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ABSTRACT

A nonrelativistic treatment is given of electron-electron scattering 
in the presence of a laser field. The field is accounted for by the external 
field approximation and is represented by a circularly polarized monochromatic 
plane-wave field. A simple analytic expression is derived for the transition 
amplitude which is shown to exhibit internal resonances as well as intensity 
dependent shifts. The former is the nonrelativistic limit of the resonant 
Miller scattering predicted previously by Oleinik (1967a). The latter, however, 
appears in a higher order of v/c and is consequently negligible for very 
slow electrons. The differential cross section of the scattering is also 
given where the effect of the spin and symmetry is taken into account explic­
itly. The width of resonances is introduced phenomenologically but its connec­
tion with previous methods is established. Consideration is also given to 
the experimental conditions under which the effects may become observable.

АННОТАЦИЯ

Излагается нерелятивистский метод описания электрон-электронного рассея­
ния в присутствии лазерного поля. Поле описывается в приближении внешнего по­
ля и представляется циркулярно-поляризованным, монохроматическим, плосковол­
новым полем. Получено простое выражение для амплитуды перехода, которое пока­
зывает внутренние резонансы и сдвиги, зависящие от интенсивности. Резонансы 
представляют собой нерелятивистский предел резонансного меллеровского рассея­
ния, предсказанного Олейником. Однако сдвиги появляются только в более высо­
ком порядке от v/c, и поэтому в случае медленных электронов ими можно прене­
бречь. Дифференциальное сечение рассеяния приведено к форме, где влияние спи­
на и симметрии явно имеется в виду. Ширина резонансов введена феноменологиче­
ским образом, но определяется ее связь с более точными методами. Обсуждаются 
экспериментальные условия, при которых эффекты станут наблюдаемыми.

KIVONAT

Megadjuk a lézertér jelenlétében végbemenő elektron-elektron szórás 
nemrelativisztikus leirását. A teret külsőtér-közelitésben tárgyaljuk és 
egy cirkulárisán polarizált monokromatikus síkhullámmal reprezentáljuk. 
Egyszerű analitikus kifejezést származtatunk az átmeneti amplitúdóra, amely­
ről megmutatjuk, hogy számot ad a belső rezonanciákról és az intenzitástól 
függő eltolódásokról is. Az előbbi jelenség az Oleinik (1967a) által előre- 
jelzett rezonáns Miller szórásnál látottak nemrelativisztikus határesete, 
az utóbbi azonban csak v/c magasabb rendjeivel jelenik meg, következésképpen 
nagyon lassú elektronokra elhanyagolható. A szórás differenciális hatáskereszt­
metszetét szintén megadjuk, amelyben a spint és a szimmetriát explicite 
figyelembe vesszük. A rezonanciák szélességét fenomenologikusan vezetjük be, 
de megmutatjuk a korábbi módszerekkel való kapcsolatát. Megvizsgáljuk azt 
is, hogy az effektusok milyen kísérleti feltételek mellett válnak észlel- 
hetővé.



1. INTRODUCTION

In connection with the rapid development of high power lasers, in the 
last two decades considerable theoretical effort has been devoted to the 
description of fundamental EM processes in the presence of an intense field. 
Of particular interest are the electromagnetic processes of free charged 
particles in such an environment. The theory developed so far (e.g. Mitter 
1975 and Karapetyan and Fedorov 1978) predicts two different types of correc­
tions whose physical origin is also entirely different. Namely, intensity- 
dependent resonances and intensity -dependent shifts are the main phenomena 
occurring in external field problems. The occurrence of resonances is 
connected with induced processes at integer multiples of the frequency of 
the external field, whereas the occurrence of intensity dependent (energy 
and momentum) shifts is a classical effect connected with the average kinetic 
energy and momentum of a classical particle oscillating in an external field. 
Well known examples of these phenomena are the nonlinear bremsstrahlung 
(Bunkin and Fedorov, 1965) and nonlinear Compton scattering (Brown and Kibble 
1964) in the presence of an intense external field. Especially interesting 
and much less commonly investigated are, in this context, the resonances and 
shifts predicted for Miller scattering. The problem was first investigated 
by Oleinik (1967a and b). His results, however, were not given in a form 
suitable for direct comparison with experiments. Very recently, the problem 
was reinvestigated using a different calculational technique developed 
especially to treat intense field problems (Bös, Brock, Mitter and Schott, 
1979a and b). The formalism was still rather complicated and allowed the 
calculations for nonrelativistic energies only. In view of this we think that 
the present status of the theory requires a consistent, nonrelativistic 
treatment of this problem.

