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ABSTRACT
Singlet states of the 1-d Hubbard chain with several pairs of complex 

wavenumbers are studied. The original set of Lieb-Wu equations is replaced 
by an equivalent set in which only real wavenumbers appear, the total number 
of which is equal to the sum of the number of complex wavenumbers and the 
number of electrons needed to make the band half-filled. In a sense discussed 
in the text, the new set of equations refers to excitations only. The energy- 
momentum dispersion is also found. Based on the energy spectrum and the 
U+oo limiting form of the wavefunction, the excitations can be identified as 
interacting quasi-particles.

А Н Н О Т А Ц И Я

Исследуются синглетные состояния одномерных Хаббард-цепей, описываемые 
многими парами комплексных волновых векторов. Оригинальные уравнения ЛИБ-ВУ 
замещаются эквивалентной им системой уравнений, в которых появляются уже 
только действительные волновые векторы, число которых равно сумме чисел ком
плексных волновых векторов и электронов, нужных для полузаполнения зоны. В 
данном смысле новая система уравнений относится уже только к возбуждениям. 
Определяется энергия возбуждений. По форме энергетического спектра, так же 
как и по форме волновой функции, действительной в пределе U <*>, возбуждения 
можно считать взаимодействующими квазичастицами.

KIVONAT

1-d Hubbard láncok több komplex hullámszámpárral leírható singlet álla
potait vizsgáljuk. Az eredeti Lieb-Wu egyenleteket helyettesitjük egy ekvi
valens egyenletrendszerrel; ebben már csak valós hullámszámok szerepelnek, 
ezek száma megegyezik a komplex hullámszámok és a sáv félig töltöttségéhez 
szükséges elektronok számának összegével. A szövegben tárgyalt értelemben 
az uj egyenletrendszer már csak a gerjesztésekre vonatkozik. Meghatározzuk a 
gerjesztések energiáját. Az energia spektrum formája, valamint a hullámfüggvé
nyek az U-*-“> határesetben felvett alakja alapján a gerjesztések kölcsönható 
kvázirészecskéknek tekinthetők.



1. INTRODUCTION

In Paper I. (previous paper, F. Woynarovich 1980 ) those 

eigenstates of the 1-d Hubbard Hamiltonian

have been studied which correspond to states in which the 

amplitude of finding electron pairs occupying the same site 

does not vanish even if U is large. It has been established, 

that these states are to be described by such solutions of the 

Lieb-Wu (1968) equations

in which some of the wavenumbers к are complex. Solutions 

with one pair of complex wavenumbers were discussed in Paper I. 

for , and for singlet states, with A/^/Velectrons.

In the latter case we have found that to the wavenumber pair

(1.1)

(1.2)

K t l x  there is one л coupled by the equation

Jin fkt i x) - Л + i-if- (1.3)
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(This equation is correct up to terms exponentially small in 

/V ) . Л is determined by an equation of the type

2 art tg i. ( л - Sin ke)  + la r c ty  k .(A -s in k m)  * U j ' (1.4)

where kt and are the wavenumbers defined by Eq. (1.2) to

correspond to the I -s left out of the ground state 1 set. 

They have to satisfy the equations

* / ---- Sinfu sin I  . .
U ' h v i  ' H  »

(1.5)

° °  ~(0

With kt j  kM and Л , all the other unknowns could be expressed; 

in particular, the densities of the real к -s, and "nornal"

Л -s, could be given as

p (k j IT (os(u jthk)du j +
2. COS к

2* N

U/tf

( % ) ^  r  (s in k -A  f " (1.6)

__
2TN ( cos (o (sin k -  sinkt )J -h cos(u(fin к - sinkm))J du

and
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№ • UH (ч>)
и Ич

cos új A du
í  H U  \ {ch[\-iinkt)Íft cA(Ъ -И пк„)Ц&)

(1.7)

with the first terms in curly brackets being the groundstate 

densities pg(k) and S0(\J

The energy of these states, evaluated by the formula

£ * E > ( -2.c o s k ) - bcosKchx
real к

is

(1.8)

£  ~ E0 4- 6( k e)  4 €{k^) t  U

with E 0 being the groundstate energy and

oo
€(k) - 2 COS к + 2 Г — ----- cos(u)3ink) Clio

о chuU OJ 
4

while the momentum evaluated by

(1.9)

(1.10)

(1.11)

is
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P *  Po -  p (  k i )  -  р (км)

with

p ( k)
* 1о (^ ) sen (из sink)

из • eh «о М- 
Ч

du

(1.12)

(1.13)

In this paper we intend to generalise our results in two 

directions: we look for states with several (L) pairs of complex

wavenumbers and at the same time we do not fix the bandfilling 

which can be less than half. We denote the number of electrons 

needed to make the band half filled by W ; H *  N - N 6 .

