , thus annihi
lating the latter condition, 1i.e., it is possible to use the
molecular-field approximation for the pseudospin subsystem.

In addition, having used the approximation of independence
between the phonon and pseudospin subsystems, we obtain for the

present Green®s function the following relations

<<

(3.6)

=<5’ > « >>
K

Now having inserted si = ba + u; in the Green®"s function and

using the renormalized harmonic approximation [24] , [25] ,
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wid:; ™ > 3 < %> <ty o» G.7

«

for the Fourier component of the Green®s function in Eq. (3.5),

one obtains

{ma2+AC1-F) - 3B [b2+ < (UR>ID5 5 ;M
3.8

> { - ﬂ. *IMM °Y "M, Mbl =

We can use the expressions (3.4) and relations (2.12) to solve

the above equation, so the Green®s function (3.2) becomes:

v2 - Vfa
Da (v)
2rve 2 V& ]
VTtV VT - - a,a F
VIHVED) (V-vE D) - aa F
G.9)
2 2
AVAR V_a
o —v31) F -v92)
where we 1introduced reduced frequencies
2 *
= | o (3.10)

2 _ 2/.-AMN. . 2 _ 2 4 _y 2
v = /Qﬁlﬂg : va = Aa ¥ fO ,\/qg —Jla aa g

The gap appearing in the phonon spectrum is determined by

the Eq.:

A2 =3(n2 + ) - 1 (3.11)
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whereas the phonon frequencies v in expression (3.9
q (+s_)
correspond to atomic vibrations in .right-hand”"(#) or ,left-

-hand”™ (-) equilibrium positions.

IT disorder is present in the system, the phonon spectrum

as determined by the Green®"s function poles has two branches,

2

Ch oy N s

@.2) vi ) £
qt  g-

(3-12)

2 2 2 o
vioovE )T+ (- a2y T2
g+  9- q

However, 1n a limiting case of a complete order, for iInstance,

o+= 1 and o~= o , Green"s function (3.9) becomes

Dy &) = [v2 - (@ + f-fn"1 (3.13)
q q

thus having only one pole, which corresponds to the vibrations

of all atoms in the ,right-hand"™ positions. For o = o0 the number

of atoms iIn both states becomes equal to each other, o+=0 = j

- - 2
so an average fTield at each site takes the same value: N+
* AE = 2 . Therefore the phonon speclyrum in this case is also
determined by a single frequency being the pole of the following

Green®"s function:

D8 (V) = [v2- (CAg+f, -F)Hri . (3.14)
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Hence i1n both cases the soft mode emerges when the single-

2
-particle gap (3.11) vanishes, [Ja o]

The Green"s fTunction of general type (3.1) which can be
obtained from Eq. (3.9), using the approximation (3.6), evidently

has the same properties.

The self-consistent equation for the phonon subsystem can be
represented according to Eq. (3.3) in a high-temperature classi-

cal case, in the simple form

where

KB T
(A2/B)

is the reduced temperature.

It is convenient to pass from the summation over vectors 5

in the Tfirst Brillouin zone to the iIntegration over frequencies



1?2

by introducing the frequency spectrum density

g(w2) _ ¢ I 6o - PN (3.16)

Taking 1nto account the expressions (3.10) and (3.12), Egq. (3.15)

can be written in the form

¥ ] 3.17
out TN fo ) (3.17)

where the fTollowing abbrevations are introduced

)
I

A2 A2+ T [A2Y @+0) +n2 ) (1-0)]
(3.18)

Q= fy +.02, \ (10) +12 L (@ + 0

Performing the integration in (3.15) 1in the case of zero
temperature, when coth(o)/2 Kg T = 1 , taking into account (3.9)

one obtains iIn the quantum limit

A+ f
Y 1+ @ 0 (3.19)

2¢vSl * vg21 V31 V32

L 2
where X = (A/m) V(A /B) is the quantum parameter, proportional
to the ratio of the energy of zero point fluctuations, *hpo =
=*h(A/m) ~ and the height of the barrier in the one-particle

potential well, Uq = (A2/4b)
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Now substituting vya [ Eq. (3.17) or Eq. (3-19)] and m»
[ Eg- (3.11)] in the equilibrium condition (2.11) we arrive at
the self-consistent procedure to determine the order parameter
n+ , provided that the order parameter a has been found indepen-

dently from the analysis of the pseudospin subsystem.

