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ABSTRACT

It is shown that a consequent treatment of local Lorentz invariance and
of the group of translations as a gauge symmetry group necessarily leads to
theories in which torsion has no place. It is also shown that the requirement
of symmetry under Lorentz gauge transformations leads to the emergence of the
conventional /7gR additive term, responsible for the effects of gravitation,
in the Lagrangian. It is thus proved that Einstein"s general relativity is a

unique consequence of the requirements of invariance under translations and
Lorentz transformations.

AHHOTALUMA

NMoka3aHo, 4TO MnocrefoBaTesfibHas TpPaKTOBKAa rpymnn JIOKa/IbHOW VMHBapUaHTHOCTU
JlopeHua n TpaHCnAuMM, KaK Ka/IMOpOBOYHYK CUMMETPUK, 06si3aTeflbHO npeBedeT TaKuM
TeopusiM, B KOTOpPbIX HET Kpy4deHusi. [oka3aHO Tawkke, YTO ec/M MnoTpedbyeM CUMMETPUI0
OTHOCUTENIbHO Ka/IMOpOBOYHLIM Mpeobpa3oBaHusM Tuna JlopeHua, TO B (yHKUuM JlarpaHxa
NosIBNSAETCA OObIUHbIA afauTUBHLIA YneH /-gR, OTBETCTBEHHbIN” 3a rpaBUTAUMOHHbIE B/IMSA-
HMsA. Takum 06pa3oM JoKa3biBaeTCHA, 4YTO ob6was Teopusi OTHOCUTENbHOCTU JNHWTENHA

SIBNSIETCS OAHO3HA4YHbIM MOC/eACTBUEM TpPeboBaHMS CUMMETPUMM OTHOCUTE/IbHO TpaHcna-
uMsim 1 npeo6pasoBaHusaM JlopeHua.

KIVONAT

Megmutatjuk, hogy a lokadlis Lorentz invariancia és transzlacios csoport
mérték szimmetriaként torténd kovetkezetes kezelése szikségképpen olyan el-
méletekhez vezet, amelyekben torzid nincs. Azt is megmutatjuk, hogy a Lorentz
tipusu mértéktranszformaciodkkal szembeni szimmetria a Lagrange figgvényében a
graviticios hatédsokért felelds szokasos /-gR additiv tag felbukkandsahoz ve-
zet. I1ly médon bebizonyitjuk, hogy Einstein &altaldnos relativitaselmélete a
transzlaciokkal és a Lorentz transzformacidkkal szemben megkdvetelt szimmet-
ria egyértelmi kovetkezménye.



It Is shown that a consequent treatment of local
Lorentz invariance and of the group of translations as
a gauge symmetry group necessarily leads to theories
in which torsion has no place. It is also shown that
the requirement of symmetry under Lorentz gauge trans-
formations leads to the emergence of the conventional
/-gR additive term, responsible for the effects of
gravitation, 1in the Lagrangian. It is thus proved that
Einstein®s general relativity is a unique consequence
of the requirements of iInvariance under translations
and Lorentz transformations.

INTRODUCT ION

In the past TfTifteen years, that followed the appearance
of Utiyama®s fTundamental paper [1], a great amount of work
has been done in the foundation of various theories of gravi-
tation making use of the gauge theoretical treatment of Poin-
care symmetry. This approach also appears in papers consider-
ing Uy theories with spin and torsion [2], and the work in
this field is still continued [3, 4, 5, 6].

In these considerations the Poincare group is treated
as a gauge group and certain effort is made to cast the ef-
fect of infinitesimal Poincare transformations iIn a form that
resembles, as closely as possible, the way internal symmetry
groups act on fTields. This can only be achieved by introduc-
ing a priori an orthonormal tetrad and metric structure on
the space-time manifold. The Lagrangian 1is then supposed to
depend on the projections of the fields and their derivatives.



This approach can be objected from a number of points
of view.

First, translations are diffeomorphisms of space-time,
whereas Lorentz transformations, at least in the form the
experiments establish Lorentz symmetry, are isomorphisms of
the tangent spaces of this manifold. These two kinds of map-
pings get entangled to produce the semidirect product called
the Poincare group, only if the manifold becomes flat, thus
to require Poincare gauge invariance for curved space-times
seems to be artificial.