To separate charge and spin redistribution effects, we will look 

for states in which the spin part is in its ground state. T o  make 

sure, that the state can be singlet, we take Ne even.

The states with several pairs of complex к - s  are expected 

to have many parameters, thus we will not be able to solve the 

Lieb-Wu equations completely. What we want to show is that even 

if the number of complex к -s is large, they can be separated 

from the real к -s and "normal" Л -s and a system of equations 

analogous to (1.4) (1.5) can be derived, which contains only the

parameters of the excitations.

We note that allowing for Ne *- N , the treatment becomes 

general enough to involve both kinds of charge-excitations 

(Paper I. Point 2.3).
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In Chapter 2. we will derive the system of equations deter

mining the parameters of the excitations. In Chapter 3. the 

symmetry of the equations found is examined while Chapter 4. is 

devoted to the discussion of the nature of the states in question.
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2. EQUATIONS FOR THE STATES WITH SEVERAL COMPLEX WAVENUMBERS

2.1 Elimination of the complex wavenumbers from the Lleb-Wu 

equations

We suppose that, similarly to the case of one complex к -

-pair, to each complex к -pair a A is coupled by the 

equations:

sin(k„ + ix n) m Л„ - <  - £  v- 0 (e  )

Stn(Kh- ix „ ) - Л л + i ! L  -t 0 ( t ~ ^ N)

(2 .1)

These equations are the generalisations of (1.3) allowing for 

the possibility of Л being complex. The К -s and x -s 

satisfying (2.1) (up to exponentially small corrections) are

{ { / ( f -  » ■ A f ' i b ' l s t f  * / ( { [ ■ (2.2a) 

0 ,  Sign ((OSKn) - - sign ( j j - -  J * , \ )

H ^ a n s i n j .  ( / Щ  + (РеЛщ + +

a n c h j - j j f ä , ЗтЛщ)х+ ( Ш *  V (ГЫЛь- l f j

K „ > 0  , s ig n ( cot£„) - - Sign ( j L + j „ / \ HJ

(2.2b)



7

Note that also in this case the set of complex k - s  consists 

of complex conjugate pairs provided the Л set consists of real 

Л -s and complex conjugate pairs. In the following we will 

suppose this, but later we will see that the equations deter

mining the Л -s indeed define such A -sets.

Now the equations for the complex к -s are

н ( к я+ ix„) - l t l h - E  (sin(k:h ) -/L ) -
f i ’ f u '
L

-  E  la n tq i - ( s c n (K ht ix h) - A M)

(-2.3.а)

ze~L
N (K „ - iK h) - Z T l h -  £  larctc jiS C ti(K h- ix h)  -  Ä J  ~

/3*1 Г (2.3.b)
L

—  E  lA rc iC j(  s i n f a - i x J - A * , )
P7)»1

It is not hard to verify that (2.1) and so (2.2.a-b) are the 

solutions of the imaginary parts of (2.3.a-b) if the conditions

+ ц  H E  I  a n u / ( sin(K̂ tCx*) У- (sin,(K* +iX„) -  Ah,)L у >0
' ft гч+н u fj

• V Í E Zarct<ĵ (sCn(i<H - i f y -Áfl)  + E í - а п Ц - A^ J  - - f r ZO

(2.4)
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are fulfilled. These inequalities are to be checked at

the end when the X -s and Л -s are known.

The equations defining the real к -s are

N
A/k, - 2Ж1 - - f E Z t r o + a  ^ -(s itbkf—Яа) *  £  Zarc ~ A* ) J

' 1 Л-1 ы mxf kándisc out.

%-L
- j Z  lartit) Jt-(ft'*, k j-hp )  + Z  Z&rc,frj ̂ (sűbkj -Л * ) ] coni'.

