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ABSTRACT
The unified model theory describing both the "order-disorder" and dis- 

placive" ferroelectric phase transitions is investigated by introducing the 
model pseudospin-phonon Hamiltonian. In the second part using the concept of 
local normal coordinates the tunnelling is also taken into account. On the 
basis of the self-consistent phonon-field and molecular-field approximations 
a complete system of self-consistent equations for two order parameters 
(average displacement of active atoms and average population of atomic equi­
librium positions) is obtained. The qualitative discussion as well as the 
numerical analysis show that the ferroelectric phase transition (first or 
second order) can be either the order-disorder, displacive, or mixed type, 
depending on the dimensionless coupling energy between the atoms in the model 
Hamiltonian.

АННОТАЦИЯ

Предложена обобщенная модель для описания сегнетоэлектрических фазовых 
переходов как типа "порядок-беспорядок", так и типа "смещения". Во второй 
части эффекты, связанные с туннелированием, также учтены. На основе приближе­
ний самосогласованного фононного поля й молекулярного поля получена самосог­
ласованная система уравнений для двух параметров порядка /среднего смещения 
активных атомов и средней заселенности их равновесных положений/. Качествен­
ный анализ и также нумерическое решение уравнений показывают, что сегнето- 
электрический фазовый переход /первого или второго рода/ может быть как типа 
порядок-беспорядок, типа смещения, так и смешанного типа в зависимости от ве­
личины безразмерной энергии связи атомов в модельном гамильтониане.

KIVONAT
A ferroelektromos fázisátalakulások tárgyalására egy általánosított mo­

dellt javaslunk, amely egyaránt jól leírja a rend-rendezetlen tipusu és a 
rácstorzulással járó fázisátalakulásokat. A tanulmány második részében az 
állapotok közötti alagutazással kapcsolatos effektusokat is figyelembe vesz- 
szük. A self-consistent fonon-tér és molekuláris tér közelítéseket alkalmaz­
va a két rend-paraméter - az aktiv atomok átlagos elmozdulása és egyensúlyi 
helyzeteik átlagos betöltöttsége - meghatározására egy self-consistent 
egyenletrendszert nyerünk. Az egyenletrendszer kvalitatív vizsgálatából, 
éppúgy mint a numerikus számítások eredményeiből láthatjuk, hogy az atomok 
redukált kötési energiájától függően lehet ferroelektromos fázisátalakulás 
első-, illetve másodrendű és rend-rendezetlen tipusu rácstorzulással járó, 
vagy kevert tipusu.



1. INTRODUCTION

It is generally assumed that there are two basic kinds 

of phase transitions in ferroelectrics, one being the 

"order-disorder" type and the other being the "displacive" 

type (see, for instance, [1] ). In the former case the phase 

transition results from a statistical disorder of active 

atoms among several (in the simplest case, two) equilibrium 

positions, as determined for each cell by the remaining atoms.

In the latter case the phase transition is caused by lattice 

instability against a certain atomic vibrational mode. Never­

theless, it has been shown in the last several years that both 

types of ferroelectric phase transitions can be described 

within a single model and that there are not essential diffe­

rences between them [2] - [7] . In the simplest case this 

model is described by the Hamiltonian which is expressed as a 

sum of single-particle energies, as determined by double- 

-minimum potential wells, and the harmonic couplings between 

active atoms in different cells. Then the character of the phase 

transition depends on the ratio of the harmonic coupling 

strength and the height of the single-particle potential barrier. 

The nature of the phase transition described by such models 

was examined approximately by applying both the Curie-Weiss



2

molecular-field method and the self-consistent phonon-field 

method [2] - [8] . It was shown [7] by comparing the

results of both methods that for a weak lattice coupling the 

character of the phase transition is closer to the order-disorder 

type, which is more consistently described by the molecular- 

-field approximation; for a strong lattice coupling the phase 

transition has to be related to the displacive type, which can 

be reasonably described by the self-consistent phonon-field 

approximation. Such a consistent description can be understood 

under the circumstances that in the order-disorder transition 

statistical fluctuations of active atoms onto their equivalent 

equilibrium position play the main role, which is accurately 

enough described by the pseudospin model [1] , [9] - [15],

while in the displacive transition the dynamical correlations 

of atomic displacements turn out to be more essential, so the 

self-consistent phonon-field approximation is more efficient.

However, for a complete description of the ferroelectric 

phase transition one has to take into account both mechanisms 

simultaneously in the frame of an universal model. Note, that 

such a physical concept is essentially different from that con­

tained in the model where the pseudospin-lattice interaction is 

introduced so as to comprise more adequately the dynamics of 

hydrogen-bonded ferroelectrics [13] - [15] .

In the present lecture a general model for ferroelectric 

phase transitions [16] , [17] is discussed by introducing two

order parameters associated with the motion of active atoms:
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the average population o^iT) for one °f two equilibrium

positions (a = +, -), as determined by the pseudospin approach,

and the average displacement na (T) with respect to the center

of the cell, which is determined by the self-consistent phonon

scheme. As a consequence, the ferroelectric phase transition

can be either of the order-disorder type, when о (T ) = a (T ),+ c — c
or of displacive type, when n+ (Tc) = n_(Tc) = о , but it can 

also have a mixed character, depending on the relations between 

energy parameters introduced in the model (Section 2 - 7).

However, in the first part of this lecture the single- 

-particle tunnelling motion of active atoms has not been expli­

citly taken into account. The incorporation of the tunnelling 

motion as an additional degree of freedom leads to collective 

excitations which may have a soft mode character [11] or cause

the appearance of a central peak [18] , [19] . Since the

tunnelling energies (of the order of the ground state quantum 

splitting) are usually much smaller than the characteristic 

phonon energies, the role of such excitations is predominant

at low temperatures (fi v к T ) . On the other hand in additionВ
to a renormalization of the pseudospin-energy parameters of the 