4. PSEUDOSPIN SUBSYSTEM

In order to consider the pseudospin subsystem it is con-
venient to rewrite the Hamiltonian (2.5) in terms of operators

oi (2.3) as follows:

“4.1

Here H~ is independent of ax , and the single-particle ,fTield”

has the form

“4.-2)

h iie(1/2m) (Ci)X + v(*i+ sp (4.2a)

where

(4.2b)

while the Ising-type exchange energy is defined by

# 4.3)
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where
—e «*1 - *->

To find the average value a - < a®» > we use the
Bogolyubov variational method, assuming that the pseudospin
subsystem can be described by an effective Hamiltonian which 1is

not explicitly dependent on atomic displacement operators,
1
> a . 4.4

A similar approximation was used [26] to study the spin-phonon
interaction in anharmonic ferromagnetic crystals. In this approxi-
mation the effective Tield and the exchange energy N\. are
determined by suitable functions being averaged over lattice

vibrations,

For the model Hamiltonaian (2.10), taking into account the
solution of the Green®"s function (3.9) and the equality

2 . .
< dﬁﬁ >ea(kB T)m , at high temperatures we can write these

fields iIn the form

hx

A2/40) [i G@* - A% - (I - nD] . (4.5)

h2 - (A2/4B) (1/Q) [P(y+- y ) + T (A2- A2)] . (4.6)
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As can be easily seen h = h”™ + h2 plays the role of a mean
field caused by thermal atomic vibrations (when T -mo0 , h *0)
which tends to zero if o a 0O . The effective exchange energy

itself is defined by the equilibrium atomic positions,
Ji = (aaB) " <t t n)2 “-7

so that above the structural phase transition, when n+ = o ,
becomes zero, leading to the unique solution a = o
Using the molecular-field approximation Tfor the order parameter
a we obtain the following equation:
Jo - h
0o = tanh (= I- ) 1 J=1 J , “4.8)
B J
or having accounted for the definitions 4.5 - (4.7), 1its

explicit form becomes

o = tanh {Z%I' {o Elo= '(n+|'| D +1(|'|44— I'IfS” “ % ’(A.f— Aé_l)1 +

4.9)
b0 [Peys - YD T TG - A 13

In doing so the system of self-consistent equations for
the parameters n+ [ Eq. (2.11) ] and a becomes complete where
the quantities y+ and are defined by the suitable function

(3.17) and (3.11) respectively.

In the quantum-limit, T=0K, an unique solution, o-= 1

appears (if 1lij > o , ht > 0). The effect of tunnelling bet-
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ween states a = + 1l and a = - 1 , suggested in [23], makes it
possible to generalize the Hamiltonian (2.5 and to introduce in
(4.4) the transverse fTield, tt £ o* , which in turn may lead
to the solution a @0 1iIn the c;se T = 0K

In addition, we quote the expression for the spontaneous
polarization, which is dependent in the present model not only
on the atonic order but also on the atomic equilibrium positions,

i.e., It is determined by both order parameters n+ and a

In dimensionless quantities, the spontaneous polarization is given

by

Z R

<!>' < Oy
.«

(4.10)