Second, iIn a correct gauge theoretical foundation of
general relativity it is expected that the existence of a
metric structure on space-time be the consequence of the
basic symmetry requirements, thus the a priori supposition
of an orthonormal tetrad and the relevant metric does not
fit in this scheme of foundation of the theory.

Third, due to the previous objection the Lagrangian
must depend on the fields and their derivatives and after
showing the necessary appearance of a tetrad of gauge vec-
tors 1t must be proved that if the equations of motion are
projected out by means of this tetrad then the resulting
equations are derivable from a Lagrangian that depends on
the projections of the fTields and their derivatives.

In addition to these objections we stress that the
equations determining the structure of space-time are ex-
pected to be unambiguous consequences of the basic supposi-
tions whereas 1iIn the papers mentioned above /see e.g. [21/
some TFTurther requirements serve to establish the form of
the part of the Lagrangian responsible for gravitation.

In order to determine the most general possible
Lagrangian of a theory satisfying the requirements implied
by these objections we consider Tirst translations as a
gauge symmetry group. It is to be noted that papers dealing
with the same problem, although arrive at precious results,
do not seem to exploit completely the equations resulting



from the requirement of symmetry under translations /see e.g.
[71/- In the fTirst section it is shown that four gauge Tields
and their dual one-formes must be introduced if translations
are symmetries of the Lagrangian. It is proved that there
exists a Lagrangian depending only on the projections of
fields and their derivatives. It iIs also shown that local
Lorentz invariance dgenerate in a natural way a metric struc-
ture on space-time, and the Lagrangian can always be cast Iin
a form that contains the usual covariant derivatives with re-
spect to this metric thus no torsion can appear in the theory.
It is also indicated that the projections of the equations of
motion are the equations of motion of the projections, thus
our TfToundation of the theory meets the requirement implied by
the third objection.

In the second section Lorentz transformations are con-
sidered. By introducing a unique divergence term, 1in accord
with Noether®s original 1ideas, 1t is possible to fix the
structure of the term in the Lagrangian responsible for gravi-
tation. It is also shown that Einstein®s equations are re-
covered, showing that general relativity is the only possible
form of a space-time theory.

Finally the results of the paper are summarized.l

1. TRANSLATIONS AND LOCAL LORENTZ INVARIANCE
OF THE DERIVATIVES

We assume that all the TfTields that are considered belong
to various classes of tensor fTields. L the Lagrangian is sup-
posed to depend on the coordinates of a space-time point, on
the fields and their fTirst derivatives at this point, as only
theories in which the equations of motion are at most second
order differential equations will be considered.

We require that the point transformations of the form

x"1 = x1 + E1 HI



with the £7-s being the components of an arbitrary infinitesi-
mal vector fTield, be a symmetry, that is the variation 08S of
the action

S

vanish for these transformations

The Principle of Complete Freedom /P.C.F./ of gauge
theories will be adopted:

L can be any kind of function of the physical fields and
their derivatives, and these fields can be of any number and
of any tensorial class.

Due to P.C.F. we may restrict our consideration to a
Lagrangian depending on a single contravariant vector fTield
U* and its derivatives Uiik'

IT L did not depend on any other Tield, then we would
get in the well-known manner

here the relations

, JIK

were used.

The volume of iIntegration in /2/ and the values of gl

and ji are arbitrary at a fixed point, thus we get three



equations

L6V+™ V Ul+=— T Ugl( =0 , / 3/
Kk 314?er0 X o 5i
gL NK+— gl’—ul =0

31r61 am ‘&

It can easily be seen than /3/ leads to L = 0. To overcome
this contradiction to P.C.F. it is supposed that L depends
"on certain gauge Tields iIn addition to the physical fields.
Any one of these gauge fTields can be written iIn the form of
a multilinear combination of four independent covariant vec-
tors h?" /a = 0,1,2,3/ of a base of one-forms and their duals

.a, r eL 1Pk _ Ak
hrhe - V ip " i

§L = 0 contradict-

The third of /3/ as it stands leads to -
ing P.C.F., thus we have to suppose %ﬁ§¥(L depends on the
derivatives of the gauge fields too. We have to stress that
in contrast to the case of internal gauge symmetries, here it
does not make sense to search fgor a separate '"free'™ Lagrangian

independent of the physical fTields. Thus L is of the form
L=1GQl,ul”™, W h "k, gA, gAjk) /4/

where qﬁ—s are the scalar coefficiens of the gauge Tields 1iIf
the later are written in the form of the multilinear products
mentioned above, and L does not depend on x3'because of the
first of /3/.