De Gennes type [9] , the higher phonon excitations can lead to 

the structural phase transition of the displacive type (against 

a certain vibrational mode) at higher temperatures. So, in the 

second part of this lecture we take into account self-consistently 

(within the variation approach of Bogolyubov [20] ) the exci­

tations of both types (displacive and order-disorder) - so as to
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comprise both the tunnelling and the higher phonon oscillations 

of active atoms in the frame of a hybridized pseudospin-phonon 

model Hamiltonian, separated in corresponding variables. This
ч

is achieved by representing the cooperative atomic motion as a 

slow tunnelling process among several (in the simplest case, two) 

equilibrium positions in addition to familiar phonon-like 

oscillations around some momentary rest position [21] . On the 

basis of the self-consistent phonon-field and the molecular field 

approximations a complete system of coupled equations for two 

order parameters (average displacement n ъ r , and averageS ä
localization a ) is obtained. A qualitative discussion as 

well as a detailed numerical analysis [21] , [22] show that the 

ferroelectric phase transition (of first or second order) can be 

either of the order-disorder, or of the displacive or of the 

mixed type, depending predominantly on the ratio of the two- 

-particle potential to the single-particle one and, in a lesser 

degree, on the ratio of zero-point vibrational energy to the 

height of the single-particle potential barrier. The possible 

structural phase transition of both types at zeroth temperature 

(quantum limit) is also discussed (Section 8 - 11). 2

2. MODEL HAMILTONIAN

It is usually possible in describing ferroelectric phase 

transitions to separate a group of atoms whose character of mo­

tion depens essentially on temperature, so that one could 

attribute them to the occurrence of the phase transition. In 

doing so the action of remaining atoms is replaced by an average
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static field, to a first approximation at least. Therefore we 

shall consider a simple model where only the motion of active 

atoms is taken into account:

P2
H = I ( — 1 + V (R , ) ) + у I Ф(£ - £.) . (2.1)i 2m 1 2 i 3

Here Pi and Ri designate the momentum and coordinate referring 

to the active atoms, and V(Ri) is a single-particle potential 

coming from remaining atoms, whereas Ф (R^ - R_,) is the potential 

of the pair interaction between active atoms in different cells.

P. and R. can be also considered as local normal mode coordinates, 

describing the critical dynamics (see [1], [30]), as in Section 8.

The potential V(Ri) may have two or more minima which pro­

vide the possibility of occupying for active atoms those states 

in the cell. For simplicity, let us assume that there are only 

two states in each cell, so the atomic coordinate may be repre­

sented (below the transition temperature) as follows:

■ * ■ - *  + ->+ - - R. = £ .  +o. S. +o. S.i l i i  i i
(2.2)

Here designates the center of the cell, and = 1 or >0

and oi = l - o ^ = 0  or 1, according to whether the atom 

occupies the + or - state, respectively. The projection ope­

rator itself can be expressed by the pseudospin operator

1
2 (1 + ao.) , (2.3)

which is introduced as an independent variable, commuting with
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the atomic displacement (s“) and momentum p“ operators. To 

elucidate such additional pseudospin degree of freedom one has 

take explicitly account of tunnelling effect being described 

by x-component of the pseudospin operator [23] .

-*aThe atomic displacement in the state a , Si , can be
rywritten as a sum of a static displacement b^ and a thermal 

fluctuation u“ ,

l (2.4)

where the symbol < ••- > stands for a statistical average with 

the Hamiltonian (2.1). A generalization and further discussion 

of the representation (2.2) - (2.4) will be given in Section 8.

Therefore the representation of the atomic coordinate, as 

given by Eq. (2.2), enables one to take into account, at first, 

the atomic random distribution over two equilibrium positions 

in the cell, using the operator o“ , and secondly, the thermal 

atomic fluctuation u“ in the neighborhood of a given equilibrium 

position. In describing order-disorder phase transitions the 

latter variably are usually neglected, whereas in describing 

displacive phase transitions it is assumed that all atoms have 

the identical equilibrium positions in the cells (a = + or 

a = - ); thus the operator a“ takes the same value at each 

site i. In our generalized model we will be able to study
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both types of phase transitions using the full representation

(2.2) . Such a physical picture is in agreement with recent com­

puter simulations and it is also appealing for reason of uni­

versality [18]. It should be pointed out that the representation

(2.2) for atomic coordinates as a sum of pseudospin and phonon 

variables was proposed by Vaks and Larkin [47] in their dis­

cussion of order-disorder type structural phase transition (see 

also [1], § 6.). We generalize their representation to consider 

as well the displacive type phase transition.

Having inserted the expression (2.2) into Hamiltonian (2.1),»
we can write it as follows:

H = l oj
i,ot

{ 1
2m

+a 2(P“> + У(£± + s“) } +

♦ £  A a a .X a? Ф 
3 < v -*■ ■+■« ->я 

i . + S? - S . ) 
3 1 3

ot,3

(2.5)

The equilibrium positions of lattice atoms b^ = < > are

determined using the equilibrium condition in the form

i (Э/Э t) < P“ (t) > = < [ P“ H ] > = О ,

which leads to the equation

Э S7 x
v u . + s ) > +

(2 .6)

+ I < at
j»ß Э s

-v -*-a -VQ- Ф (£ . - Ä, + S ~ SP) > = 0 a 1 3 1 3
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Furthermore, since the atomic displacements with respect 

to the center of the cell are usually small, | | « 1  - |£А~£_.| ,

the potential energy in Eqs. (2.5) and (2.6) can be expanded in 

terms of displacements as follows

V (£.+ S?)l l 1n=o
1_ 
n ! ■+ £ ,

V(£ . ) (2.7a)

-*■ - *  -*-a  -> -QФ ( £ . - £ . + Sj - S . ) =
1 3 i 3

OO

n=o Э £.
->• -> 
£.-£.) . 1 D

(2.7b)

To the lowest approximation it suffices to keep only the 

first few terms, thus writing the single-particle potential in 

the form

V( £i+ S“) = У(£±) - J A (S? ) + J B(s“) (2 .8)

where the parameters A and В define, respectively, the
2height of the potential barrier Uq = А /4В and the distance 

between the two minima 2S = 2(A/B)
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It is sufficient to take into account only the harmonic 

terms in the pair interaction (2.7) ,

Ф (1.-1. + 1 3
->-« -b -УSP) = Ф (£.-£. ) 3 1 3 (2.9)

by taking ф ' (jL  - £ ) = 0  . Moreover, in agreement with [5] and 

[7] we will assume that atomic displacements are experienced 

along a given crystal axis (a one-component order parameter), 

although the full spectrum of optical lattice vibrations is 

referred to a three-dimensional case. The part of the Hamiltonian 

(2.5) which depends on atomic displacements in the present 

approximation takes the form

г a > 0 •. ** l l/Ot { к -+0, 2 (P“) - $  <

7 .1. °if 3
° cB 1 3

1 tФ. , 3-3 I
a,3

ot 2 в -»-a 4
•;> + I <si> > +

■►r 2 s i>
(2.10)