The calculations are based on the formalism where the laser field is 
taken into account exactly and all the other interactions are treated by 
perturbation theory (Bergou, 1980). The laser field is represented as an 
external (classical) plane-wave field. In order to simplify the calculations 
we introduce a few assumptions which are essentially very similar to the 
assumptions of Bös et al. (1979a;, namely:
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- the external field is circularly polarized
- consideration is given to nonrelativistic unpolarized electrons
- the e-e interaction takes place via the static Coulomb potential
- there is no transverse-photon exchange
- interaction with the spin-momentum is neglected.

The last four assumptions indicate that we use a consistent nonrelativistic 
description from the very beginning. As a result we obtain a simple analy­
tical expression for the transition amplitude in Section 2. The kinematics 
of the process can easily be deduced from the delta-function parts of the 
transition amplitude. In Section 3 we transform the transition amplitude to 
a form where the internal resonances appear explicitly and we then derive 
the cross section of the scattering. We also discuss how the inclusion of 
the spin and symmetry modifies the preceding results. In the last part of 
the paper (Section 4) we briefly summarize the main results, give a physical 
interpretation to the internal resonances and discuss their connection with 
experimental possibilities of observation.

2. THE TRANSITION AMPLITUDE

In the following we shall investigate nonrelativistic electron-electron 
scattering in the presence of an external field. For an intense (laser) 
field the one-mode, external field approximation is reasonably good provided 
that the foliowing two requirements are satisfied (Bergou and Varró, 1980b):

- the number of photons in the mode is large
- the change of the photon number (depletion) in a given process is
much less than the initial number of photons. For a nonrelativistic 
approximation this change should actually be less than the ratio of 
electron rest energy to photon energy (2 me /fiw) which, in the casec c
of optical frequencies, is still a large number (10 -10 ).

We start from the Schrödinger equation of the problem:

ifi = Нф (2.1)

where ф is the two-electron wavefunction and the Hamiltonian H 
can be written in the form

H = H + V (r) о ' ' (2.2)

where

(2.3)
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and

о ~ar
V(r) = e — —  , r = |xj_ - х2| (2.4)

Hq corresponds to the free electrons interacting with the external field. 
The external field itself is represented by the A(v) vector potential

A(V1,2) = a (®icosvi 12 + á2einvlf2b  vl,2 = ut “ **i,2 <2-5)

which describes a circularly polarized plane wave. The electron-electron 
interaction is represented by the static Coulomb-potential (2.4). The 
shielding factor a is introduced here merely to simplify the following 
calculations. Its physical significance will be discussed in Section 4.

First, it should be noted that in dipole approximation (к = 0), the 
Schrödinger equation (2.1) can be decoupled in centre-of-mass and relative 
coordinates

^ - 1,-2Л) = ' - = 5 ^ 1 +-2^' - = -l"-2 (2-6)

to yield
г-л2

ih
Эсрх
W  =

P
2M -

 ̂ 2 _ 
+ iS- a2 Ф1 (2.7)

2Mc

—л оЭф, E2 uN-У>+ (2.8)in at 2m ф2
A A

Here P and £ are the respective operators of total and relative momenta,
M = 2m is the total mass, mr = m/2 is the reduced mass. We can easily 
recognize that Eq. (2.7) corresponds to the motion of a free particle (with 
total charge 2e and mass 2m) in an external field, whereas Eq. (2.8) is the 
Schrödinger equation of a particle moving in a background potential field 
V(r). Since now the scattering problem is entirely separated from the external 
field problem, we immediately see that the external field affects the 
scattering only if we go beyond dipole approximation (Brehme 1971, Bergou 
1976).