IT 6S is calculated for L of /4/ then instead of the
second and third of /3/ we have



L6V + —M7ui + ——|A%ui . —~ Ur ,
Xl s e T
R IT
9L -hP -  <~-hP _ h=o. /57
K;I p r~“k
3R K 3h5f;r an®
L R0 s
i=

3, 1 P
— AL-uk + — Aul- (—— +-—~-)hP =0 .
3UE;; 3UAj, 3hR.,  3hE .

We have to remark that as the gauge Tields that appear
in L are certain combinations of the ¢/l-3 and the vectors hP
and h&: these equations have to be supplemented by fTurther
differential equations. However as /5/ itself is a complete
Jacobian system of independent Ffirst order partial differen-
tial equations, we Tirst consider this set alone.

We study fTirst the second of /5/ which consists of 40
equations for the derivatives of L with respect to the 80
variables U1~ and hP~. From the theory of characteristic
curves it i1s known, that there exist 40 independent linear
combinations of these variables which themselves fulfil
these equations and L is an arbitrary TfTunction of these
linear combinations. Moreover the rank of the matrix of the
derivatives of these 40 linear combinations with respect to
the Ul k~s must be 16 otherwise it would be possible to
write down at least one equation of the fTorm

3L
U JS
which would contradict P.C.F. As a result there must exist
16 variables, which we call ™"bar™ derivatives and denote by



U k defined by
lJl,k = Ul.)K + pﬁp rShFﬁs /6/

which must satisfy the second of /5/. The remaining 24 com-
binations are easily proves to be

- - h?
Fag = Mg, - Mgn- 7/
and L is an arbitrary function of the variables /6/ and /7/.

To find the quantities P'!.p“-S in /6/ we substitute the
Ul |~-s into the second of /5/ to get

'K rs< s ' 18/
where the ijﬂS are arbitrary apart from the restriction
Q&prs = -o&psr /9/
and we have

u\v = U\jﬁ4fmbchPEk+hﬁgw)ur+ﬁgkprSFprs 70/
) In order to find further restrictions for the quantities
Q& 215 we turn to the consideration of local Lorentz invariance,
The local Lorentz transform h"~ of the vectors hI" is de-
fined by
h-§ - n%prk 111/
where the functions /1 ~ satisfy the conditions

B pa _ _al
ﬁapﬂay =\ 112/

with YaP the usual Minkowski matrix



y0O8 = diag(1,-1,-1,-1)

Using YaR and its inverse to raise and lower greek indeces
it is easy to find the transform h"” of h":

h'% = AaPhl /13/

We require now that the bar derivatives U1l” be invariant
under the local Lorentz transformations /11/. Note that the
second of /5/ is invariant, which is necessary for setting
up this requirement.
- - LA
We write down Ul.k for h 3 and h A

u- K = Uljk+§4f&(h,Pyk+h'ﬁAr)Ur—ﬂO'LprSF'°rS
where

/P ,P ,P
F rs h rjsS h Syr
and /10/ was taken into account. This expression must be equal

to the corresponding expression of Ul” with the unprimed h”-s
and h™-s. From this equality one gets the necessary conditions

Q" falS = ALPOLT3
/147
R VAl (\&

p; K-fRn Xy +’Q,kprSA M = e

xA r XA K a X>s r

These equations must be fulfilled for any set of functions
Aa” satisfying /12/. The meaning of the first of /14/ is "ob-
vious, the evaluation of the second is done by taking the
equations

na ne° . o /15/
ﬂapyknﬂ) IL



into account by means of Lagrange®s multiplicators. Note that
/15/ 1is a consequence of /12/. We get:

‘iAm- TIr , ANT, .1 rvp
ek V u hBk + Qkv hRr 716/

-yim /0P X AP % \

Xk po N BAY /1 YA 3
where the Alzmpa—s are the multiplicators. Taking the antisym-
metric part of /16/ in [ and y one sees that

g

m i_m _ iEm r i .r
y R - KR ,hyr - H%&Kh erl - Hyé?:r(h%ru *

+ héUTm’hyR , h;@m’hgk

Contracting with hp this equation yields

I Nn

m L m RN _ _in r _,igmpn
Oy ®%p Nyr" g é]:(hyra— hy&kl} ¥

+ gnng hy|’< - "h'y%?(-gm ,

which after contracting with hYR gives

Q1 nmhpp _ Qi pmhpn = ginbmuP _ gip”™n +
Kp Kp K K

+ o'NEREM _ g TREREM |

/17/

where in the last two equations the abbreviation
itk =hV™*
9 P

was used. /17/ and

i nmpp e i mnhpp
kp kp

which i1s the consequence of /9/, suffice to determine
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jQﬂprsFPrS of /10/. As a result we get

UL e = UL ol Cp. e +hpye D9 r Ty (o p-hes )
719/

+ hpt (hpﬂ.’ _hR; r)]but’:

This equation is one of our most important conclusions. If we
take the non-singular g'k of /18/ and its IiInverse

= hqh 120/

"1k pk

and form the usual Christoffel symbols

Mgl 29 (@@rkn + gre;k " gki,™r)

and take /20/ into account, we can easily see that /19/ may
by written in the form

ul , 21,

thus the bar derivative 1is nothing else but the well-known
covariant derivative Ul;k of Ul.

Thus we have established the result that in consequence
of the second of /5/ and of the requirement that the deriva-
tive of be invariant under local Lorentz transformations,
the Lagrangian must depend on the variables /7/, the usual
covariant derivative /21/ and on the other variables appear-

ing in /4/, that 1is

L = LQu1, U1 K, hj, Faik, gA, gAK) . 722/

We proceed now to evaluate the Tfirst of /5/. I1f the form /22/
is substituted in this equation the following obvious rules
for calculating partial derivatives must be used:
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aul au au -s au
3b 3L
aulﬂ, aul;k

3b 3+ 3L 9l,r;S
ahj ah? aur . aha
3L 3L aur;s 1 3L 3FPrs

/
ahei,\k aur;S :Bhi;k 2 3FPrS ahzi\;k

the y appears in the last term of the last equations because

of the antisymmetry of < . To get rid of the term L6A of the
first of /5/ we substitute

L = det(hj)L /237

A lengthy but straightforward calcualtion leads to

iL”ul + mji*ul _ Li-ur _
3u. o< ot K
724/
JLL hP - pP 3L R n
3h? k  3F° kr R & k=7
i 1r j1

It is to be observed that the set /24/ is again a complete

Jacobian system of 16 independent, linear, homogeneous, par-

tial differential equations in the variables Ud, Ufjxj hﬂz
~N k" k* Le®* ™ ke num™er °f these variables. Then it
is easy to find the N - 16 combinations which themselves ful-

fil /24/:
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v Urh?
a < .3, S
U R v ;Shijwa
/25/
a s
Y F rshlghy
r
® ja q;jA‘j rha
and L is an arbitrary function of these new variables:
L =1U UVUa, Ua;/ FaBRy, gA”™a) . /26/

Finally we consider the supplementary differential equa-
tions mentioned in the remark that followed /5/. These equa-
tions, if L of /26/ is substituted into them, can give only
further restrictions for Ua, Ua>k, FalRY, gA™a, in the sense,
that it can happen that L depends only on certain combina-
tions of these variables. However, these restrictions do not
concern our further analysis, thus we continue to work with
the form /26/.

We have arrived at the result that the complete
Lagrangian 1is

L = det(h™)L(Ua, Ua .B, FalBv, gA"™a) - /27/
If 718/ and /20/ are taken iInto account it can be seen that
det(h™) = /-det(gik) /

the well-known factor of Lagrangians in general relativity.
The variables In /27/ are projections with the tetrad h”®, h~™.
This tetrad is orthonormal, and the existence of a metric
structure is not to be supposed a priori but arises in a
natural way in consequence of the requirements of transla-
tional gauge symmetry and of local Lorentz invariance of the
bar derivative.
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It is seen that the Lagrangian can always be written in
a form in which torsion does not appear, showing that theories
with torsion and with a Lagrangian that can not be written 1iIn
the form /27/ necessarily violate translational gauge symmetry
or local Lorentz invariance. We remark that the quantities
Fa_~ are the projections of the so-caiied coefficients of an-
holonomity.