The equilibrium conditions (2.6) for this Hamiltonian, 

using the molecular-field approximation for the pseudospin sub­

system and assuming its independence of the phonon subsystem

< cB (S°-Se) > . < S“ >3 1 3 1 - 1 < SP > = (b -b ) 2 a -a -a
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may be written in the form

3 -vAb + B< (§“) > + (b - b ) о I *'• -a i a -a -a “ 13 = О (2.6а)

Having chosen the positive direction of the displacements along 

the axis b+ and using the approximation

. 3 + ,.a. . 3< (Sa) > = b + 3b < (ua) > ,1 a a i

the equilibrium conditions may be represented by

n - (1 - 3 у ) n + (n + n ) f о = 0 . a a a + о -a (2.11)

Here the dimensionless quantities are introduced

= (В/A) b^ ; ya = (B/A) < (u“) >

f+q
_ 1 г 1 '
- Ä 0ij 6 ’ fO = f-y q = o

(2 .12)

and the average population of the state a

о = < a . > =a 1 —  (1 + aa) , (2.13)

in the agreement with the expression (2.3).
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The analysis of the equilibrium conditions (2.11) shows 

that in addition to the zero solution n+ = n_ = о , correspon­

ding to the paraelectric phase, the solutions na ^ ° also are 

possible. In the case of small values, f << 1 , there can exist

two equilibrium positions, the magnitudes of which are close to

one another (n - n = of < < 1 ) ,  and there also exists the+ - о
solution o = o ,  corresponding to complete disorder for an 

order-disorder phase transition. For values of the coupling 

parameter f £ 0,25, only one nonzero solution can exist at 

all temperatures, for example, n+ ^ о (for complete atomic 

order, a = + 1). In this region of the coupling parameter only 

a displacive phase transition is possible.

3. PHONON SUBSYSTEM

Let us determine the phonon spectrum and average values of 

the atomic displacement correlation functions using the Green's- 

-function method developed in the theory of strongly anharmonic 

crystals [24] , [25] . Consider a displacement-operator Green's 

function of general type

«  ui (t) ; u (t ) »

(3.1)
00 düű 

2 7T
-iu) (t-t' )/

where ordinary notation is used. The above Green's function des­

cribes the atomic displacement correlations at the lattice sites
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i and j, in arbitrary states, because here it is u^ = a* u * +

+ a” u~ . Let us also introduce the Green's function for a fixed 

atomic state a at the site i by inserting o? = 1 :

D . . (t-t')= «  u “ (t) } u.(t') »  , (3.2)
1 \ a / / J 1 j

which is necessary for the definition of an average quadratic 

atomic displacement in the state a ,

2< (u”) > = / coth 0) ■ (- — Im D, . . . (w + ie) )2k T ir i (a) , iВ
(3.3)

Taking into account that the Green's functions (3.1) and (3.2) 

contain the statistical average with the full Hamiltonian (2.10), 

thus including also the average over all atomic states, and since

those functions depend only on the difference between the atomic
—̂coordinates S. - S. - l. - £. , we will write their Fourier 1 3 1 3

expansion in terms of the reciprocal lattice vectors <5 as 

follows:

D . . . . ( Ш) = 77ГГ
1 (ül) , 3 NA

iq(t.-t,>
l e  1 3 D“ (ш) (3.4)

The equation of motion for the Green's function (3.2), using

Hamiltonian (2.10), has the form
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- т Ь  - ‘ и  -at

- (A - I Ф «  s“ ; u ,(t') >> + В << (s“) ; u (t' ) » (3.5)

t f
♦i*~ S.lt'l >>

The Green's function << o7 > u,(t’) >> on the right-hand side 

describes the correlation of atomic displacements at sites к 

and j under the condition that the atom at the site i is in 

the state a [ = 1 in Eq. (3.5) ]. However, since k^i in

the sum (3.5), it is possible to neglect the correlation between 

the states a and у for atoms at sites к and i , thus annihi 

lating the latter condition, i.e., it is possible to use the 

molecular-field approximation for the pseudospin subsystem.

In addition, having used the approximation of independence 

between the phonon and pseudospin subsystems, we obtain for the 

present Green's function the following relations

<<

= < aYк > << >>

(3.6)

Now having inserted s“ = b + u“ in the Green's function and 3 1 a i
using the renormalized harmonic approximation [24] , [25] ,
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3 -*■ 7->av 2 -+a«  (ui) ; u  ̂ >> “ 3 < (u±) > << ui ; Uj » (3.7)

for the Fourier component of the Green's function in Eq. (3.5), 

one obtains

{ m a.2 + A( 1-f ) - 3 В [ b2 + < (u“)2 >]}D. , (m) =о a i i (a ) , j

’ {lj - Í *ll °Y " м , м ы  •T

We can use the expressions (3.4) and relations (2.12) to solve 

the above equation, so the Green's function (3.2) becomes:

(3.8)

Da (v)
2 2v - V-a

2 2 2 2 2 (v +v+ ) (v -v->- ) - a a f-+q+ q- + - q

2 2V - V-a
, 2  2 . .2 2 .(v -v?1) (V -v?2)

where we introduced reduced frequencies

(3.9)

2 2 /, - /M. 2 . 2 , ^ 2 2 * v = ш /(A/M) ; v = A + f ; v - + - = v  - a f-*-a a о qa a a q (3.10)

The gap appearing in the phonon spectrum is determined by

the Eq.:

A2 = 3(n2 + у ) - 1a a ■* a 1 (3.11)
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whereas the phonon frequencies v in expression (3.9)
q (+,-)

correspond to atomic vibrations in „right-hand"(+) or „left- 

-hand" (-) equilibrium positions.