(2.5)

where we understand

_ Л л L /  ■ 1 я \ ) , SCn,k-ReA , stn,k~ReA
Re jla rc tq  -  &rc+() — --------------  *  arctcf( J  con,*. U. + %  - 7suA

u J l M b , i ( s b k  - * ) ]  - X  ы

1 / , m <  2‘ + ( s , « k - * * 4

Re jlA rtiX jb; (Stlbk-A)J^^

Xscyn, (sin,k-RcA^ lf-

distort. и
4  /&,Л/<Т-

]м  j l a r c H  ^ (s c n k -A )J = 0
' u Jdiscont.

(2.6. a)

(2.6 . b)

The I  set in (2.5) consists of integers if A/e/i is even 

and half-odd-integers if /Vf/z. is odd. Note that the I f

set defined as
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I -  = 1' - £^./Ь la r c t f£ - (s tk í ; -%fl)  -  E  2arc.+tj -jLfciksk, )  7
( ß ** J

(2.7)

consists of integers (or half odd-integers) if the /-s are 

integers (or half odd-integers). Thus, depending on the 

parity 0 f (al -H )/2 we have to choose N - 2 L - H  different I ' -s 

from one of the sets

- { ( N - i )  , - ̂ A J -3 ) ,  4 ^ - 3 ) ,  £ ( » - * ) (2.8.a)

- f  (/9-г; , ... { ( * - * )  / {  и (2.8.b)

Equation (2.5) defines к - s  also to the l '  -s left out from 

(2.8.a) or (2.8.b). We will denote this k - s by the index к 

(for "hole"). The density of the k - s, satisfying (2.5) is

(% )  ( u/k )
p (k) = jL  + JL— -Leos к  E  ,, , - , + -|r- ZcoskEl
у ZT tTTN (% ) + (§сц к-Л р )г lT N  M ( % ) L s-Csikk-Au,)1-

(2.9)

As this p (k ) contains also the contribution of the variables 

kK j to replace -sums, we have to use

H+IL

/ W  * f<k> - (2.10)(2 .10)
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The equations for the "normal" Я -s are

*.
£  Z art+zj (Я^-SOt k j  J  +  Z Arc, t( j +1**,)J +
//4 m-1

+ z  l a r c i r C j L ^ - s ^ ^ ) ]  - 2-T fc  + E l a r c l g l ( ^ - ^ )  +
hief fvef (2 .11)

+  E  L a r c i q A ^ V - ^ J

Now using (2.1) and the identity

L a r c t < ] £ ( * K- A * , - < ? )  -h l a r c t g E f a - A ^  + i f i )  =

(2.12)

•  l a r c t q  j j (  ÁK ~ Л М)  +  Я  s ig n  ( f c ( \  - л * ) )

One has (up to exponentially small terms)

Í N
E  2.a r c ty  J L ( * t - s ( n k r)  - Z 7 ^  +  Z  lo rc it) (2.13).
/Уд. u f i ‘ i

with

j J  = 4  - E  i  s ig n ( t e ( К - л * ) )
ft?

•}. is integer if ( /J - H ~ 2 L ) / 2. is odd and half odd-integer if 

(AJ-H-ZL ) /2. is even* Note that (2.13) is formaly the same as 

the corresponding equation for a system with N - Z L —H
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electrons, all described by real k - s .

The A -s coupled to the complex к - s  are determined by 

the equations:

L
Г  Lan+q ± ( / \ h -s in k })  + £  Z « r c ic j^ (A h -  s ík (km + íx * , ) )  +  
ft*1

L ie'L
£  z^ f9 £  ( Л „ - $ С ^ - Я п , ) )  - 2 X £  +  1 2 -arc-tr) ь  (/1*-vL) +
Mui (Ь*1

L
+ E  2-arc+Q jj- (Л„—A*J

If in the first term of the l.h.s. we replace the continuous 

part of the sum over the real к - s  by the corresponding 

integral, then we have, up to terms proportional to (calcu

lating also the sum of the discontinuous parts by means of p (£ )  

would introduce an error of the order of % /  )

HrlLs £ A s

* “**(% -***•)an un- z f№-*>*&1 J (2.16)
*  « К ?  * * A >  « W *  Í  „+#/

-

V e  used here the identities (2.6.a) and 

T

dk - ore«« -Jf + (A-t)vj ( 2 . 17)



(2.18.a)
+ (Л -s in , J< ?-

-------------- dk
Л  +  (Л —s in k )