1
2(n+— n) +\

If T =o0 , then it follows that a = 1 , so the polarization
takes i1ts maximum value PS =1 ; but 1If a o , then 1t 1is

clear that PS >H O

5. THE CLASSICAL LIMIT OF HIGH TEMPERATURES

In the general case the system of self-consistent equations
obtained for the order parameters n+ and a can only be solved
numerically. Nevertheless, even a quantitative analysis of equa-
tions - i1n limiting cases - enables one to draw some definite

general conclusions.
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At sufficiently low temperatures, T K Tg (TS is the

lattice-instability temperature), 1t is possible to neglect

the influence of lattice vibrations on the pseudospin subsystem
and cosider only Eq- (4.9), with n+ = n. = 1 e In this case

we have just the well-known Ising model from which the phase
transition of the order-disorder type (second order) takes place
at temperature TK = TQ [Jusing the molecular-field approximation
in Eg.- (4.9)]- As we will see later this result holds only if

f < 1
(o]

By neglecting the temperature dependence of the parameter

o (t), hereafter, we consider the limiting cases a =1 and o =0.

IfT a =1, for the quantity A2 =}2(1) , from Egs. (2.11) ,
(3.11) and (3.17) (in the ferroelectric polarized phase n+ = n”o),

we obtain the following equation

42 - 2,2 -2 -6 TJ 9C'2) d"2 ] (G.1)

The solution of Eq. (6.1) was examined in a number of papers

(see, for instance [5], [7] and [8]), where it was shown that
if the self-consistent phonon-field approximation 1is applied, then the
phase transition becomes of the first order with two characteris-
tic temperatures, one being the soft-mode temperature tc , when
,El,2 = 0o , and other being the temperature at which the ferro-
electric phase instability occurs (the overheating temperature)

T . From Eq. (5.1) for the soft-mode temperature we get the

estimate
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T

au_, G-2

where the index (@) corresponds to o0 = 1 . The constant

7 f° / 2, , 2 e

M-2 < 4 q  ACw > dw =< =T >0 "

depending on the type of cubic lattice, 1is equal to 1.5 - 1.3
For the second characteristic temperature , in the case of

fO « 1, we have

T « g a-+f) . (5.3)

Note, that the limiting value T =T, when Ff >0 , is not
related to the phase transition, although i1t has an entirely
defined physical meaning? the average Kkinetic energy of active
atoms at this temperature is equal to the height of the potential
barrier: %—KB TS = A2/4B . In the case f0:> 1 the estimation

of the temperature Tg using the Debye spectrum model, gives
xgl)z Tél) a + 42- ) = tc(l)(l + —ij— ) (5.4
o]

IT a = o0 for the quantities = Jlig(t) axn

= na(T) the self-consistent equation yield

4 - 2ng - f -2 -3F -6t/ . ,, (5.5)

This equation can be solved only if fQ < - , whereas in the
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region TQ << 1 the phase transition described by this equation
has the same type as follows from Eq. (5.1). For the characte-

ristic temperature we get

© - = -
3p d f )= o @-571) (-6

where the index (0) corresponds to a = O . Similarly as in the

case of a-=1 we get the following estimate for the insta-

bility temperature T ,

() NE -
5 (1-2 fo) if fo « (Gl

The estimates obtained show that in the general case of an
arbitrary value for the parameter o the temperature Tc (@)

falls iIn the interval within the values (5.2), ((5.6), and TSGﬂ

is determined by relations (6.3), (5.4) and (G.7). Besides

the large hysteresis value (& - Tc)/Tc i 1 corresponds to small
values of fo : fo <0.2 for o =0 ,and fO <0.25 for o = 1;
in the case TfQ > 1 the hysteresis value is small, 1in agree-
ment with the estimates based on Eq. CR)) and cosistent

with [5] , [/1 and [8] - 1t follows from these estimates that
the order-disorder phase transition is possible only for small

f

0 -

t < it f < 012 (5.8)
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if one estimates Tp =Of . At higher values of fO the lattice
instability breaks down the order-disorder phase transition, thus
giving rise to the displacive phase transition: njt + T ) =0 .
At values T > 0.25 , in agreement with Eq. (2.11), there 1is
merely one stable atomic equilibrium position at each lattice
site, so the displacive phase transition is the only possible
type, as described by Eq. (5.1). Consequently, a mixed-type phase