If disorder is present in the system, the phonon spectrum 

as determined by the Green's function poles has two branches,

2
(1,2) ' + v; ) ±

q+ q-

2V - f

2 2 о v‘ ) + (1- a 2 ) f2
q+ q- q

(3.12)

However, in a limiting case of a complete order, for instance, 

o + = 1 and o~= о , Green's function (3.9) becomes

D+ (v) = [ v2 - (Д2 + f - f П " 1 , (3.13)-*■ + о ->q q

thus having only one pole, which corresponds to the vibrations

of all atoms in the „right-hand" positions. For о = о the number

of atoms in both states becomes equal to each other, o+=o = j ,
2so an average field at each site takes the same value: Л+

2 2* Д_ = . Therefore the phonon speclyrum in this case is also

determined by a single frequency being the pole of the following 

Green's function:

D® (v) = [ v2 - ( Д2 + f - f ) Г 1 .о о -> (3.14)
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Hence in both cases the soft mode emerges when the single-
2-particle gap (3.11) vanishes, Да о .

The Green's function of general type (3.1) which can be 

obtained from Eq. (3.9), using the approximation (3.6), evidently 

has the same properties.

The self-consistent equation for the phonon subsystem can be 

represented according to Eq. (3.3) in a high-temperature classi­

cal case, in the simple form

where

T kB T 
(A2/B) *

is the reduced temperature.

It is convenient to pass from the summation over vectors 5 

in the first Brillouin zone to the integration over frequencies
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by introducing the frequency spectrum density

g( w2) - 5  l 6(£o - - “2) (3.16)

Taking into account the expressions (3.10) and (3.12), Eq. (3.15) 

can be written in the form

» . ■ '  / * 7 ^  f fo ) 'о P + Q ü)
(3.17)

where the following abbrevations are introduced

P = Д2 Д2 + f [ Д2 \ (1 + o) + Л2 \ (l-o)]+ - O + 2 - 2

Q = f + Д2 \ (l-o) + Д2 I (1 + o) . 0 + 2  - 2

(3.18)

Performing the integration in (3.15) in the case of zero 

temperature, when coth(o)/2 к т) = 1 , taking into account (3.9)В
one obtains in the quantum limit

Уa
2(VSl * Vq21

1 +
2Д + -a fо

V3l V32
(3.19)

L 2where X = (А/m) V ( A  /В) is the quantum parameter, proportional 

to the ratio of the energy of zero point fluctuations, *hu>o = 

=*h(A/m) ̂  and the height of the barrier in the one-particle 

potential well, Uq = (A2/4b ) .
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Now substituting ya [ Eq. (3.17) or Eq. (3.19)] and Д^

[ Eq. (3.11)] in the equilibrium condition (2.11) we arrive at 

the self-consistent procedure to determine the order parameter 

n+ , provided that the order parameter a has been found indepen­

dently from the analysis of the pseudospin subsystem.

4. PSEUDOSPIN SUBSYSTEM

In order to consider the pseudospin subsystem it is con­

venient to rewrite the Hamiltonian (2.5) in terms of operators 

oi (2.3) as follows:

Here H^ is independent of a± , and the single-particle „field" 

has the form

H = H + H
£ s

(4.1)

(4.2)

h iie(1/2m) (̂ i)2 + v(*i+ s p (4.2a)

where

(4.2b)

while the Ising-type exchange energy is defined by

# (4.3)
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- •  «*1 - *;>

То find the average value a - < a^ > we use the 

Bogolyubov variational method, assuming that the pseudospin 

subsystem can be described by an effective Hamiltonian which is 

not explicitly dependent on atomic displacement operators,

1
2 l a . D (4.4)

A similar approximation was used [26] to study the spin-phonon 

interaction in anharmonic ferromagnetic crystals. In this approxi­

mation the effective field and the exchange energy J\_. are

determined by suitable functions being averaged over lattice 

vibrations,

hi < h i >£ J. . = ID

For the model Hamiltonaian (2.10), taking into account the 

solution of the Green's function (3.9) and the equality
■f C( 2< (P.) > a (k T)m , at high temperatures we can write these1 в

fields in the form

hx = (A2/4b ) [ i (a * - A*) - (nJ - ni)] , (4.5)

h2 = - (A2/4B)(1/Q) [P(y+- y_) + T (A2- A2)] . (4.6)
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As can be easily seen h = h.̂  + h2 plays the role of a mean 

field caused by thermal atomic vibrations (when т -»■ о , h -* о) 

which tends to zero if о -*■ 0 . The effective exchange energy

itself is defined by the equilibrium atomic positions,

J ±j = (A/4B) ф”  <п+ + n.)2 , (4.7)

so that above the structural phase transition, when n+ = о , 

becomes zero, leading to the unique solution a = о .

Using the molecular-field approximation for the order parameter 

a we obtain the following equation:

Jo - h
о = tanh ( ■ -T-  ) i J = l  J , (4.8)

в j

or having accounted for the definitions (4.5) - (4.7), its 

explicit form becomes

о = tanh { 1 / с  I 1 / 4  4 » 1 /  1 4 .  4 1—  (о f (n +П ) + (П , - П ) “ -r (A. - A ) +4 T o +  - + - b + -

+ Q [ P(y+ -

(4.9)
У_) + T (Д^ - A_) ] } }

In doing so the system of self-consistent equations for 

the parameters n+ [ Eq. (2.11) ] and a becomes complete where

the quantities y+ and are defined by the suitable function

(3.17) and (3.11) respectively.

In the quantum-limit, T=0K, an unique solution, o-= 1 

appears (if 1 ij > о , h± > o). The effect of tunnelling bet­



21

ween states a = + 1 and a = - 1 , suggested in [23], makes it

possible to generalize the Hamiltonian (2.5) and to introduce in

(4.4) the transverse field, ft £ o* , which in turn may lead
i

to the solution a -*■ 0 in the case T = OK .

In addition, we quote the expression for the spontaneous 

polarization, which is dependent in the present model not only 

on the atonic order but also on the atomic equilibrium positions, 

i.e., it is determined by both order parameters n+ and a .

In dimensionless quantities, the spontaneous polarization is given 

by

ps
1

i <!>i a ' (< °iN

1 (n+ - n_) + \2

> - < a

(4.10)

If T = o , then it follows that a = 1 , so the polarization

takes its maximum value P = 1 ; but if a о , then it iss
clear that P -»■ о .s

5. THE CLASSICAL LIMIT OF HIGH TEMPERATURES

In the general case the system of self-consistent equations 

obtained for the order parameters n+ and a can only be solved 

numerically. Nevertheless, even a quantitative analysis of equa­

tions - in limiting cases - enables one to draw some definite 

general conclusions.
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At sufficiently low temperatures, т << т (т is thes s
lattice-instability temperature), it is possible to neglect 

the influence of lattice vibrations on the pseudospin subsystem 

and cosider only Eq. (4.9), with n+ = п. = 1 • In this case 

we have just the well-known Ising model from which the phase 

transition of the order-disorder type (second order) takes place 

at temperature тк = fQ [using the molecular-field approximation 

in Eq. (4.9)]. As we will see later this result holds only if

f << 1 .о

By neglecting the temperature dependence of the parameter 

o (t ), hereafter, we consider the limiting cases a = 1 and о = 0.