---—  J0(v)COSUA du}

a r e  eh. i_
z

(Л +1) * -  + (2.18.b)

Thus sununing up Eqs. (2.3.a), (2.3.b) and (2.15), and using also 

(2.1) and (2.12), one obtains

2 U H  L

Z  l a n t y  £ - ( / „ - smtcA)  - I T  + Z  U r c t y ^ f o i - A u , )  (2.19)
A*/ 14,1

with

-  AJ ssjn>(%e,AHJ  ~  % +■ Z

+ 17 S£t * ( í  Stfn (кеЛч) —  Ah- Siu.k) ( 2 2n)
aU к 2. ' 2_

+ 4~ Z  (X e  ( A  ) )

fi

5̂  being integer if N -L -H  is odd and half odd-integer if 

N -L -H  is even.

The actual system to be solved is the system of (2.5), (2.13) 

and (2.19). Knowing all the k i-s and к , - s, Я -s, and
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/*-s , the complex wavenumbers can be calculated, the original

I  , and }  quantum numbers can be determined and through 

(2.3.a-b) also the exponentialy small corrections to the к-s and 

of (2.2.a-b) can be obtained.

It is interesting to note, that the system (2.5) , (2.13) ,

(2.19) is entirely symmetric (as far as the structure is concerned) 

in the variables k j , Д^ and к^ , A„  . The only asymmetry is 

that the number of -s is the half of the number of kj -s

while the number of /1*. -s can be less than half the number 

of -s (if H is not zero) . But this is only due to the fact

that we are investigating S * *  О states. It is not hard to see, 

that if we were calculating states with 5%t 0 , then even this 

asymmetry would disappear. (In the general case, with N e 

electrons, Л^-s and M fcL ) Л^- s  ( ■£ A/e — (M, +M b)  )

the prescription for the Z ' , and Д/ parameters would

be that j '  -s are integer numbers if is even, ^  -s

are integers if A/e -  M, is odd, and -s are integers if

Ne -  Л7г is odd) .

2.2 Elimination of the normal____X - s .

Equation ( 2.13) may have many solutions depending on the choice 

of the parameters ^ . As we stated in our program, we would 

like to describe such states in which the spin degrees of free

dom are not excited. To do this, based on the analogy of (2.13) 

and the corresponding equation of a system with N -H -L L
fy I

electrons, we have to choose that -set which is characteris-
t

tic of the ground state of a system of N -H -L L  electrons, i.e.
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the set

/ / N — H -Z L / fN -H -L L  ,1- г (— - - - V  j ~z(— — V  / ••• ±  /  N-H-ZL 
2- (. Z (2.21)

With this choice of the -s, the density of the A -s must
satisfy the equation

M )

i% )x + ( Ь - я * к)
г.

oo
С*л-)

p (k )  dk , 2 > T W ^  2 / ------------ - M '
Г J  ( U/ J L + ( A - * T

(2 .22)

The solution of (2.22) is easily obtained by Fourier transforma

tion :

oo
да; - £  f  л» -  _ L  Г *  4

w f Л/« h-f ck(A-sihkK) j f
(2.23)

This О Д  allows us to eliminate the Д -s from yj^of (2.9) 

with the result

-43Ü
g ( k )  = 1 +  cos k J  -e ~  (os(tosink) du  )

0 ^  ‘i '

o? -loZ M L
-  J.—  COS к / J?-- —  Г 1 COs (m  ( s in  к - S ín  к  А) о!О

U-N о сКиЯ .

(Ч)+  .j! — . Zcosk )
IX-H m-1 у- (sink- Л ^ ) 1-

(2 .24)



15 -

By means of f ( A ) from (2.5) equations for the variables 

can be obtained

N
о « w i  и  '

U Z .