Let us now return to the full Hamiltonian (2.2) which is beyond dipole 
approximation. According to the spirit of intense field calculations we shall 
treat V(r) as a perturbation and use the solution of the HQ part as a basis 
set for perturbation theory. Since HQ is the sum of two one-electron 
Hamiltonians, the unperturbed solution can be taken in the form of the product 
of two one-electron wavefunctions:
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ф (о)(x-^x^t) = ф (о) (x1 ,t;t|»(o) (x2,t) (2.9)

The exact solution for \j/°^(x,t) - which is given in terms of Mathieu func-. 
tions and is therefore rather complicated - was found recently (Bergou and 
Varró, 1980a). However, for all practical purposes, the following approxima­
tive solution is satisfactory (ibid, and Ehlotzky, 1978):

,(o) = Ф£ (х*<0 (2 lift)-3/2 E2_Et)exp f t i ( теш AE
2 2 e a

_ 2 2mc ш;)dv'
(2.10)

2 kg
where E = and ш' = ш(1 - — ) is the Doppler-shifted frequency.

The required validity condition of the above solution is the following. 
One may expand both (2.10) and the exact solution into Fourier series of 
einv. The coefficients of this Fourier series satisfy a complicated recur­
rence relation in the case of the exact solution which can be shown to 
reduce to the simpler recurrence relation for the coefficients of the Fourier

series of (2.10) if nho)
2mc f(a)

<<1, where i(a)-["(l - i§>2 - C ^ ) 2]1'
L me J

is

a slowly varying function of amplitude a. For a large range of the a values 
f(a)~l, and the validity condition is well fulfilled in optical interactions. 
Performing the integration in (2.10) we obtain

I. г (£X—Et) г— —I
Ф (x,t) = (21Ш) en exp i — — —  (e.ß'sinv - e_£'cosv) '
E L mchu) • 1 J

(2.11)
where

E = E
2 2e a .

---5—  *2тсгш'
E +

2 2 e a22mc u)' E
1- k E

m ш
(2.11a)

We see that p and Ё depend nonlinearly on the original momentum £ and contain 
an intensity dependent shift. £' reduces to £ in the case of very slow 
electrons.

With the help of first order perturbation theory we obtain for the 
transition amplitude due to V(r) the expression

00

Tfi = " é { dtjd3xid3x2>i'f0)#(xi*X2't)V (r^ i 0) (xi,x2»t) (2.12)
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where

*í0) ^ 0) “ '"plf(-l't H E2f(-2 't) (2-12a>

are initial and final wavefunctions, respectively.
Using expression (2.11) for Ф^(х^) in (2.12) we have the following explicit
form of

i 1
fi 11 (2I№ ) 6

exp|iz(e1A£^sinv1 - e2A£2cosv^ + e1A£2sinv2 - e2A£2cosv2)J

f dt j d3x1d3»2V(r)e*ía6lílt
(2.13)

where

z = ea
mcrftu » ЛЕ = Ei - Ef * ДЕ ,= Ej. - Ef » ДЁ = E± - Ef (2.13a)

If we now introduce centre-of-mass and relative coordinates: 

- = 1 ^-1 + —2 *̂

and centre-of-mass and relative momenta:

- " -1 “ -2

£ = Hi + e 2- E = I (Ei - E2)

then Tf  ̂ takes the form

i 1
fi 11 ( 21Ш) 6

dt
( -> i i APR + Apr - (ДЕ. + AE-)tJd3RdJrV(r)e1'L-- K- 1 2 J.

