KFK1-1980-53

J, BERGOU
S. VARRO

M.V, FEDOROQOV

e-e SCATTERING IN THE PRESENCE
OF AN EXTERNAL FIELD

Hungarian Academy ofSciences

CENTRAL
RESEARCH

INSTITUTE FOR
PHYSICS

BUDAPEST



2017



KFK1-1980-53

e-e SCATTERING IN THE-PRESENCE OF AN EXTERNAL FIELD

J. Bergou and S. Varroé
Central Research Institute for Physics
H-1525 Budapest, P.0.B. 49, Hungary

and

M.V. Fedorov

P.N. Lebedev Physical Institute
of the Academy of Sciences of the USSR
Moscow, Leninsky prospect 53, USSR

HU ISSN 0368 5330
ISBN 96S 371 691 8



ABSTRACT

A nonrelativistic treatment is given of electron-electron scattering
in the presence of a laser field. The field is accounted for by the external
field approximation and is represented by a circularly polarized monochromatic
plane-wave field. A simple analytic expression is derived for the transition
amplitude which is shown to exhibit internal resonances as well as intensity
dependent shifts. The former is the nonrelativistic limit of the resonant
Miller scattering predicted previously by Oleinik (1967a). The latter, however,
appears in a higher order of v/c and is consequently negligible for very
slow electrons. The differential cross section of the scattering is also
given where the effect of the spin and symmetry is taken into account explic-
itly. The width of resonances is introduced phenomenologically but its connec-
tion with previous methods is established. Consideration is also given to
the experimental conditions under which the effects may become observable.

AHHOTALWA

i3naraetcs HepenATUBUCTCKWIA MeTO[ OnucaHusi 3NEeKTPOH-3/1IEKTPOHHOINO paccesi-
HMSA B MPUCYTCTBMW nalepHoro nons. Mone onuceoiBaeTcss B MPUOIMKEHUN BHEWHEro Mno-
na n npeacTaBnsieTcs UMPKYNSAPHO-MNOASPU30BaHHbIM, MOHOXPOMaTUYEeCKMM, M/IOCKOBO/-
HOBbIM MosieM. [lO/ly4YeHO NPOCTOe BhipaxeHue AAs amnanTydbl nepexoga, KOTOpoe nokKa-
3biBa€T BHYTPEHHME Ppe30HaHCbl M CABUIK, 3aBUCAWME OT MHTEHCUBHOCTU. Pe30HaHChl
npeacTaBfsAlT COOOV HepenATUBUCTCKUA nNpeaen pe30oHaHCHOro MefllIepoOBCKOro paccesi-
HMA, npepckasaHHoro OneiHuMkKoM. OpgHaAKO CABUTU MOSIBMASAKNTCA TONMbKO B 060/iee BbiCO-
KOM nopsinke oOT v/c, W NO3TOMYy B CJ/lydyae MeA/IeHHbIX 3NEKTPOHOB MMU MOXHO MpeHe-
opeub. [AuhdepeHumanbHoe ce4dyeHne paccesdHus npuBeAeHo K (opme, rae BAUSHWE CMU-
Ha N CUMMETPUM SIBHO umeeTca B Buay. WnpnHa pe3oHaHcOB BBeAeHa (peHOMeHonormye-
CKUM 06pa3om, HO onpegenseTcss ee CBA3b C 60/iee TOYHbLIMKM MeTogamu. O6CcyxagatwTcs
3KCMepUMEHTasbHbIE YC/I0BUSI, MNPU KOTOPbIX 3(PHEeKTbl CTaHYyT HabogaeMbiMu .