(2.25)
Г du - E f i m b U a n K - A j i
m l  ch.uSL <u £/ л

As by the A4- s and /l„-s all the other unknowns are determined 

the problem is reduced to the solving of Eqs. (2.19) and (2.25)

2.3 Energy and momentum

The energy is calculated by the formula 

T

E  = - Л/ ’ l l  cos к  p ~ (k )  d k  -  £  l ( c o s (k h i-iX hl)  +  C O S fa -c x * ,)) (2.26)
J  trt‘1

-1Г

which gives

HUL
£ = E 0 -t- Z  t ( kk ) (2.27)

Ar 1

where 6(k ) is given by (1.10). The momentum evaluated by 

means of the formulas (1.11) , (2.7) , (2.8) , (2.14) , (2.20) ,

(2.21) and (2.25), turns out to be (up to n l T  )

H+Zl-

P - E - p ( b ) + f  (2-28)A -/
where p  (к  ) is given by (1.13) , and is zero if

is odd and 7Г if ( N - H ) / 2. is even (in the general case
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when N - H  can be odd, 1 +■ (N~H)/l )  mod IX  ) . The appearence

of this is not connected with the presence of complex wave-

numbers. It rather resembles the fact, that even the ground 

state momentum of a Heisenberg chain can be 0 t T /z . or T  

depending on the parity of the number of sites, and that even 

the ground state momentum of a half filled Hubbard chain can be 

0 or T  depending on the parity of N /u .

2 . 4  A  s p e c i a l  s o l u t i o n  f o r  t h e  - s

The equations (2.19) and (2.25) are highly nonlinear but 

there is one case when they can be replaced by a linear integral 

equation. This is the case, when H *  0 , L is macroscopic 

(comparable to N  ) and we choose for the %' set the numbers

- Г Л - О  , - { ( L - 3 ) ,  ■ ■ ■ { ( l - f )  < 2 ' 2 9 >

With this choice of Jh' -s all Ah will be real, and the number 

of A -s between A and A+dA can be given as ( i L )  • f ( A )  c(A , 

where

ZL

F(A) "(ZL) ' Z  IhCA-Sihk^ (2 * 3 0 )

Combining this with (2.23) one finds that the density of all 

Л -s and A -s is the same as the density of A -s in the 

ground state

OC

6 ( b )  + ту- f ( b  )  -  I ^ cos to A du> * ^ ( A )  (2.3 1)
о cku i У -

4
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using the £ ( л)  to evaluate the sum over the /)л -s in (2.25) , 

we find that

!>«)■$ К ( 2 ' 32)
i.e. in this special case the quasiparticles are not interacting. 

We should emphasize, that this holds only if L is large, and 

the error introduced by using f ( A ) in the summations (for which
4

V l  is an upper limit) is small enough, and if we choose (2.29) 

to characterize the system.

2.5 On the conditions (2.4)

Any solution of the system (2.5), (2.13) and (2.19) is 

meaningful only if substituting the A  -s into (2.4), the 

inequalities are satisfied. We were not able to show in general 

that they hold, only in two cases: one in which the number of 

excitations is small compared to N (i.e. the number of Л -s 

is not macroscopic) and at the same time the spin part is near 

to its ground state. The other case is when although the number

of Л -s is macroscopic, the system is near to the state des

cribed in Point 2.4. In both cases the sums in (2.4) can be

estimated by integrating over the Л -s using their ground state

* density. This estimation shows that both and are

definitely positive. It is also true, that for a small number of 

complex к -pairs, to each pair there must exist а Л satisfying 

(2.2.a-b). (If there where complex к pair without Л , then to that 

pair and *jm should be zero.)
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2.6 The number of solutions

Eq. (2.19) in the large U limit goes over into the

secular equation of a Heisenberg chain with length L L + H and

with L + H spins pointing in one direction and L spins

pointing in the other. If Bethe's hypothesis holds, (i.e. all

eigenstates of a Heisenberg chain can be described by the Bethe
( Z L  + H )equations) then these equations must have ( и / solutions.

At the same time one has (Z L + H )  possibilities to choose the 1^ *

set. Supposing continuous behaviour in the large U limit, one

can conclude that the equation (2.25) together with (2.19) must

have N ! / { ( N - H - I L ) ! ( L  + Н ) ! L ! J  solutions for all U 0 and this

is exactly the number of states in which there are H *■ L empty

and L doubly occupied sites, with the spins belonging to

the N - H - Z L  singly occupied sites being in ground state.

Thus (2.25) and (2.19) describes all of these states (for small 

enough L to be sure that (2.4) is valid). It is interesting 

to note, that with the same reasoning, counting into account the 

number of different solutions of Eq. (2.13) we have that E q s .