transition, as described by all three order parameters n+ () ,

n(r) and a(t) may be expected only in the very narrow region

0.1 < f, < 0.25 = (5.9

To confirm these general conclusions, the numerical solu-
tion of the self-consistent system of equations was carried out
using the Debye model for frequency spectrum (3.16), gl ) v w ,
w < dp , and taking the values of the coupling parameter f =
= 0.1 , 0.12 and 0.15 . Numerical results for a(r) and n+ ()
are presented in Figs. 1-3. It can be observed that the above
estimates are in good agreement with the numerical calculations.
The temperature dependence of the spontaneous polarization (4.10)
for different fQ 1s shown iIn Fig. 4. Note, that the region of
the order-disorder phase transition (f < o.l), as compared to
the ordinary Ising model, the spontaneous polarization 1is
decreased more rapidly as temperature is iIncreased due to the

temperature dependence of the effective exchange energy:

J=Ff, (, +n >
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Fig. 1. Temperature dependence of the Fig. 2. Same as Fig. 1., for
order parameters: n , average fb = 0.12
displacement and a , average

pseudospin value for dimension-

less coupling parameter

f =0.10
o]
Fig. 3. Same as Fig. 1., for Fig. 4. Temperature dependence of the
fb = 0.15 reduced polarization Pg for

several values of the coupling
parameter f
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We note, that these features are also obtained by a more
sophisticated calculation [27] based on the coherent potential

approximation for the disordered lattice.

6. THE QUANTUM LIMIT (T = OK)

In this Section we will investigate only two cases, namely
the case of the completely ordered, o =1 lattice and the case
of the completely disordered, 0O0=0 lattice [28]. Doing so,
we will assume, that the right choise of the value of the trans-
verse fTield fi can ensure the transition from o =1 to 0=0

in the case of zero temperature: T = OK.
a) Displacive type phase transition in ordered lattices.

In the completely ordered lattice all the ions are in the
same state, for example a = +1 and O =1 . In this case the

equation of self-consistency (3.19) takes the fTollowing form:

6.1

where the density of the phonon frequencies (3.16) has been

introduced.

Taking into account the, condition of equilibrium (2.11),
in the case of O=1(0 = 0) we obtain one equation for the
self-consistent determination of the equilibrium displacement n

or the gap iIn the spectrum of the frequencies [+ = 2n , 1In
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the ferroelectric phase:

2 2
F_o3 g 9@Dan 6.2
J 2

7 2n" + (

2
n

As it can be seen the solution of this equation for the

ferroelectric phase with n / o exist only if J1 < XC

@ -
where the critical value Xc(ij is determined by
X g (w2)dip2 6.3
c (D a 6-3)
o]
Here vy = @1 1is the average of the inverse of the frequency;

for the Debye spectrum g@>2) = 3u1/2Lu'3 vy 1=3/7272 =1 if
w% = 2FfQ . Consequently, displacive type transition in ordered
lattices can take place only if the lattice consists of sufficiently

heavy ions, that is if

/00 aj <2

m >
3n_, B

6-4)
for a given coupling constant q between the ions and a given
width Sq = /a/B of the one-particle potential well in

accordance with reference [29]
b) Displacive type phase transition in disordered lattices

Let us discuss the effect of disordering on the displacive
type phase transition. Putting in (2.11) and (3.19) . =0 ,

corresponding to equal number of ions in the states a = +1 and
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a = -1 and consequently meaning that Ai = f e % ;N =n

we get the following system of equations

2
n 1 - fo - 3y f (6.5)
wo
s 2 2
y 5 wHw ©-6)
1 /1l———- 2
o] Ng + W

Therefore the self-consistent equation for the determi-
- 2 - -
nation of the gap, > 0 1In the phonon spectrum iIn the case

of a=o0 and n > o takes the following form

f =2 3f_ 3 9 (32)dwp 6.7)