KIVONAT

Megadjuk a lézertér jelenlétében végbemend elektron-elektron szoras
nemrelativisztikus leirasat. A teret kils6tér-koézelitésben targyaljuk és
egy cirkularisan polarizalt monokromatikus sikhullammal reprezentaljuk.
Egyszer( analitikus Kifejezést szarmaztatunk az atmeneti amplitddéra, amely-
rél megmutatjuk, hogy szamot ad a belsd rezonanciakrdol és az intenzitastol
flugg6 eltoldédasokrdol is. Az el6bbi jelenség az Oleinik (1967a) altal elbre-
jelzett rezonans Miller szorasnal latottak nemrelativisztikus hataresete,
az utobbi azonban csak v/c magasabb rendjeivel jelenik meg, kovetkezésképpen
nagyon lassu elektronokra elhanyagolhat6é. A szoras differencialis hataskereszt-
metszetét szintén megadjuk, amelyben a spint és a szimmetridt explicite
figyelembe vesszik. A rezonanciak szélességét fenomenologikusan vezetjuk be,
de megmutatjuk a korabbi modszerekkel valé kapcsolatat. Megvizsgaljuk azt
gs, hogy az effektusok milyen kisérleti feltételek mellett valnak észlel-
etdvé.



1. [INTRODUCTION

In connection with the rapid development of high power lasers, in the
last two decades considerable theoretical effort has been devoted to the
description of fundamental EM processes in the presence of an intense field.
Of particular interest are the electromagnetic processes of free charged
particles in such an environment. The theory developed so far (e.g. Mitter
1975 and Karapetyan and Fedorov 1978) predicts two different types of correc-
tions whose physical origin is also entirely different. Namely, intensity-
dependent resonances and intensity -dependent shifts are the main phenomena
occurring in external field problems. The occurrence of resonances is
connected with induced processes at integer multiples of the frequency of
the external field, whereas the occurrence of intensity dependent (energy
and momentum) shifts is a classical effect connected with the average kinetic
energy and momentum of a classical particle oscillating in an external Tfield.
Well known examples of these phenomena are the nonlinear bremsstrahlung
(Bunkin and Fedorov, 1965) and nonlinear Compton scattering (Brown and Kibble
1964) in the presence of an intense external Tfield. Especially interesting
and much less commonly investigated are, in this context, the resonances and
shifts predicted for Miller scattering. The problem was Ffirst investigated
by Oleinik (1967a and b). His results, however, were not given in a form
suitable for direct comparison with experiments. Very recently, the problem
was reinvestigated using a different calculational technique developed
especially to treat intense field problems (Bos, Brock, Mitter and Schott,
1979a and b). The formalism was still rather complicated and allowed the
calculations for nonrelativistic energies only. In view of this we think that
the present status of the theory requires a consistent, nonrelativistic
treatment of this problem.

The calculations are based on the formalism where the laser field is
taken into account exactly and all the other interactions are treated by
perturbation theory (Bergou, 1980). The laser field is represented as an
external (classical) plane-wave field. In order to simplify the calculations
we introduce a few assumptions which are essentially very similar to the

assumptions of Bos et al. (1979a;, namely:



- the external field is circularly polarized

- consideration is given to nonrelativistic unpolarized electrons

- the e-e interaction takes place via the static Coulomb potential

- there is no transverse-photon exchange

- interaction with the spin-momentum is neglected.
The last four assumptions indicate that we use a consistent nonrelativistic
description from the very beginning. As a result we obtain a simple analy-
tical expression for the transition amplitude in Section 2. The kinematics
of the process can easily be deduced from the delta-function parts of the
transition amplitude. In Section 3 we transform the transition amplitude to
a form where the internal resonances appear explicitly and we then derive
the cross section of the scattering. We also discuss how the inclusion of
the spin and symmetry modifies the preceding results. In the last part of
the paper (Section 4) we briefly summarize the main results, give a physical
interpretation to the internal resonances and discuss their connection with
experimental possibilities of observation.

2. THE TRANSITION AMPLITUDE

In the following we shall investigate nonrelativistic electron-electron
scattering in the presence of an external field. For an intense (laser)
field the one-mode, external field approximation is reasonably good provided
that the foliowing two requirements are satisfied (Bergou and Varré6, 1980b):

- the number of photons in the mode is large

- the change of the photon number (depletion) in a given process is

much less than the initial number of photons. For a nonrelativistic
approximation this change should actually be less than the ratio of
electron rest energy to photon energy (2 me /fiw) Wh%gh,cin the case
of optical frequencies, is still a large number (10 -10 ).