(2.5), (2.13) and (2.19) should have

N-H
p  ( I L + H \  (  N - L L - H
“  ' L * \(n - z l ~ H ) /L (2.33)

I

different solutions, which is exactly the number of states

of N - H  electrons in a chain of length N  . Unfortunately to 

conclude that the system (2.5), (2.13) and (2.19) describes all 

solutions of the problem one should have to show that (2.4) holds

for all solutions.
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3. SYMMETRY OF THE SYSTEM (2.5) (2.13) (2.19)

As we already mentioned, the system (2.5), (2.13) and (2.19)

is entirely symmetric in the variables kj , and kK , лн 

Now we show that this symmetry is present in some form also in 

the momentum and the energy of the system.

Let us define the complex wavenumbers ****** and £*_*** 

for the A 4 variables analogously to (2.1) and calculate

4r< n
(3.1)

using (2.5), (2.9) and that

T

(3.2)-A

- (k <(m ) * 1 **(*)) ~ (**(•") ~ iX*(*)) ■h n scq*, f t e  * « ( » ) ) (

$ t (x ) being the step function, we find that the value of (3.1) 

is simply (up to П- 2 Л  )

*

(3.3)

depending on whether Л/-/7 ( M being the number of down spins) 

is even ( Я ) or odd (0) . Thus interchanging the roles of the
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variables kj , A* and Л*, changes the sign of the

momentum of the system (up to a term X  )

If we calculate the sum

z (-Icosk.) - Z  l(wfpm+i**)i-cor(iem -ix*))
*« к * (3.4)

- E  2 (cos (K4 +i%K)  v- c o t f a - i x « ) )

we find that this is equal to M-U . Thus in this sense the states 

in which the roles of the variables , Д* and к/, / /!„ are inter

changed are "complementers". This complementarity can be used 

to calculate the energy and wavefunction of highly excited 

states or low energy states of a Hubbard chain with negative U 

(From this, for example, one knows that the highest energy state 

of N  electrons is the one in which all к -s are complex and 

the distribution of A„ -s is the same as the distribution of 

A* -s in the ground state,but this is also the ground state 

of the chain with -  U. .)

This complementarity may be connected with the property of 

the Hubbard Hamiltonian, that if we introduce holes instead of 

the up-spin electrons, then

H
ы «/

U - Z  nté - H
1-1

(3.5)

where H has the same structure as H  . Taking into account
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the parallelism that in the complementary states the parameters 

A< describing the spin part change role with the A* para

meters connected with the charge distribution, and that the
Л A I

transformation which transforms H into И introduces 

doubly occupied or empty sites instead of the singly occupied 

ones (uncompensated spins), and vice versa, the above-suspected 

connection seems very possible.
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4. ON THE NATURE OF STATES WITH COMPLEX WAVENUMBERS

The goal of this chapter is to connect our results obtained 

through the lengthy algebraic work of the previous chapters 

with some less rigorous but more or less transporent pictures.

A full analysis of the structure of the eigenstates would require 

the knowledge of the different correlation functions, but this 

is beyond our grasp. Instead, we have to be satisfied with some 

indirect reasoning or with the examination of limiting cases.

We will base our arguments on the energy-momentum relationship, 

and on the analysis of the U~*oc behaviour of the wave function.

4.1 Quasi-particle picture for the energy-momentum relation

ship

To have a closer look at the energy and the momentum, let us 

consider first a system in which there are Ne =Л/-/У electrons 

in a state described by real wavenumbers. According to (2.27) 

and (2.28), the energy measured from the ground state energy of 

a half filled band, and the momentum are

£ “ E
к *1

(4.1)
H

P “ £, - р ( кк) * T O i ' Ne /z .)

If we take a system with more electrons than N , with Nq ~ N * H '

we have
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Ч '
e - L  6(kh)  t  н 'иA *1

(4 .2 )
h '

P ° E  -p(kj + T(l+Ne/i)
k ’ i

(such a state can be obtained by taking a state with N - H ' electrons
Г ^  У "к

and acting on it by the operator e x p ^ -  i + ^nt + C»f cn i) f

This introduces holes instead of particles, and changes the 

energy by H 'U and the momentum by T  t i '  . Now looking at

the energy of a state with N€ - N - H  electrons and with L  pairs 

of complex wavenumbers

H+IL

в •  £  G( k i )  +  L u
A=/

(4.3)
H+LL

p -  E  - p ( K )  t  t (<  +- ^ t /L)
A

we see that it is like the energy of a state with L+H holes 

in a subband with dispersion -€(k(p)) ((4.1)) and L particles in 

an other band with dispersion C(k(p))-t-u ((4.2)) . Thus the form of

the energy suggests that introducing pairs of complex wavenumbers 

instead of real к -s acts like exciting a number of carriers 

from one band to the other. This picture, however, reflects only 

the apparent additivity of the energy and momentum, and gives 

the right coefficient of U . One should not, however, forget 

that the states under concideration are excited states of a 

many-body system, and even if these quasi particles and holes 

can be identified in some limiting cases as some sort of spatial 

configurations, their energy and momentum is carried by the system

*
See p. 33.
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as a whole. This is expressed in the fact that introducing a 