(2.14)

e x p j i ^ s i n  i кг соs(uit - kR + cp) + z2cos-j kr sin(mt - kR + 4)j|>

where

e^AP' = AP^cos4>,

®2Де ' = Ае 1с о зФ»

zAp_J_ = z^

е2Др' = APjsinfc

e2A£' = Ap^sincp

zAPj. = z. (2.14a)

after having made use of the trigonometric relations
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cos

sin

Г 1 COS 1f 1 1 + s i n  I Л
> u)t - kR + тг kr ,l  "  J J wt - kR 1L cos 7Г kf J' tilt - kR 1

sin 1L “ J[ ±  C O .  1L " I sin 2 lSE

Using the expansions 

iz sin0e n  ,  ч m e  ,= Ej (z)e and eiz cos0 „ ,ш_ / ч im0 = l 1 J(z)e m ' 'í ~ m
in (2.14) the time and R integration can easily be carried out yielding

Tfi = —2ITi I 6(Pf- - P + nfik) 6 (Ef - + nflw) .
Í- ,n

• (~i) ̂ jd3rV (r)jĴ(z1sin I kr) Jn_Ä(z2cos ^ krje1^ 45 +

(2.15)
тФ)

where n = £ + m.
In the extreme nonrelativistic case (scattering of very slow electrons) 
v/c << 1 and P = P '= P . Since z2 is proportional with the transverse component 
of Др'= P^ - P^ according tq the conservation of the transverse components 
of the centre-of-mass momentum expressed by the delta function, we have z2=0 
and Лп_я(о) = £. Consequently, in this case can be represented as a
single sum over n -photon emitted and absorbed parts

Tfi = Z (2.16)
n

where

— 2 П i 6 (Ef Ei + ríhü))6(Pf P± + nftk) t^^ (2.17)

and

1 i(ф—n §)
(2nh)3

r)J (z. sin ' n 4 1

From here we can deduce the following conservation laws:

(2.18)

- transverse components of P are conserved
- the longitudinal component of P is shifted by an amount which 

depends on the momentum itself and is proportional to the light 
intensitiy. Furthermore, in the process of scattering it may 
acquire an intéger number of the photon momentum fik

- the energy is also shifted by an amount depending on the momentum 
and being proportional to the light intensity. Furthermore, during 
scattering it may change by an integer munber of the photon 
energy ftw.
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The momentum shift 6P is connected with the energy shift ŐE by the relation 
I б P I = ~l <5e | and is therefore small even at high intensities. This justifies 
our process of neglecting the difference between P and P but keeping E when 
we made the transition from (2.15) to (2.17) - (2.18).

The energy conservation law can be brought to a somewhat different 
form where the kinematics of the process is more apparent. The initial and 
final energies can be expressed with the help of the centre-of-mass and 
relative momenta as follows (to first order in v/c):

*1 f  E? f  2 2  2 2  kPE. , = E, . , + E_ . , = + 2 — --u- + - - -■ --i,f li,f 2i,f 4m m _̂_2 __2 mw2mc 2mc

Conservation of energy requires now

E f  E Í  . E f  e V  S i E j - p p  ,*T“" “ -г— + —  - —  + --- 7Г — ------ + nhu) = О4m 4m m m _̂_2 mw2mc
(2.19)

2 2 e aThe uniform shift ---» cancels from the difference, only the nonuniform
2mc

2 2 k P . f
part of the shift —--=• . — ^ —

2mc2
gives a nonvanishing contribution. We can now

make use of the conservation law of the centre-of-mass momentum 
Pf = P^ - nhk in (2.19) yielding

2 2 "P, 2 2  V. . „2 2
#  - =± + nfta, (1 - e а ■- - -±-) + n2 = О (2.20)m m  4 _ 2 с '  . 2 ' 7/ 2. 4mc2 (mc )

IsEiwhere = c is the longitudinal (parallel to к) component of the
initial centre-off-mass velocity.