We start from the Schrédinger equation of the problem:

i = Hp @.1)

where ¢ is the two-electron wavefunction and the Hamiltonian H
can be written in the form

H=H_ + V) -2
where

@-3



and

V({r) :eo—— , r = pg_ - x2]| .4

Hg corresponds to the free electrons interacting with the external field.
The external field itself is represented by the A(v) vector potential

A(V1,2) = a(®icosvil2 + a42einvlf2b vl,2 = ut “ **i,2 <2-5)

which describes a circularly polarized plane wave. The electron-electron
interaction is represented by the static Coulomb-potential (2.4). The
shielding factor a is introduced here merely to simplify the following
calculations. Its physical significance will be discussed in Section 4.

First, it should be noted that in dipole approximation (k = 0), the
Schroédinger equation (2.1) can be decoupled in centre-of-mass and relative
coordinates

AN-1,-201) = T - = BAL+-2AT - = o722 (-6)
to yield
ih P i f\82 2 Q.7
i _ B + 1S- a .
W = 2M oMe 01
—10
. 90, E2
N at 2m  * Vﬁz h2 (2-8)

Here P and £ are the respective operators of total and relative momenta,

M = 2m is the total mass, mr = m/2 is the reduced mass. We can easily
recognize that Eq. (2.7) corresponds to the motion of a free particle (with
total charge 2e and mass 2m) in an external field, whereas Eq. (2.8) is the
Schrodinger equation of a particle moving in a background potential field
V(r). Since now the scattering problem is entirely separated from the external
field problem, we immediately see that the external field affects the
scattering only if we go beyond dipole approximation (Brehme 1971, Bergou
1976).

Let us now return to the full Hamiltonian (2.2) which is beyond dipole
approximation. According to the spirit of intense field calculations we shall
treat V(r) as a perturbation and use the solution of the HQ part as a basis
set for perturbation theory. Since HQ is the sum of two one-electron
Hamiltonians, the unperturbed solution can be taken in the form of the product
of two one-electron wavefunctions:



(@) (X=-"x") = d(0) (X1,Et»(0) (X2,1) 2.9

The exact solution for \j/°~(X,t) - which is given in terms of Mathieu func-.
tions and is therefore rather complicated - was found recently (Bergou and
Varré, 1980a). However, for all practical purposes, the following approxima-
tive solution is satisfactory (ibid, and Ehlotzky, 1978):

-3/2 E2_Et) e?a?

exp ., - AE \dv*®
ft|(Tem chzm,)

 .10)

@ e o0 @I

2 kg
where E = and w"= w( - — ) is the Doppler-shifted frequency.

The required validity condition of the above solution is the following.
One may expand both (2.10) and the exact solution into Fourier series of
einv. The coefficients of this Fourier series satisfy a complicated recur-
rence relation in the case of the exact solution which can be shown to
reduce to the simpler recurrence relation for the coefficients of the Fourier

nho)
2nc f(a)

series of (2.10) if <<1, where i(a)_[t(l - i8>2 - C™) %91' is
me

a slowly varying function of amplitude a. For a large range of the a values
f(a)~1, and the validity condition is well TFTulfilled in optical interactions.
Performing the integration in (2.10) we obtain

I. r(£x-E©) F -1

o (x, ) = (@ en exp I —— — (e.B"sinv - e_£"cosv) -
E L mchu) = 1 J
C11)
where
2_2 2_2
e“a - e“a
E=E _—— * E + E .11a)
ﬁc%? mmay L_kE
m w

We see that p and E depend nonlinearly on the original momentum £ and contain
an intensity dependent shift. £° reduces to £ in the case of very slow
electrons.

With the help of first order perturbation theory we obtain for the
transition amplitude due to V(r) the expression

[e0)

TFi = " é { dtjd3xid3x250)#(Xi*X2 ")V (" i 0) (xi,x2»0) (2.12)



where

*70) A0y “ "pIFG-I"tHE2F(-2"D) (2-12a>

are initial and final wavefunctions, respectively.
Using expression (2.11) for o~(x") in (2.12) we have the following explicit
form of

i 1
i 1 (2K)6

f dt j d3x1d3»2V(r)e*ia6lilt
2.13)

exp|iz(elAE~sinvl - e2A£2cosv™ + elAE£2sinv2 - e2A£2cosv2)]

where

ea .
Z = woftu » NE = Ei - Ef * [JE,=F. - EF » JE = Ex - Ef (2.133a)