If a = l ,  for the quantity Д2+ ■•= Д2 (т) , from Eqs. (2.11) , 

(3.11) and (3.17) (in the ferroelectric polarized phase n+ = n^o), 

we obtain the following equation

42 - 2„2 - 2 - 6 T J 9 ("2) d"2 . (5.1)
о Д + ш

The solution of Eq. (5.1) was examined in a number of papers 

(see, for instance [5], [7] and [8]), where it was shown that 

if the self-consistent phonon-field approximation is applied, then the 

phase transition becomes of the first order with two characteris­

tic temperatures, one being the soft-mode temperature t c , when 
2Д = o , and other being the temperature at which the ferro­

electric phase instability occurs (the overheating temperature)

T . From Eq. (5.1) for the soft-mode temperature we get the

estimate
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t
Л
*«

t

)

fо
Зц -2

(5.2)

where the index (1) corresponds to о = 1 . The constant

7 f° / 2, , 2 _ f°
M-2 “ / —  д(ш > dw = < ~T >ш 'О Ш Ш

depending on the type of cubic lattice, is equal to 1.5 - 1.3 . 

For the second characteristic temperature , in the case of

f «  1, we haveО

T (1) « i (1 + f ) . (5.3)s 6 о

Note, that the limiting value т = т1 , when f -> о , is not

related to the phase transition, although it has an entirely

defined physical meaning? the average kinetic energy of active

atoms at this temperature is equal to the height of the potential 
3 2barrier: -я- к T = А /4В . In the case f >> 1 the estimation 2 в s о

of the temperature т , using the Debye spectrum model, givesS

x(1)= T {1) (1 + 4 -  ) ■ t (1)(l + -i- )s c 2 c 2 fо
(5.4)

If a = o for the quantities = Лд(т) an<̂
2 2= nQ (T) the self-consistent equation yield

42 - 2n2 - f - 2 - 3 f - 6t / о о о о - ' . 2 2о А + ш о
(5.5)

This equation can be solved only if fQ < — , whereas in the
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region fQ << 1 the phase transition described by this equation 

has the same type as follows from Eq. (5.1). For the characte­

ristic temperature we get

(o)
3p d  - f f ) = (1 - §- f )о c 2 о (5.6)

where the index (0) corresponds to a = О . Similarly as in the 

case of a = l  we get the following estimate for the insta­

bility temperature т ,

(о) JL
6 ( 1 - 2 fo ) if f «  о . (5.7)

The estimates obtained show that in the general case of an 

arbitrary value for the parameter о the temperature Tc (a)

falls in the interval within the values (5.2), (5.6), and т (a)s

is determined by relations (5.3), (5.4) and (5.7). Besides

the large hysteresis value (t - Tc)/Tc ü 1 corresponds to small

values of f : f <0.2 for о = О , and f <0.25 for о = 1; о о о
in the case fQ >> 1 the hysteresis value is small, in agree- ^

ment with the estimates based on Eq. (5.4) and cosistent 

with [5] , [7] and [8] . It follows from these estimates that *

the order-disorder phase transition is possible only for small

f :о

t, < if f < 0.12 , (5.8)к s о
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if one estimates t, = f . At higher values of f the latticeк о  о
instability breaks down the order-disorder phase transition, thus 

giving rise to the displacive phase transition: n j t  + т ) ->-0 . 

At values f > 0.25 , in agreement with Eq. (2.11), there is 

merely one stable atomic equilibrium position at each lattice 

site, so the displacive phase transition is the only possible 

type, as described by Eq. (5.1). Consequently, a mixed-type phase 

transition, as described by all three order parameters n+ (t) ,

п_(т) and a(t) may be expected only in the very narrow region

0.1 < f < 0.25 • (5.9)о

To confirm these general conclusions, the numerical solu­

tion of the self-consistent system of equations was carried out 

using the Debye model for frequency spectrum (3.16), g(u> ) v w , 

ш < u)D , and taking the values of the coupling parameter f =

= 0.1 , 0.12 and 0.15 . Numerical results for а(т) and п+ (т) 

are presented in Figs. 1-3. It can be observed that the above 

estimates are in good agreement with the numerical calculations. 

The temperature dependence of the spontaneous polarization (4.10) 

for different fQ is shown in Fig. 4. Note, that the region of 

the order-disorder phase transition (f < o.l), as compared to 

the ordinary Ising model, the spontaneous polarization is 

decreased more rapidly as temperature is increased due to the 

temperature dependence of the effective exchange energy:

J = f (n + n )2 .О + -
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Fig. 1. Temperature dependence of the 
order parameters: n , average 
displacement and a , average 
pseudospin value for dimension­
less coupling parameter
f =0.10 о

Fig. 3. Same as Fig. 1., for
f = 0.15 о

Fig. 4. Temperature dependence of the 
reduced polarization Pg for 
several values of the coupling 
parameter f .

Fig. 2. Same as Fig. 1., for
f = 0.12 о
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We note, that these features are also obtained by a more 

sophisticated calculation [27] based on the coherent potential 

approximation for the disordered lattice.

6. THE QUANTUM LIMIT (T = OK)

*

In this Section we will investigate only two cases, namely 

the case of the completely ordered, о = 1 lattice and the case 

of the completely disordered, 0 = 0  lattice [28]. Doing so, 

we will assume, that the right choise of the value of the trans­

verse field fi can ensure the transition from о = 1 to 0 = 0  

in the case of zero temperature: T = OK.

a) Displacive type phase transition in ordered lattices.

In the completely ordered lattice all the ions are in the 

same state, for example a = +1 and 0 = 1 . In this case the 

equation of self-consistency (3.19) takes the following form:

(6 .1)

where the density of the phonon frequencies (3.16) has been 

introduced.