In other words, the system takes on momentum as a whole (momentum change 
appears in the centre-of-mass motion). The corresponding Doppler shift and 
recoil together with an additonal intensity dependent energy shift appear in 
the relative motion. Equation (2.17) indicates that absorption and emission 
of real photons are also connected with the relative motion (for the process 
under consideration this means the internal degrees of freedom). To close 
this section, let us mention that in dipole approximation kr = 0 , Jn(o)=6n Q 
and Eq. (2.18) gives the usual fieldless scattering amplitude as expected 
from Eqs. (2.7) and (2.8).
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3. SCATTERING CROSS SECTION

3.1 INCLUSION OF SPIN AND SYMMETRY

Since the electrons are fermions, the two-electron wavefunction must 
be antisymmetric under the exchange of the two particles. Accordingly, 
we have to modify the theory developed in the preceding section in order to 
include this symmetry property in the treatment. First, we note that the 
Hamiltonian (2.2) does not affect the spin variables hence the total wave- 
function is a product of the spin-dependent and the coordinate-dependent 
terms. The wavefunction describing the spin state of the two particles may 
be either symmetric (triplet state) or antisymmetric (singlet state) on 
the exchange of the particles. The corresponding orbital part is either 
antisymmetric (triplet state) or symmetric (singlet state). The orbital part of the transi­
tion amplitude T,, will then be either antisymmetric (T_, ) or symmetric (T,. ). Since
the effect of the exchange of the particles is equivalent to changing the 
sign of the relative momentum in the final state and therefore does not 
affect the centre-of-mass part of the transition amplitude, we have for the 
symmetric case

Pfif8 = - 2IIi Z 6(Ef - E± + nha))6(Pf - P± + n h k j t ^ ^  (3.1)

where

(n) _ 1
fi,s (2JTh)3

i „(->
d3rV(r)|e^ ~ Jn (z^  ̂ sin j к r)

iD( + )r ( + ) 1 i(ncp( + )- n |)1+ e1^ — J (z( 'sin j к r)e

i(ncp(-^-n(|) 
e +

(3.2)

and

E (±) = Ei ± Ef«

(+) . -2E Ф — = arctan ---

(+) _ ea I
z mcfto) — Efxl • (3.3)

(+)
?lE

Equation (3.2) can be written in the form

tfSs = tfi)(0)+ tg>(n - e) (3.4)
♦

where (9) is the amplitude of transiton due to the V(r)Jn(z^sinj kr)ei<p
effective potential as given by Eq. (2.18) and 9 is the scattering angle 
(the angle between and pi).
Similarly, for the antisymmetric case we have
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(n)
fi,a

where now

-2П1 E ó(Ef - + ntlto) б (P f - Р± + ntikKf.,;

‘fi!. ■ ‘Й ’«» - * Й ’<" - 9>

(3.5)

(3.6)

Quite generally, there are three symmetric and one antisymmetric spin 
states for the two-electron system. For unpolarized electrons each state is 
equally probable. Therefore, in the cross section the weight of the 
antisymmetric combination (3.6) is three times larger than the weight of 
the symmetric combination (3.2), that is,

da (n) , da(n) 1 s
4 dfi

. (n)T da '+ 2 __Ё__4 dfi (3.7)

The cross section is a sum of incoherent n-th order cross sections and
(3.7) holds for each of them separately. In the following we shall confine 
ourselves to the study of the (unsymmetrized) tj^ (9) scattering amplitude 
(2.18) since symmetrization is essentially equivalent with the inclusion of 
4 i  (" - 9) in the treatment and therefore effects connected with symmetry 
can be obtained by changing 9 to П - 9.

3.2 INTERNAL RESONANCES

To perform a numerical calculation for direct comparison with experiments 
we can most conveniently use Eq. (2.18). In order to get a better insight 
into the dynamics of the physical processes involved and to get a qualitative 
understanding of them, we transform the transition amplitude to a form 
where the internal resonances are manifest. We start from Eq. (2.18). Let 
us first introduce the Fourier representation of V(r) as

v(r) = V(q) e-i9- 3d q, V(q) 4Пе
2 2 q +a

(3.8)

Then we use the integral representation for the Bessel function Jn(x) 
(Abramowitz and Stegun, 1964):

Jn(x) = ±  J e-in0 + ixsin0 d9
—ТГ

In our case z sin  ̂kr = x. Inserting this expression for x in them
exponential and expanding e:*-zsi-nQsi-n 7 !SE Fourier series of e  ̂
we obtain for t^^ from (2.18):
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.(n)
'fi

i(ncp-n!b

(2JIfi)
_ f iné _ , . v r .3 .3 *(дЕ+?»*-*д)ЕZ de e J (z sine) d rd qe
m _! m J ' (3.9)