If we now introduce centre-of-mass and relative coordinates:

- =1 N1 o+ =20 -1 o« D

and centre-of-mass and relative momenta:

£ = Hi +e2- E=1 (i - E2)

then T~ takes the form
- > i APR + Apr - . + AE-)t
1 dt J(dstJrV(r)el'L-- r- GEy Y.
i n caw e
.19

expji~sin i kr cos(uit - kR + @ + z2cos-j kr sin(mt - kR + 4)j|>

where

e™AP" = AP”~cos4>, e2lp® = APjsinfc
®20e " = Aelcoz®» e2A£" = Ap”sincp
MJ =z ZAPj. = z. (2.14a)

after having made use of the trigonometric relations
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Using the expansions

iz sin0
e =

L L

i @e"® and elZ 050 - g gl fyp MO
m

in (2.14) the time and R integration can easily be carried out yielding

TFi = -2IM | 6(PE-P + nfiQ6(EF -  + nflw) .

k.n (2.15)

- 1) Mjd3rvV () j2(zlsin | kr) In_A(z2cos ™ krjel™ & + T®)

where n = £ + m.

In the extreme nonrelativistic case (scattering of very slow electrons)

v/c << 1 and P = P"= P. Since z2 is proportional with the transverse component
of [p"= P~ - P™ according tqgq the conservation of the transverse components

of the centre-of-mass momentum expressed by the delta function, we have z2=0
and /in_a() = £. Consequently, 1in this case can be represented as a
single sum over n -photon emitted and absorbed parts

Tfi = 7 (2.16)
n
where
-2MNi6 (EF Ei + rihi))6 (Pf P+ + nftk)t"" .17
and
1 i(@n 8) )
r)Jnszlsln (2.18)

@nh)3

From here we can deduce the following conservation laws:

- transverse components of P are conserved

- the longitudinal component of P is shifted by an amount which
depends on the momentum itself and is proportional to the light
intensitiy. Furthermore, in the process of scattering it may
acquire an intéger number of the photon momentum fik

- the energy is also shifted by an amount depending on the momentum
and being proportional to the light intensity. Furthermore, during
scattering it may change by an integer munber of the photon
energy ftw.



The momentum shift 6P is connected with the energy shift OE by the relation
16PI = ~1 <& | and is therefore small even at high intensities. This justifies
our process of neglecting the difference between P and P but keeping E when
we made the transition from (2.15) to (2.17) - (2.18).

The energy conservation law can be brought to a somewhat different
form where the kinematics of the process is more apparent. The initial and
final energies can be expressed with the help of the centre-of-mass and
relative momenta as follows (to first order in v/c):

_*_I.f E? f 22 22 kP

- = + 2 x—=A++ - - sH—
2i,T 4m amc 2me2 mw

Conservation of energy requires now

Ef Ei . Ef eV SiEj-pp

T Amctw om0 2-19)
2me
e2a?
The uniform shift =-=» cancels from the difference, only the nonuniform
2mc
2 2 kP. f
part of the shift —= _ — ~— gives a nonvanishing contribution. We can now
2mc2

make use of the conservation law of the centre-of-mass momentum
PFf = P - nhk in (2.19) yielding

2 P2 22 V. - w2 2

#fn o=t nfa, gl - e a Iz—c—i—) + n2 5 = 0 .(2.20)7
2 4mc
Z{mc )
where =c is the longitudinal (parallel to K) component of the

initial centre-off-mass velocity.

In other words, the system takes on momentum as a whole (momentum change
appears in the centre-of-mass motion). The corresponding Doppler shift and
recoil together with an additonal intensity dependent energy shift appear in
the relative motion. Equation (2.17) indicates that absorption and emission
of real photons are also connected with the relative motion (for the process
under consideration this means the internal degrees of freedom). To close
this section, let us mention that in dipole approximation kr = 0, Jn(0)=6n Q
and Eq. (2.18) gives the usual fieldless scattering amplitude as expected
from Egs. (2.7) and (2.8).