Displacive type phase transition, n > o , can take place
if A< AC(O) , Wwhere the critical value of A 1is determined b¥

2
the condition ﬂo (Ac(oj) = o , that is

2
2V Ac(l)u - T ot (6-8)

C ©) a -
Consequently, the occurrence of the disordering decreases
both the limiting value of the allowed energy of the zero-point
» fluctuations and the limiting value of the temperature of the
phase transition in the classical limit of high temperatures:
xéﬁ) = . a - (372 fb } (6.6). However it has to be mentioned

that the transition into the state o0 = o can take place only
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it T << 1 , and therefore formula (6.8) is valid only if

fo << 1 . In the case fb > 1 , only the state with o=1 is
possible and formula (6.-3) is valid. In this connection it is
interesting to note, that by taking iInto account the possibility
of cluster formation in the displacive limit, ¥ > 1 , that is
equivalent to the introduction of an inhomogeneous order para-
meter, n = n(i1) / one can also decrease the temperature of phase
transition. So one can claim, that the disorder in the equilib-

rium positions should diminish the temperature of structural

phase transition.

7. SOME REMARKS

By comparing our results with those iIn Refs. [4]-[8] we
emphasize an important adventage of the present description
method for ferroelectric phase transitions by two order para-
meters. It enables one to choose various approximations: the
molecular-field approximation for the parameter n(T) in Eq-(4.9),
and the self-consistent phonon-field approximation for na and
in Eg. (3.17), (3.19), which, in a manner consistent with Refs.
[5] and [7], offers a satisfactory description of the phase
transition, both iIn the case ﬁ) « 1 (order-disorder transition
of second order) and in the case fQ>> 1 (the displacive transi-
tion for the parameter n(T), of first order, close to second
order), respectively. It is necessary to point out that the true
order of the phase transition (first or second) cannot be pre-
dicted in the mean-field approximation (see, for iInstance, Ref.

[1]), so we will not discuss this question (see also Refs. [4],

[51 and [8D).
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8. THE GENERALISED MODEL HAMILTONIAN

In a model description of the structural phase transition
dynamics it is convenient to use the representation of local
normal coordinates [30] , [31] involving all active atoms 1in
the given critical mode vibration and to take a simplified model

Hamiltonian iIn the form:

H=1{-—— - * IHS )>+ i 1 V(S , S.). 6.1
1 2" il 3

Here m is the corresponding residual mass; the single-particle
potential Ui) and the pair interaction V(Sif S") define the
critical dynamics of a given crystal system (N different unit
cells are labelled by the index 1 and their central positions

by the vectors 1iL ).

Our previous coordinate representation S1 = { OXa(b1a+u'la)
described the atomic random distribution (within the Ising model -
through the projection operator aia = jJ @ + ao. )), over two
(a=+, -) equilibrium positions .(bia) as well as the thermal
atomic Ffluctuations around them (., left” and ,right"™ phonons).
However, to elucidate more profoundly such additional pseudo-
spin degree of freedom (ajz), one has to take into account the
inherent quantum mechanical effect manifested iIn a single-particle
tunnelling motion of active atoms inside some (real or effective)

double-well potential, which was fully missing In our previous
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Sections, and rather implicit in the approaches of other authors
(see, for example, the relevant references quoted iIn Ref. [18]).
For this purpose we suggested [23] the , left-right"” represen-
tation of the model Hamiltonian (8.1) 1iIn the non-orthogonal
pseudospin basis. However, in accordance with the exhaustive
analysis of Beck [18] the more clear physical picture (and
rather transparent procedure, presented hereafter) can be
introduced by natural generalization of the traditional concept
of atomic equilibrium states. Thus, a time dependent local normal
coordinate may be decomposed into a slow tunnelling-like dis-
placement (ri) and comparatively fast superimposed deviations

of the phonon type (u” :

r + < u.,> O. @ .2)

Such a representation holds under the ,,adiabatic'™ condition

b < t© , vo being a characteristic frequency of lattice vibra-

tions.