Before considering the equations of motion of the fields
Ul, we note that the projection Ua ,, of /25/ 1i1s a certain type
of directional derivative of the p;%%ection Ua- Indeed we have

Ua 5 = Ur 'sh?‘h% Ua Sl}g\—h% - d i1'ur=Ua _ Si'g
a r.a _ a .S s}
- hr;shﬁhau = U9 5P ogu
where

U Ua>rh%
and
X
h~  hahj
o3 a;s rJS
This formula for Ua#p, which can be easily generalized for
tensors of any class, strongly resembles that of the usual co-
variant derivative. It contains the projection Ua and its di-
rectional derivative Ua The quantities I'? are the counter-
parts of Christoffel®s symbols but it must be emphasized that

"y = %o

if and only if the tetrad hv® is holonomic:

a _ ma
Mgik = Nisi

in which case the FaBY—s of /25/ vanish. ;
The equations of motion of the fTield U are formed by
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taking the Lagrange derivative

_3 3 3_
3U1 3xIr 3U1BF

of /27/ and equating the resulting expression to zero. If the
derivatives with respect to Ul and Ul1”™ are expressed by the
derivatives with respect to the variables of /25/ and the pre-
ceeding consideration of Ua#, is taken into account, then it
is easy to prove that the edaation of motion of U take the
following form

which 1is the desired result implied by the third objection of
the introduction, namely iIf the principle of least action is
assumed to hold for the TfTields then the principle is formally
valid for projections too, although in the procedure of the
variation the anholonomic coordinates associated to the tetrad
must be used. It is to be stressed that the equation of motion
of projections is of great importance as these later are gen-
erally interpreted as the measurable quantities of general
relativity.

In the next section we consider local Lorentz invariance
of the Lagrangian /27/.

2. LOCAL LORENTZ INVARIANCE OF THE LAGRANGIAN

We require that the Lagrangian /27/ be invariant under
transformations /11/. For an infinitesimal we have

.a _Aa , a
ngeg 6B+el *

where

il
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/remember that greek indices are raised and lowered by means
of the Minkowsky /.
For the variables in /27/ we have

6Ua = ea Up ,
6Ua;3 = eaPUpSB+e3pUa;p )
A _ p_A
6<pja—ea§p;p , /28/
6FaBY = eaB_Y - an_g + eaPFpBY +
+ eépFaPY + erFaBp

where
a _ ra r
ERyv= B &y

The second of /28/ is a consequence of the second of /25/
in which is formed by means of the g~ °f /20/ which 1is
invariant under transformations /11/. /28/ is made use of 1in
the evaluation of the variation of the action:

6S = det (la)(-"\~6UP +  6UP__ +
1” 9uP U -a

,1 9§ceP 1 3L cR_\j4

2 ax v Jp
orR W

After iIntroducing /28/ we get an expression iIn which the
coefficients of ea”™ and ea” must vanish. We get the following
two equations

oL
9Ua_UE ' gyl 7 <6% ; a+Yaalw > + 1 4. {6SFRax +
ax /29a/
"p 11p - ’ 9L R * _
YaaF [x YxaF af3 3¢R Ypap jR ~ @3\ =0 ,

Jp
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: >3 : >3
aFalY  9FRay /29b /

The second of /29/ gives, together with

bb /30/

which is a consequence of the antisymmetry of #a3y

However, according to the original ideas which led Noether to
her famous theorems, in 6S divergence terms may appear. Such

a term is proportional to ea”™ and its derivatives and must not
contain derivatives of the fTields [8].