pair of complex wavenumbers changes the value of all the other 

wavenumbers, and consequently the contribution of the other 

electrons to the total energy and momentum. Another point is 

that these excitations, if we treat them as quasi particles, 

should be regarded as intereacting ones. This is reflected in 

the fact that the momenta of the quasi particles are not free 

parameters, they are connected with the actual quantumnumbers 

through a system of equations ((2.19), (2.25)). In this respect

the picture is very similar to the one we can connect with the 

motion of the electrons themselves: we have a system of particles 

which can propagate along a chain, and can scatter on each other. 

In this scattering processes they can change momentum and depen

ding on their mometa,their phase is shifted as well. To have a 

stationary state, we have to fit the momenta and the phaseshifts 

properly. These conditions are expressed in the Lieb-Wu equations 

and we can put this picture behind the equations (2.19), (2.25),too. 

This also explains why we can not tell, which momenta are to be. 

associated with the holes and which ones with particles.

The analogy of Eqs. (2.19), (2.25) with the original Lieb-Wu 

equations makes possible an alternative interpretation. We may 

regard the quasi particles as identical ones with energy momentum 

dispersion £(k(p)) , but carrying an "isospin" ±  f/L . Then we

do not have to think in terms of two bands but we have to inter

pret the U as the creation energy of a pair of these quasi 

particles with isospins + t/t. and - >/i. .
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4.2 The U—oo limit of the wavefunction

The above detailed interpretation of the states with 

complex wavenumbers is based merely on the form of the energy 

and the structure of the equations determining the parameters 

connected with these excitations. Now we try to find out about 

the nature of these states in the large U limit, where also the 

form of the wavefunction becomes more transparent.

Making the d —» oo limit in the wavefunction (see

expressions (2.3-B) of Paper I.) one finds, that some of 

the amplitudes diverge. As in the normalised wavefunction only 

the terms with the strongest divergence will give finite contri

butions, picking out the most divergent terms we can separate 

those configurations which can be realised even if U is very 

large. This way we get the result that for large U only those 

configurations remain in which the number of doubly occupied 

sites is equal to the number of complex к -pairs. In the amplitude 

of these configurations only those permutations P and "H give 

contributions in which the + and **-i'x*, wavenumber 

pair belongs to one doubly occupied site, and the A ^ belongs 

to the down spin at this site. Using the fact, that for large U  

all the S in k f-S can be neglected compared to the Л й -s and A„ -s, 

and also using (2.1) the amplitude of the configurations in 

question can be given as

i

(4.4)
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Here the permutation Ö arranges the coordinates я, nt ... n„.H 

into nondecreasing order with the restriction that from two

equal coordinates that of the electron with down spin must come
f dfirst. The n.Qj -s refer to singly occupied sites, the to

doubly occupied ones and P goes over all permutations of the

real wavenumbers. The functions (ff and f L are essentially

the Heisenberg eigenfunctions:

<f) • H, A ( A * v ■ Axm-l )  (—
T \ I

i I f f  t  u/q

Ащ  -  U/tf) - l i

У
+ “/ч I

Ат л-í - « А ,
(4.5)

А ( . . .  A*,  Аты- .  )  ^ /(Ьтпн-  A jri) -  u/z.