Integration over r yields the Dirac delta function 6(Ap - Tig + | mftk) and
1 ^the integration over 3 yields then V(g =  ̂mk + Ag/ti). The only remaining 

integral (integration over в) yields (Gradshtein and Ryzhik, 1971)

Iff I Jm <z sin 9>

ITin J 
e J

-in© ^e d© =<.
m ^  <I>Jm+n Ф  if n+m= eVen 

2 2

-IT if n + m = odd

We can summarize the results as follows. The transition amplitude T ^  
can be represented by a sum of n-photon emitted (n > 0) and absorbed 
(n < 0) parts T (n) fi

m _ r m (^)
Afi “ L LfiП

(2.16)

where

(n)Tfi = -2П16(Pf - P± + nhk)6(Ef - Ei + пЪы)^“ (2.17)

Here t£^ is given either by Eq. (2.18) - which is more convenient for 
practical numerical calculations - or by

(n) _ incp v 2e2fi2
tfi e 1 „2m П

(m+n=even)

Jm-n (f)Jn (I)m-n '2' m+n v2 
2_______2________

( 2 Д£ + mfik ) 2 + ( 2i1a ) 2
(3.10)

The scattering amplitude given in this form explicitly exhibits a resonance 
structure. Apart from the Coulomb resonance (Д£ = O) we have additional 
new resonances whenever 2A£ + mtik = 0. Introducing a new summation index 
^ 2̂  = r in (3.10) we obtain an equivalent but simpler form for tj^ (we avoid 
the use of ostensibly fractional indices)

(n) incp tfi e i 
r

e22*2 М ! К +пФ
П2 [p + (2r +n)hk]2+ (2fict)2

(3.10a)
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3.3 CROSS SECTION

The cross section can be calculated in the usual manner from the square 
of the scattering amplitude tf .̂ For unpolarized electrons we average over 
initial and sum over final spin states. Since the Hamiltonian (2.2) does 
not affect the spin state, this procedure actually leads to the weighted sum 
of symmetric and antisymmetric cross sections. Furthermore, similar to other 
processes in the presence of an external field, the differential cross/ n \
section do is a sum of incoherent contributions do' ' corresponding to 
n-photon absorption (n<0) and emission (n>0) .

do = Z da 
n

(n)

where, according to Eq. (3.7),

. (n) 1 , (n) ^ 3 , (n)do' = г do +-rdo 4 s 4 a

In our system of normalization and with the help of Eqs. (3.4) and (3.6)

fm tui) 2
Pido(n) = ^ 2m (n)

i2 £1'8
dfi

and

do (n) = If 2m (n) 
Ti2 fl's

dfi

Using the explicit expressions (3.4) and (3.6) w’e obtain finally

(3.11)
This expression clearly has the advantage over the ones given by Bös et 
al. (1979a) and Oleinik (1967a) that the average over polarization is 
explicitly carried out and the problem is reduced to its essence, i.e. to 
the manifestation of the internal resonances. In addition, t^^ is given by 
two different but equivalent expressions, Eqs. (2.18) and (З.Ю). The first 
one is more convenient for performing numerical analysis, while the second 
one explicitly exhibits a resonance structure. Far from resonances the 
dependence of the denominator on the summation index can be neglected and 
the summation can be carried out to yield a closed form expression for the 
nonresonant scattering cross section.
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4. DISCUSSION AND SUMMARY