Having i1nserted the definition (8.2) into the general
Hamiltonian (8.1), i1t can be written in a trial form, separated

in corresponding variables

H (8.3)

where

H 6-4
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Hs = Il " + a(ri>> + 1 I,/q) cij (ri - r3» (8.5

*iyj , C~ and U(r\) being the variational parameters and
and pi - the canonical conjugate momenta to uil and r”, respec-

tively.

For a strongly anharmonic motion described by Eq. (8.5 it
is convenient to introduce the energy representation with respect
to the ground doublet symmetric (fs) and antisymmetric (f3)

single-particle states

N> T
N

{5, + U@ ¥, (D (re

\
s,a s,a i

) . @8-.6)

m

and going over to the pseudospin representation HS is cast 1in

the well known form of De Gennes [9]

fo= -k gt LAt £y @.7)

where the energy parameters ft , J_ and Eq are simple functions

of e , C.. and the matrix elements r = < a lr,l R > and
a 7] an
2

raa = < a I F “> (@ B = s,a) , calculated with the wave func-
tions in Eq. (8.6);

=2 " %2t G-

EO: E(e a + eS)-+|-g Co | @ .8)

Jo-= 2r

13 sa c tj »



rt =1 (raazxr ss>"
C = 1 C
o i
D J
The variational parameters ©¢ , C., and wn(r”™ are deter-

mined from the Bogolyubov variational approach [20] , namely

from the condition of stationarity of the free energy,

F=F,+<H-H_ > ; (8.9)
where
F =T An S " Mosr (8.10)
0_ p{e } ’ =
Fo-H.

< H-Hy>=sSp { e | @¢-no} =

M ,
- é < U(ri + uzx) >5F E LS V(r + UT e + 05 :o N
ij J
1
- < Ulr.) > - _ RS > 1 C. <(r.--r_yY>
i RO |é g t o 2 i A " 2%

(8.11)

with respect to variations over these parameters or, equivalently,
over the corresponding correlation functions, providing
< p» PiI =0 = 0 * For variational parameters of the trial

Hamiltonian (8.4) iIn the pseudospin representation we obtain the

equations:
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6

¢ID 6<”|‘b'6 2 1 <0(rt + ut) > +
(8.12)
+ I <V(r +wu rD.+uD. >0 >/
2rSa C1]' genZ 2 <V(r.1+ui ’r'j+”j') o/ (8-13)
rBg
and
U~ (Fellz 1),
6<0,> i 6<0 .>
o} n o
(8.14)
=, ) < V(r,+ u r+m>——)’C-<r+g.. .
1 ' - rj ‘o
2b 1" "p* 970 leu]%J }

The self-consistent system of equations (8.4), (8.5, (8.6)
(8.12)- (8.14) determines the phase transition of the model and
describes the mutual influence of phonon and pseudospin subsystems,

if the potentials U(si) and Vis”™ s.) are given.

9. THE STRUCTURAL PHASE TRANSITION IN THE FERROELECTRIC MODEL

Having chosen the single-particle double-well potential in
the convenient form (2.8) and the pair potential in Eq (8.1) 1in

the harmonic approximation (2.9); the Hamiltonian takes the form:

©-D

This model was 1in detail investigated recently (see, for example,



36

[18].[32] )- The variational approach for this Hamiltonian yields

i - 601 4 + v -nj "l -«n* 1 2cij - »un . (9-2>

where

A= -A + 3B(<uz >0+ <r 2 >0); o0 = [ <pij- (9.3)

The effective single-particle potential in (8.5) can be

written in form
ufr.) » - 1rj + 1 rJ ; A=A-3B<u2 >Q. .9

The self-correlation displacement functions relevant for
the nature of the structural phase transition are determined by

the following approximative equations (of the RPA type)

2 — 1 R 1
<us > = = 2 5‘”’_,( coth ABT (9.5)