A (■ Áru, Ar t - -  ■ )  ‘ (A n * -  A j , )  *■

The numbers у'* are the coordinates of the down spins in the 

chain of singly occupied sites in increasing order, фy is for

mally the same as (ju with the difference that U must be 

replaced by - U  , the by the AM - s ,  and the numbers и A

are the coordinates of the doubly occupied sites in the chain 

containing only the doubly and unoccupied sites. The amplitude 

of the configurations in which the number of doubly occupied 

sites is more or less than L vanishes at least like */ц as 

U-* oo

To understand (4.4) let us consider a configuration in 

which the first N - H - 1 L  sites in the chain are singly occupied, 

and_the remaining H + I L  sites are the empty or doubly occupied 

ones. In this configuration the electrons can not move (except
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the last one) as either the Pauli principle or the large on

site repulsion prevents it. Although in this configuration 

there is no direct interaction between the electrons, through 

an intermediate state with energy U neighbouring electrons 

can see each other's spins, and electrons with different spins 

can change position, i.e. the spins can move in the same way as 

spins move in a Heisenberg chain, the distribution of the spins 

will correspond to the eigenstates of the Heisenberg Hamiltonian. 

The situation with the empty and doubly occupied sites is similar: 

Neighbouring sites can observe each others occupancy through an 

intermediate state of relative energy - U ; and also the same 

intermediate state makes possible for an empty and doubly occupied 

site to change position . Thus the distribution of the empty

and doubly occupied sites will be the same as the distribution 

of up and down spins in a Heisenberg chain. (See also Chapter 3.) 

It is clear that neither the spin distribution nor the relative 

distribution of the empty and doubly occupied sites does change 

if the chain of singly occupied sites is "diluted" by empty and 

doubly occupied sites making possible also direct propagation 

for the electrons.

Now, having the U ■* oo form of the eigenfunction at hand, 

we can see, that complex к pairs in a solution of the Liebs-Wu 

equations correspond to doubly occupied and empty sites if U 

is large. Thus in this limit the quasi particles corresponding 

to these excited states should be identified with these objects.

We can see also, that if we treat them as particle and hole like
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ones, then the filled band corresponds to all sites being 

occupied by one electron, the holes correspond to the empty 

sites and the particles to the "second" electrons at the doubly 

occupied sites. This is in accordance with the intuitiv notion 

of exciting a number of carriers across a Mott-Hubbard gap.

It can be seen also that the alternative interpretation 

is equivalently good: in this case the carriers are the not 

singly occupied sites, and the isospin tells us wether a carrier 

is an empty or a doubly occupied site.

We should emphasize, that what has been said applies only 

if U is large, and no discussion of comparable simplicity can 

be given as one moves away from the U-*oo limit, since it is 

obvious that for U ~ / there are many doubly occupied sites even 

in the ground state where there is no complex wavenumber in the 

к -set. For finite U we have to be satisfied with the 

expressions for the energy and momentum of these states without 

putting behind them a transparent picture.
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5. SUMMARY

In the present work we have investigated those eigenstates 

of the 1-d Hubbard model, for which in the wavenumber set there 

are several pairs of complex к -s. Our results are the following

1. For such states solving the Lieb-Wu equations is 

equivalent to solving the system of Eqs. (2.5), (2.13) and (2.19) 

provided (2.4) is satisfied by the found solution. This system 

is similar in structure to the Lieb-Wu equations, the difference 

is that there are no complex wavenumbers in it.

2. This system can be reduced to a simpler one (Eqs. (2.19) 

(2.25)) for those states in which the spin degrees of freedom 

are not excited. For these states the energy and momentum can be 

given as the energy and momentum of quasi particles. These quasi 

particles can be regarded as particle-hole like ones but they 

can be treated as pairs of identical particles with "isospin"

equivalently well. The form of the energy and momentum 

of the quasy particles is given by (1.10) and (1.13).

3. A "complementarity" between solutions of the system

(2.5), (2.13) and (2.19) corresponding to low and highly éxcited 

states can be established, which can be used to describe diffe

rent states with one solution of the system. In the complementary 

states the parameters connected with the charge and spin degrees 

of freedom change role.
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In the present study we concentrated on the "charge excita

tions". To isolate charge rearrangement effects,

we examined such states in which the spin part was 

in its ground state. We plan to extend our study to those states 

in which also the spin degrees of freedom are excited. Preliminary 

results show, that, as it is expected, the presence of spin 

excitations does not affect drastically the results concerning 

the states studied so far, just in addition a new type of 

"elementary excitations" must be introduced.
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Footnote (p. 23.)

* IThe state with И extra electrons can be constructed 

this way only if /V is even. If N is odd, the transfor

mation between particles and holes changes the periodic 

boundary condition into antiperiodic or changes the sign 

of the kinetic energy.
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