3. SCATTERING CROSS SECTION

3.1 INCLUSION OF SPIN AND SYMMETRY

Since the electrons are fermions, the two-electron wavefunction must
be antisymmetric under the exchange of the two particles. Accordingly,
we have to modify the theory developed in the preceding section in order to
include this symmetry property in the treatment. First, we note that the
Hamiltonian (2.2) does not affect the spin variables hence the total wave-
function is a product of the spin-dependent and the coordinate-dependent
terms. The wavefunction describing the spin state of the two particles may
be either symmetric (triplet state) or antisymmetric (singlet state) on
the exchange of the particles. The corresponding orbital part is either
antisymmetric (triplet state) or symmetric (singlet state). The orbital part of the transi-
tion amplitude T,, will then be either antisymmetric (T_, ) or symmetric (T,. ). Since
the effect of the exchange of the particles is equivalent to changing the
sign of the relative momentum in the final state and therefore does not
affect the centre-of-mass part of the transition amplitude, we have for the

symmetric case

PFif8 = - 21li Z 6(EF - E+ + nha))6(PF - P+ + nhkjtAn G.1)
where

1(:)5 - (2§Th)3 d3rV(r)|e/i\ "(_>~ Jn@ ~ sinj K r)ei(mp(_l\_n(l) +

¢ RO 5 G850 Y « pe IOPH- 1 DI G.2)
and

E@) = Ei + Ef Z(+) - ncefﬁo) ! — Efxl - @G-3)

CD(i) = arctan . ®)

?IE

Equation (3.2) can be written in the form

tfSs = tFi) 0)+ tg>(n - e) (€R))
.

where (@ is the amplitude of transiton due to the V(r)Jn(z”~sinj kr)eigp
effective potential as given by Eq. (2.18) and 9 is the scattering angle
(the angle between and pi).

Similarly, for the antisymmetric case we have



fi.a 2N E O(EF - + )6 PF - P+ + ntikkr. (D (3.5)
where now
“Fil. m “N "«» - *N7<" - 9> (3.6)

Quite generally, there are three symmetric and one antisymmetric spin
states for the two-electron system. For unpolarized electrons each state is
equally probable. Therefore, in the cross section the weight of the
antisymmetric combination (3.6) is three times larger than the weight of
the symmetric combination (3.2), that is,

) dagy) T da
@ ® 198" 3 T @D

The cross section is a sum of incoherent n-th order cross sections and
(3.7) holds for each of them separately. In the following we shall confine
ourselves to the study of the (unsymmetrized) tj”» (9) scattering amplitude
(2.18) since symmetrization is essentially equivalent with the inclusion of
41 (' - 9 in the treatment and therefore effects connected with symmetry
can be obtained by changing 9 to N - 9.

3.2 INTERNAL RESONANCES

To perform a numerical calculation for direct comparison with experiments
we can most conveniently use Eq. (2.18). In order to get a better insight
into the dynamics of the physical processes involved and to get a qualitative
understanding of them, we transform the transition amplitude to a form
where the internal resonances are manifest. We start from Eq. (2.18). Let
us First introduce the Fourier representation of V(r) as

3
v(r) = V(@ e-i9- da, V@ @ 9%, 3.8)
q“+a

Then we use the integral representation for the Bessel function Jn(X)
(Abramowitz and Stegun, 1964):

IJn(xX) =+ J e-in0 + ixsin0 d9
-T

In our case z sin ™ kr = x. Inserting this expression for x in them

exponential and expanding eX*zswQsin 7 IE Fourier series of e ©
we obtain for t~ from (2.18):
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i(ncpntb
. - s
:giD z 1:de e'"® 3 (z sme) d rd ('D'E+ »*-*R)E
Qam) m 1 m J G.9

Integration over r yields the Dirac delta function 6(Ap - Tig + | mftk) and
the integration over 3 yields then V(g = A mk + Ag/ti). The only remaining
integral (integration over B) yields (Gradshtein and Ryzhik, 1971)

in 5
m” <I>Jm+n ¢ if ntm= eVen

-ino® A 2 2
Iff 1 Jm <z sin 9>® do =<.