SrpeT S I0Z g ) (7 - rg )< op ], 0

where the phonon frequency 1is given by the equation

-k (1;-10)
we= A+ds0, F oo, =)0__e 9.7
J

n

In the mean-field approximation one gets (see, e.g.- [1]. [33]D):
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(9.10)

Thus, the structural phase transition is described by the
solution of the above self-consistent system of equations for
two order parameters (az and rSS) which, owing Eq. (8.6),
can be obtained only numerically. Nevertheless a qualitative

analysis for the limiting cases 1is possible.
a) Order-disorder transition

Analogously to the analysis in the previous Sections, in

the weak coupling limit, i.e., in the temperature region when
0] « A=A - 3B < ug > (9.11)

the order-disorder transition is possible iIn the pseudospin
subsystem through mediation of the order parameter a, - In the
molecular fTield approximation for the transition temperature

one Tfinds

T J_ 23 __ q= 123 $ 1. (9.12)

The estimations obtained in the case of weak tunnelling

2 2 2 .2
It < Jo ; Fres  T"aa "sa~ "o ° A/B) correspond to the results

of the Section 5. (for TQ « 1, therein) , namely



> g < Uu . (9.13)

Note, that the phonon excitations do not play an essential role

in this case, since < u%> < }%

b) Displacive transition

. _ - - 2
When the-temperature 1is raised the atomic fluctuations < u
can not be neglected and the character of the coupling could be

changed, 1.e. oy, > A (even for < A) , thus leading to

>

the displacive phase transition [A(TO) o and rg(To)eﬂ ; rg(ﬂ)) =

= A/B ] <= 1In the classical limit of high temperatures

A(To) =0 , <uz> =-] 8§, (9.14)
while in the strong-coupling limit < u% > ~ T/mm% ~ 1/vo and the

transition temperature is estimated as

T~ 4 o, (WB). (9.15)

A similar result have been obtained in Section 5.

10. THE MODEL AND THE RESULTS OF NUMERICAL CALCULATIONS

For the trial wave functions in Eq. (8.6) with the renorma-
lized (A =mA) double-well potential in (9.1), we assume
the linear combinations of the ground states of the ,left” ()

and ,,right”™ () unperturbed harmonic oscillators
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f 2(1 = P} O = & O (lo.1)

@ = vy zr) 5 4,0 = @M ~ exp(-rz/2a2);
(10.2)

az = 1/uuw : w2 = k/w , rz2= (A/B) ,(-«=1).

Here p is the overlap and the harmonic force constant is

taken to be k = 2A (in the approximation of a strong particle
localization). By performing corresponding calculations one
finds

~2
={t+ M pPp @ dr = exp { - AW/2 } = exp (-1/1)= (10.3)

\ _ n _ 2,2 _ o (10.4)
2 A2/B /72 (1-3 y) 3/
where the temperature independent quantum parameter characte-
rizing the zero-point vibrations, J'IO = wy /(A2/B) ;B lfaluw
2
is introduced and y = (B/A) < > 1s the reduced average

quadratic ,fast" displacement, after Eqg. (9.5).

Consistently, for the parameters of the pseudospin

Hamiltonian (8.7) the following expressions are obtained;

/1- 3y

q = a+f > (10.5)
4/2 B @ - pr2)

15,a= *o/(1-p2) * r2 = (A/BY(I-3y), (10.6)
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(10.7)
N = v~-vrv {1 +\ n = p
aa

and the reduced average quadratic ,,slow"” displacement (9.6)
becomes
r = < {fa+i1iiVv) _ po }. (10.8)

A I _zp o X

To explicit the reduced average quadratic ,fast" displacement

(9.5), the spectral density of phonon frequencies is introduced.

g(v) = 2 A - v2 v = A?m (10.9)

so, that
Yh-f V
y = 1 y _avgM coth (10.10)
-1 2/ N-f \% 2 e
0
KBT

f = ] /a O =

8 o a2/B
and

L=-1+3(Cy+r1) (10.11D)

being a gap iIn the phonon spectrum.