The only non-vanishing possible term of this kind"compat-
ible with equations /29/ is of the form

yf det(h™)epo
/31
= udetO¥) (epo
where u iIs some constant. In 6S /31/ will give a contribution
only to the coefficient of ea”™ . This contribution can be

iY
J
easily calculated using the well-known manipulations with the

covariant derivatives of the tetrad H?. As a result we get in
stead of the second of /29/

bb bb
Fxp  9F3aY
/32/

/32/ and /30/ suffice to determine
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L, UK g F )

+ —_—
Var PypVay s 1

The solution of this differential equation can be readily

written down:

FPOT + uF ,pTO

EFpOT 4 opT
/331
UFP° FT =
-2 p oX * Lo Lg * Lo
where
3L
gFaBY -
IT we substitute /33/ into the first of /29/ we get
bb 3L
°y,, + -———— (BPUR +Y up R) +
3vua“B " 3UD;o a 1310 °a =B
/34/
3to R
t - ﬁpcP ’g - @>) =0
Cli| iP

This equation states that Lg as a function of the variables
Ua, Ua 0 and ¢A must be iInvariant under the Lorentz trans-
formations /11/ regarded formally as global transformations

I —

A/ We now turn g)!the discussion of the be significance of
the term defined iIn /33/. First, it can be seen by manipu-
lating again with the covariant derivatives of the tetrad
that

Lg = %(hpr ;gB%|,—h5;rhpS;S) - /337
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Second, in our way of establishing the possible form of the
theory the tetrad h™-plays the essential role, while the
metric tensor /18/ and /20/ is merely an abbreviation for a
Lorentz invariant non-singular symmetric tensor formed by
means of the h”-s. Now the obvious question arises: what 1is
the form of the term corresponding to L of /33/ in the
Euler-Lagrange equations for h? if the Tater are considered
as dynamical variables and are subject to a variational
principle? A straightforward but lengthy calculation in
which the form /33/ is used shows that

9[det(h(il)Lg 3[det(h§)Lg} N 36/
= ShER,
ghii ghe:ll_»l’ tr

where Ri is the Ricci tensor of gik- If the form /35/ 1is used
we have

L = g(hpr;shg;r-hpr;rhg;s) =

= %(hpr hs _hps hr

S P S p oor
B %(hpr;sr_hpr;rs)hs = /31/

= éhptli | I513 +2!i(hpr; Siﬂ)s—h°s; stbr;)r

- Hr + H(hor hs_hps hr,
2 2 ;Sp sSpsr

where R is the invariant Riemannian curvature

The second term in the last row of /37/ is a complete diver-
gence if it is multiplied by

detih®) =
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and can be dropped from the Lagrangian, the Tfirst term gives
the well-known gravitational Lagrangian of general relativity:

We have arrived at the result that if local Lorentz invariance
is required for the Lagrangian L of /27/ in the previous sec-
tion, then L is the sum of a term L which is an invariant
function gf Ua , Ua;g, q’»af and of L which is equal to R.
Also if HhI" are regarded as dynamical variables and are sub-
ject to a variational principle Einstein®s equations are re-
covered. Naturally the energy-momentum tensor is then derived
from

3[det(h™)Lq]  “3[det (M Lq]

3h 3ha .
1 e,

U(T% B é_QTss)hg

CONCLUSIONS

In the paper the consequent treatments of translations
as a gauge symmetry and of local Lorentz invariance have been
studied. It has been shown that iIn consequence of the require-
ment of invariance under these transformations the Lagrangian
is a sum of two terms LO and Lg,L0 is an invariant fucntion of
the projections of the fields and their derivatives; the pro-
jections being made by means of a tetrad, the covariant deriva
tives are formed using the iInvariant metric tensor derived
from this tetrad. is the well-known gravitational term of
general relativity. The metric tensor appearing in the theory
is a consequence of Lorentz invariance. In this form of the
Lagrangian no torsion appears.

The equations of motion of the projected physical TfTields
are the projections of the equations of motion of these fTields
IT the fields of the tetrad are dynamical variables subject to
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the variational principle, the equations of motion for the
tetrad are Eilnstein®s equation.

We have to stress that our results can be generalized
to Lagrangians of physical fields of any class and of any
number.

As a conclusion we state that the form Einstein estab-
lished for general relativity iIs a unique consequence of our
symmetry requirements. Thus any theory that cannot be cast
in the form indicated in the paper must necessarily violate
either translational or Lorentz invariance or both.
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