In the previous sections we have derived explicit expressions for the 
transition amplitude and scattering cross section of the nonrelativistic 
electron-electron scattering in the presence of an external electromagnetic 
field (laser) . This scattering is the nonrelativistic limit of the Miller 
scattering in an external field (Oleinik 1967a and b, Bös et al. 1979a and b). 
We have found the previously predicted intensity-dependent shifts and 
resonances to persist in the nonrelativistic case as well. However, shifts 
appear in higher order in v/c than resonances. In lowest order in v/c there 
is still an intensity dependent shift of the kinetic energy and momentum 
of the free electron but it is uniform (i.e. independent of the state of 
the electron, which is characterized by E and £). This uniform shift there­
fore cancels out in the transition amplitude which depends on differences 
of energy and momentum. Only the next order term (which is nonuniform, i.e.
£ dependent) gives a nonvanishing contribution to the shift. But since the 
momentum shift 6P is related to the energy shift 6E via the relation 
I6PI = i IőEI, the nonvanishing contribution to the momentum shift is in 
fact already second order in 1/c and in nonrelativistic approximation it 
can safely be neglected. Thus only the energy shift leads to observable 
consequences.

The advantage of the consistent nonrelativistic treatment is the possi­
bility of carrying out explicitly the averageing over spin-polarization.
We have obtained two different forms for the transition amplitude, viz.
Eqs. (2.18) and (3.10). Equation (3.10) more explicitly shows the resonant 
structure and its connection with previous calculations is straightforward.
On the other hand, Eq. (2.18) has a few advantages. First, it is more 
suitable for performing numerical calculations. Second, it allows an interst­
ing interpretation for the occurrence of resonances. Apart from a phase 
factor, in first Born approximation the scattering can be interpreted as 
being caused by an effective potential Vgf^(r) = v(r)Jn(z sin | kr) . It is 
clear at first sight that all effects of the external field result from 
the non-dipole character of the effective potential, since in the к = 0 
case the scattering reduces to the Coulomb scattering. For certain electron 
separation r this effective potential may become attractive (J < 0) which 
tends to cause the electrons to form pairs. It is known that to a bound 
state there corresponds a resonance in the scattering amplitude. Therefore 
the resonances in the scattering cross section might be regarded as the 
manifestation of the attractive effective potential between electrons in the 
presence of an external field. From (3.10) it is clear that in the case of 
a resonance the absorption and emission of virtual photons might be regarded 
as real processes (energy-momentum conservation Is satisfied). The effect 
bears some analogy with the formation of electron pairs in superconductors 
through the electron-phonon interaction. However, for a resonance one must 
simultaneously satisfy conservation of energy-momentum in the virtual photon
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exchange (labelled by m in (З.Ю)) and conservation of the total energy- 
-momentum (as described by the argument of the delta functions in (2.17)).

At this point it should be mentioned that in our treatment we introduced 
phenomenologically a damping factor in the Coulomb potential. Far from 
resonances the damping can be neglected and we are left with the usual 
Coulomb potential for the electron-electron interaction. In the vicinity of 
resonances the role of the radiative corrections becomes significant. As was 
discussed by Bös et al. (1979a and b), two types of radiative corrections 
have to be taken into account: vacuum polarization for the photon and self- 
-energy correction for the electron. For slow electrons and optical photons 
the second of these is dominant. From their discussion it also follows that 
the distances between resonances are much larger than their width given by 
the radiative corrections. In beam experiments two other types of corrections 
have also to be taken into account. First, the finite width of the laser 
line; second, the finite width of the momentum distribution of the incoming 
electrons leads to further broadening effects. It seems to be hard to over­
come this latter difficulty in the case of nonrelativistic electrons. 
Nevertheless, one can assume an ideal experimental situation and neglect the 
broadening due to these effects. In this case the resonant scattering occurs 
at very small scattering angles (near the Coulomb resonance) and one needs 
high angular resolution but the effect is in principle observable.

We finally note that in homogeneous but time varying fields (k = 0) 
the effect disappears and the external field has no influence at all on the 
scattering. This is not the case, however in the scattering of oppositely 
charged particles (e.g. bremsstrahlung). In that case the particles oscillate 
with opposite phases and this oscillatory motion enters the relative part 
of the equation of motion. One then obtains in the к = О limit a nonvanishing 
contribution which is the leading term and к ф О gives only small corrections. 
Thus the main effect of the external field is to distinguish between the 
relative signs of the scattered particles.
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