Finally, owing to Egq. (10.6), the spontaneous polarization

of the system is simply expressed as

P = r., > r _a_=1m120o0 (10.12)
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where

n = {1-—L }h. (10.13)
1-P

Both the ,,order-disorder™ (oz) and the ,,displacive”™ (n) order
parameters have to be found as a self-consistent solution of
Egs. (9.10), (10.3)-(10.11). For a given set of the reduced

energy parameters (Aqg , TQ) the competition of these order

parameters determines the character of the SPT.
a) The quantum limit of zero temperature.

At zero temperature Eqs. (9.10), (10.10) become

(10.14)

dv_/1 -vz2,
mw/ A - fov

(10.15)

As i1t easily seen from Eq. (10.14) , a" > O it £ < Jq

Using Eq. (10.15) one obtains the condition on Aq

n @ + Ac) (@ - 3yo) = 1, (10.16)

which defines the maximum }'I0 (AC) at which a >0 is still
possible. In a simplified case, when yc< j , the graphical

solution of Eq. (10.16) gives

Ay g = W/mn (374 1), (10.17)
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if A>AQ ,az =0 even at zero temperature. The order para-

meter n can also vanish at T = OK. Using Egs. (10.10), (10.1D)

one obtains

=2 /f= . (10.18)

In such a way the zero-point vibrations can destroy the ordered ground

state at T = OK, both iIn the pseudospin and the phonon sub-

systems. One can expect that Pg vanishes either in or in n»
depending on the mutual competition between AO s and A0 ph

i.e. on the lesser of them two. The estimates are given in

Table 1.
Table 1.

fO 0.05 0.10 0.50

Ao,s 0.37 0.50 2.50

AQ, ph 0.44 0.62 1.40

b) Result of numerical calculations

The system of the self-consistent equations (9.10),(10.3)
- (10.11) was solved numerically for various f0 and AO [21] .,

[22] . 1t can be observed that the above estimates are in good

agreement with the numerical calculations.
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11. CONCLUDING REMARKS

We have developed a novel approximative scheme which takes
into account simultaneously all the intriguing features of the
structural phase transition, 1i.e. the statistical order-disorder,
the tunnelling and phonon oscillations in the frame of only one
universal model. Our model description is based on the assumption
that the Ilocal normal coordinate can be decomposed into a slow
»tunnelling (hopping) displacement”™ and a phonon-like one.

In consequence, the energy spectrum of coupled quartic oscilla-
tors is represented as low-lying strong anharmonic excitations
(due to the tunnelling - in distinction from Ref. [18], where
the pseudospin-flip-type motion 1is associated with the classical
transfer across the barrier) and higher phonon like excitations,
rather weak anharmonic interactions of which being described 1in
the renormalized harmonic approximation. However, since the
energy spectrum of a particle in a local double-well potential
has quite a complex structure [18] , [34] such a separation has
merely an interpolatory character, 1i1.e. being physically inappli-
cable for a temperature region KkRT ~ fi ~'ftgy - In particular,
one could expect a more complex renormalization of the pseudo-
spin parameters in real order-disorder compounds, especially
when the excited atomic states lie in the critical temperature

region, KT ~J ~ "o

Besides the theoretical and numerical analysis presented,

it should be pointed out that our new model reveals satisfactory



the essential features both the order-disorder and displacive
type structural phase transitions at finite and zero tempera-
tures. The true quantummechanical situation, i.e., the tunnelling
(local or effective) motion of active atoms is treated properly
with respect to the approximations applied and limiting cases

considered.

Concluding this lecture, it is our belief that the present
model, as analyzed by means of a more accurate self-consistent
procedure, 1in addition to its extension in the spirit of the
central peak dynamics [19] and solitary waves [35] , [36] ,
could complete the analytic description of the critical dynamics
and yields deeper insight into the nature of the structural

phase transitions in general.
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express his gratitude to the Silezian State University, Katowicze,

for hospitality.
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