Taking into account the, condition of equilibrium (2.11), 

in the case of 0 = l(o = o) we obtain one equation for the 

self-consistent determination of the equilibrium displacement n 

or the gap in the spectrum of the frequencies Д+ = 2n , in
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the ferroelectric phase:

2 . 3 .П = 1 - 2  X
2 2 g ( a) ) dm

J  2/ 2 n + (
(6 .2)

As it can be seen the solution of this equation for the
ferroelectric phase with n / о exist only if Л < X ... ,c (1)
where the critical value X .,. is determined byc (1)

Xc (1)
о

g (ш 2 ) dip2
01 (6.3)

Here у = ói 1 is the average of the inverse of the frequency;
2 3for the Debye spectrum g(o> ) = Зш/2ш^ ; y_1 = 3/2/2 = 1 if 

2wQ = 2fQ . Consequently, displacive type transition in ordered 
lattices can take place only if the lattice consists of sufficiently 
heavy ions, that is if

m > /Ф
3 n

O Aj “2
В-1

(6.4)

for a given coupling constant <pq between the ions and a given 

width Sq = /a/B of the one-particle potential well in 

accordance with reference [29] .

b) Displacive type phase transition in disordered lattices

Let us discuss the effect of disordering on the displacive 
type phase transition. Putting in (2.11) and (3.19) a ■*= О , 
corresponding to equal number of ions in the states a = +1 and
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2 2 2a = -1 and consequently meaning that Д = Д e Д ; n  = n = n+ - о + -
we get the following system of equations

2n 1 - f - 3y о f

У
1

A.
2

шо’ 2 2 g ( ш ) du
/ 1----- 2о 3+о<

(6.5)

(6 .6)

Therefore the self-consistent equation for the determi-
2nation of the gap, > о in the phonon spectrum in the case

of a = o  and n > о takes the following form

f = 2 о 3f о ЗЛ
о

g (a)2 ) dtp

о

(6.7)

Displacive type phase transition, n > о , can take place

if A < A , where the critical value of A is determined byc(o) 3
2the condition Д (A . .) = о , that isо c (о )

С (о) (1 -
2
2 V = Ac (1 ) u - f fo> (6.8)

Consequently, the occurrence of the disordering decreases

both the limiting value of the allowed energy of the zero-point

» fluctuations and the limiting value of the temperature of the

phase transition in the classical limit of high temperatures:

x(o) = (1 - (3/2) f } (5.6). However it has to be mentionedс с о
that the transition into the state о = о can take place only .
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if f << 1 , and therefore formula (6.8) is valid only if

f << 1 . In the case f > 1 , only the state with о = 1 is о о
possible and formula (6.3) is valid. In this connection it is 

interesting to note, that by taking into account the possibility 

of cluster formation in the displacive limit, f >> 1 , that is 

equivalent to the introduction of an inhomogeneous order para­

meter, n = n(i) / one can also decrease the temperature of phase 

transition. So one can claim, that the disorder in the equilib­

rium positions should diminish the temperature of structural 

phase transition.

7. SOME REMARKS

By comparing our results with those in Refs. [4]— [8] we 

emphasize an important adventage of the present description 

method for ferroelectric phase transitions by two order para­

meters. It enables one to choose various approximations: the 

molecular-field approximation for the parameter n(T) in Eq.(4.9), 

and the self-consistent phonon-field approximation for na and 

in Eq. (3.17), (3.19), which, in a manner consistent with Refs.

[5] and [7], offers a satisfactory description of the phase 

transition, both in the case f « 1  (order-disorder transitionО
of second order) and in the case fQ >> 1 (the displacive transi­

tion for the parameter n(T), of first order, close to second 

order), respectively. It is necessary to point out that the true 

order of the phase transition (first or second) cannot be pre­

dicted in the mean-field approximation (see, for instance, Ref.

[1]), so we will not discuss this question (see also Refs. [4],

[ 5] and [8]).
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8. THE GENERALISED MODEL HAMILTONIAN

In a model description of the structural phase transition 

dynamics it is convenient to use the representation of local 

normal coordinates [30] , [31] involving all active atoms in

the given critical mode vibration and to take a simplified model 

Hamiltonian in the form:

2 2
H = l { ------ - * IHS )> + i l V(S , S.). (8.1)

1 2" 1Л  3

Here m is the corresponding residual mass; the single-particle 

potential U (Si) and the pair interaction V(Sif S^) define the 

critical dynamics of a given crystal system (N different unit 

cells are labelled by the index i and their central positions 

by the vectors iL ) .

Our previous coordinate representation S. = У o. (b. +u. )l L xa ia la a
described the atomic random distribution (within the Ising model - 

through the projection operator aia = j (1 + ao. )), over two 

( a = +, -) equilibrium positions .(bia) as well as the thermal 

atomic fluctuations around them („left" and „right" phonons).

However, to elucidate more profoundly such additional pseudo­

spin degree of freedom (a. ), one has to take into account the1 z
inherent quantum mechanical effect manifested in a single-particle 

tunnelling motion of active atoms inside some (real or effective) 

double-well potential, which was fully missing in our previous
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Sections, and rather implicit in the approaches of other authors 

(see, for example, the relevant references quoted in Ref. [18]). 

For this purpose we suggested [23] the „left-right" represen­

tation of the model Hamiltonian (8.1) in the non-orthogonal 

pseudospin basis. However, in accordance with the exhaustive 

analysis of Beck [18] the more clear physical picture (and 

rather transparent procedure, presented hereafter) can be 

introduced by natural generalization of the traditional concept 

of atomic equilibrium states. Thus, a time dependent local normal 

coordinate may be decomposed into a slow tunnelling-like dis­

placement (ri) and comparatively fast superimposed deviations 

of the phonon type (u^ :

Such a representation holds under the „adiabatic" condition 

Í2 << t»o , u>o being a characteristic frequency of lattice vibra­

tions.

Having inserted the definition (8.2) into the general 

Hamiltonian (8.1), it can be written in a trial form, separated 

in corresponding variables

S.l r . +1 < u. > 1 0 . (8 .2)

Hо (8.3)

where

H (8.4)
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Hs = I ' ú  + ü(ri>> + 1 l c ij (ri - r3»:í í̂ D
(8.5)

*ij , C ̂  and U(r\) being the variational parameters and 

and pi - the canonical conjugate momenta to ui and r ̂ , respec­

tively.

For a strongly anharmonic motion described by Eq. (8.5) it 

is convenient to introduce the energy representation with respect 

to the ground doublet symmetric (f ) and antisymmetric (f )S 3
single-particle states

2 P .{ ^  + U (r .)} ¥ (r.) = £ V . (r.) , 2m l s,a l s ,a s ,a i ' (8 .6)

and going over to the pseudospin representation H is cast ins
the well known form of De Gennes [9]

H = s
„ V х 1 V -r Z Z- - ft ) a . -  —  I J .. a . o . +  v i  2 V 13 1 31 1 J J

Eо / (8.7)

where the energy parameters ft , J _ and Eq are simple functions 

of e , C.. and the matrix elements r = < a Ir,I ß > anda ij aß 1 1 1
2 2raa = < a I I  “ > (a, ß = s,a) , calculated with the wave func­

tions in Eq. (8.6);

Я = 2 (Ea - e ) + r Cs - o '

E = i ( e  + e ) + r 2 C о 2 a s + о I (8 .8)

J. . = 2r C . 13 sa tj »
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r± = Í (ra a ± r ss>'

C = l C . . о “ í jD

The variational parameters Ф , C „  and и(г^ are deter­

mined from the Bogolyubov variational approach [20] , namely 

from the condition of stationarity of the free energy,

F = F + < H - H  > ; (8.9)о о о

where

F = T An Sp о
- H

{ e o/T } , (8.10)

F -о HО
< H - H > = Sp { о e T (H - h o)} =

II
и-с̂

-з < U(ri + u±) > + hо 2 I <
ij

V(r + Ui ' r j

1оЛ•n0
+

- 1 i
< U(r.) > -1 О - 1 2 ID ♦ij 0A•r->•H3V 1

2 1 C. . < (r. - r. )2 > ij ^  X D o,

(8.11)

with respect to variations over these parameters or, equivalently, 

over the corresponding correlation functions, providing 

< p̂  ̂ Pi >0 = 0 * For variational parameters of the trial
Hamiltonian (8.4) in the pseudospin representation we obtain the 

equations:
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Ф . ID
б

б <u. u .> i D O
2 í < 0(г± + ut) >о +

+ I < V(r + u r . + u . D D
>o > /

(8 .12)

2r C, .sa l] „ z z6 <a . a . >I D O
<V(r. + u . , r. + u .) > .1 i j j о / (8.13)

and

6 <o.>„ i 1 о

У < U  ( г  . ) > =  — - - -  { У < U  ( г  . +  и . )V i o f 1 1б <о . > 1л. о
>0 +

— У  < V(r. + и ./ г. + и.)> - — У С. . < г22 b .  1 I D 3 о 2 i] 1ID J ID

(8.14)
2 2 ,
+ rj "o }'

The self-consistent system of equations (8.4), (8.5), (8.6)

(8.12)- (8.14) determines the phase transition of the model and 

describes the mutual influence of phonon and pseudospin subsystems, 

if the potentials U(si) and Vis^ s_.) are given.

9. THE STRUCTURAL PHASE TRANSITION IN THE FERROELECTRIC MODEL

Having chosen the single-particle double-well potential in 

the convenient form (2.8) and the pair potential in Eq (8.1) in 

the harmonic approximation (2.9); the Hamiltonian takes the form:

(9.1)

This model was in detail investigated recently (see, for example,
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[18],[32] ). The variational approach for this Hamiltonian yields

♦ij - 6 ij <4 + v  - n j '1 - « и *  1 2cij - »и . (9-2>

where

A = - A  + 3B(<u2 >o+ < r 2 >o) ;  Ф0 = [  <pij. (9.3)

The effective single-particle potential in (8.5) can be 

written in form

U(r.) » - I rj + I rj ; A = A - 3B <u2 >Q . (9.4)

The self-correlation displacement functions relevant for 

the nature of the structural phase transition are determined by 

the following approximative equations (of the RPA type)

2 1 г 1< u. > = ——  ) —--  cothl о N m  “ 2ш,к к 2kBT (9.5)

< r2 > = ^ [ (r2 + r2 ) + (r2 - r2 )< ox >] (9.6)l о 2 ss aa ss aa l >

where the phonon frequency is given by the equation

2 гтш, = Д + ф - ф ,  } ф , = ) ф . . e к o k к . in
J

- i k (1.-1.) 1 J
(9.7)

In the mean-field approximation one gets (see, e.g. [1], [33]):
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< x , zО .1 > оX, z
h X , z
h

th h
к T В

h = ÍJ x

(9.10)

Thus, the structural phase transition is described by the 

solution of the above self-consistent system of equations for 

two order parameters (a and r ) which, owing Eq. (8.6),Z S 3
can be obtained only numerically. Nevertheless a qualitative 

analysis for the limiting cases is possible.

a) Order-disorder transition

Analogously to the analysis in the previous Sections, in 

the weak coupling limit, i.e., in the temperature region when

Ф «  A = A - 3B < u2 > (9.11)о i

the order-disorder transition is possible in the pseudospin

subsystem through mediation of the order parameter a . In thez
molecular field approximation for the transition temperature 

one finds

Tc Jо
_ 2 3 __
*n Ií£ 1-q

q = Í2/J $ 1 .о (9.12)

The estimations obtained in the case of weak tunnelling
2 2 2 -  2(ft << J ; r ~ r  ~ r  ~ r = A/В) correspond to the results о ss aa sa о r

of the Section 5. (for fQ «  1 , therein) , namely
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ч> А
В «  U .о (9.13)

Note, that the phonon excitations do not play an essential role
2 ~  2in this case, since < u±> << rQ

b) Displacive transition

2When the-temperature is raised the atomic fluctuations < u >

can not be neglected and the character of the coupling could be

changed, i.e. ф >> A (even for <p << A) , thus leading toо о
the displacive phase transition [д(т ) о and r2 (T )->0 ; r2 (T ) =О о о о о
= А/В ] • In the classical limit of high temperatures

A(To) = 0 , < u2 > = -| § , (9.14)

2 2while in the strong-coupling limit < u± > ~ Т/шш0 ~ т /ф о and the 

transition temperature is estimated as

T ~ ^ Ф  (A/B) . (9.15)о 3 о

A similar result have been obtained in Section 5.

10. THE MODEL AND THE RESULTS OF NUMERICAL CALCULATIONS

For the trial wave functions in Eq. (8.6) with the renorma­

lized (A -+■ A) double-well potential in (9.1), we assume

the linear combinations of the ground states of the „left" (-) 

and „right" (+) unperturbed harmonic oscillators
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fs 2(1 ± p)} 4'+ (r) ± 4< (Г)О о (lo.l)

f+ (r) = 'V (r ± r ) ; 4» (r) = (а/тГ)  ̂ exp(-r2/2a2) •О О О /

а2 = l/шш ; ш2 = к/ш , г2 = (Ä/B) , ( - « = ! ) .

(10.2)

Неге р is the overlap and the harmonic force constant is 

taken to be к = 2A (in the approximation of a strong particle 

localization). By performing corresponding calculations one 

finds

~ 2
= { t+ (r) ip (r) dr = exp { - A } = exp (-1/Л) • (10.3)w/2

\ _ и _ 2 ,~2 _ о__________
2 A 2/B /2 (1-3 y) 3/

(10.4)

where the temperature independent quantum parameter characte-
2rizing the zero-point vibrations, Л = ш /(А /В) ; u> = /а / ш  ,о о о

2is introduced and у = (В/A) < > is the reduced average

quadratic „fast" displacement, after Eq. (9.5).

Consistently, for the parameters of the pseudospin 

Hamiltonian (8.7) the following expressions are obtained;

/l- 3y
Я =

4/2 В (1 - P 2 )
(1 + f >> (10.5)

r2s,a= *o/(1- p2) '* r2 = (A/B)(l-3y), (10.6)



40

Гзв = т ~ т т  { 1 + \  и  ± р)аа
(10.7)

and the reduced average quadratic „slow" displacement (9.6) 

becomes

r = В
A < {1 + i i i V )  _ po }.

. Z о Xl -p *
(10.8)

To explicit the reduced average quadratic „fast" displacement 

(9.5), the spectral density of phonon frequencies is introduced.

g(v) = 2 A - v2 v = U)
A/m

so, that

. г dv g (v) у = Л J —  ~ —  coth
-1 2 /  Л-f vо

У h - f  V

2 e

f n = ф „/ао о 0 = квт
а 2/в

(10.9)

(10.10)

and

Д = - 1 + 3 ( у + г ) (10.11)

being a gap in the phonon spectrum.

Finally, owing to Eq. (10.6), the spontaneous polarization 

of the system is simply expressed as

P = s
1
N Г . >1 r a = sa z П oz (10.12)
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where

n = { 1 ~--Ц }h . (10.13)
1 - P

Both the „order-disorder" (o ) and the „displacive" (n) orderz
parameters have to be found as a self-consistent solution of 

Eqs. (9.10), (10.3)-(10.11). For a given set of the reduced 

energy parameters (Aq , fQ) the competition of these order 

parameters determines the character of the SPT.

a) The quantum limit of zero temperature.

At zero temperature Eqs. (9.10), (10.10) become

(10.14)

У dv /l - v 2 - — — .. . •
тг/ A - f v о

(10.15)

As it easily seen from Eq. (10.14) , a^ > О if £2 < Jq . 

Using Eq. (10.15) one obtains the condition on Aq

^  (3 + Ac) (1 - 3yo) = 1, (10.16)
О

which defines the maximum Л (A ) at which a > о is stillо c z
possible. In a simplified case, when yc << j , the graphical 

solution of Eq. (10.16) gives

A = l/гп (3/4 f ) • (10.17)о , s о /
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if A > A Q , a z = 0  even at zero temperature. The order para­

meter n can also vanish at T = OK. Using Eqs. (10.10), (10.11) 

one obtains

A = 2  /f~ . (10.18)о , ph о

In such a way the zero-point vibrations can destroy the ordered ground 
state at T = OK, both in the pseudospin and the phonon sub­
systems. One can expect that Pg vanishes either in or in n »
depending on the mutual competition between A and A ,о ,s о,ph
i.e. on the lesser of them two. The estimates are given in 
Table I.

Table I.

fо 0.05 0.10 0. 50

Aо , s 0.37 0.50 2.50

AQ,ph 0.44 0.62 1.40

b) Result of numerical calculations

The system of the self-consistent equations (9.10),(10.3) -
- (10.11) was solved numerically for various f and A [21] ,о о
[22] . It can be observed that the above estimates are in good 
agreement with the numerical calculations.
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11. CONCLUDING REMARKS

We have developed a novel approximative scheme which takes 

into account simultaneously all the intriguing features of the 

structural phase transition, i.e. the statistical order-disorder, 

the tunnelling and phonon oscillations in the frame of only one 

universal model. Our model description is based on the assumption 

that the local normal coordinate can be decomposed into a slow 

„tunnelling (hopping) displacement" and a phonon-like one.

In consequence, the energy spectrum of coupled quartic oscilla­

tors is represented as low-lying strong anharmonic excitations 

(due to the tunnelling - in distinction from Ref. [18], where 

the pseudospin-flip-type motion is associated with the classical 

transfer across the barrier) and higher phonon like excitations, 

rather weak anharmonic interactions of which being described in 

the renormalized harmonic approximation. However, since the 

energy spectrum of a particle in a local double-well potential 

has quite a complex structure [18] , [34] such a separation has

merely an interpolatory character, i.e. being physically inappli­

cable for a temperature region kßT ~ fi ~ "ft g)q . In particular, 

one could expect a more complex renormalization of the pseudo­

spin parameters in real order-disorder compounds, especially 

when the excited atomic states lie in the critical temperature 

region, к T ~ J ~ "ftco

Besides the theoretical and numerical analysis presented, 

it should be pointed out that our new model reveals satisfactory
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the essential features both the order-disorder and displacive 

type structural phase transitions at finite and zero tempera­

tures. The true quantummechanical situation, i.e., the tunnelling 

(local or effective) motion of active atoms is treated properly 

with respect to the approximations applied and limiting cases 

considered.

Concluding this lecture, it is our belief that the present 

model, as analyzed by means of a more accurate self-consistent 

procedure, in addition to its extension in the spirit of the 

central peak dynamics [19] and solitary waves [35] , [36] ,

could complete the analytic description of the critical dynamics 

and yields deeper insight into the nature of the structural 

phase transitions in general.
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