-7 if n+m = odd

We can summarize the results as follows. The transition amplitude T*
can be represented by a sum of n-photon emitted (n > 0) and absorbed
(n < 0) parts T1(=?)

m _ )
Afi h Lti (2-16)
where

TFi

_2M16(PF - P+ + nhk)6(EF - Ei + nbu)AD @17

Here t£” is given either by Eq. (2.18) - which is more convenient for
practical numerical calculations - or by

Jn=A €OIn+n @)
(M _ inp v 2e2fi2 2 2
th e 1 2 on o+ afik)2 + Qila)2

(m+n=even)

(3.10)

The scattering amplitude given in this form explicitly exhibits a resonance
structure. Apart from the Coulomb resonance (JE = 0) we have additional

new resonances whenever 2A£ + mtik = 0. Introducing a new summation index

Ay = r in (3.10) we obtain an equivalent but simpler form for tj~ (we avoid
the use of ostensibly fractional indices)

f einqo ; e22*2 M K H1dD
r n2 [p + @r +n)hk]2+ (CfcH?2

(3.10a)
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3.3 CROSS SECTION

The cross section can be calculated in the usual manner from the square
of the scattering amplitude tf~. For unpolarized electrons we average over
initial and sum over final spin states. Since the Hamiltonian (2.2) does
not affect the spin state, this procedure actually leads to the weighted sum
of symmetric and antisymmetric cross sections. Furthermore, similar to other
processes in the presence of an external Tfield, thghQifferential Cross

section do is a sum of incoherent contributions do- corresponding to

n-photon absorption (n<0) and emission (n>0).

do = Z daOﬂ
n

where, according to Eq. (3.7),
Q) . o 72 Q)
do = i doS + i’dba
In our system of normalization and with the help of Egs. (3.4) and (3.6)

- A M t@i) 2
Qo =5 i2 £1°8 an

and

@ =1F 20 ® o
T fl's

Using the explicit expressions (3.4) and (3.6) wé obtain finally

(3.11)
This expression clearly has the advantage over the ones given by Boés et
al. (1979a) and Oleinik (1967a) that the average over polarization is
explicitly carried out and the problem is reduced to its essence, i.e. to
the manifestation of the internal resonances. In addition, t~" is given by
two different but equivalent expressions, Egs. (2.18) and (3.100). The first
one 1is more convenient for performing numerical analysis, while the second
one explicitly exhibits a resonance structure. Far from resonances the
dependence of the denominator on the summation index can be neglected and
the summation can be carried out to yield a closed form expression for the
nonresonant scattering cross section.
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4. DISCUSSION AND SUMMARY

In the previous sections we have derived explicit expressions for the
transition amplitude and scattering cross section of the nonrelativistic
electron-electron scattering in the presence of an external electromagnetic
field (laser) . This scattering is the nonrelativistic limit of the Miller
scattering in an external field (Oleinik 1967a and b, Bos et al. 1979a and b).
We have found the previously predicted intensity-dependent shifts and
resonances to persist in the nonrelativistic case as well. However, shifts
appear in higher order in v/c than resonances. In lowest order in v/c there
is still an intensity dependent shift of the kinetic energy and momentum
of the free electron but it is uniform (i.e. independent of the state of
the electron, which is characterized by E and £). This uniform shift there-
fore cancels out in the transition amplitude which depends on differences
of energy and momentum. Only the next order term (which is nonuniform, i.e.
£ dependent) gives a nonvanishing contribution to the shift. But since the
momentum shift 6P is related to the energy shift 6E via the relation
I6PI = i I16E1, the nonvanishing contribution to the momentum shift is
fact already second order in 1/c and in nonrelativistic approximation
can safely be neglected. Thus only the energy shift leads to observable

in
it
consequences.

The advantage of the consistent nonrelativistic treatment is the possi-
bility of carrying out explicitly the averageing over spin-polarization.
We have obtained two different forms for the transition amplitude, viz.
Egs. (2.18) and (3.10). Equation (3.10) more explicitly shows the resonant
structure and its connection with previous calculations is straightforward.
On the other hand, Eq. (2.18) has a few advantages. First, it is more
suitable for performing numerical calculations. Second, it allows an interst-
ing interpretation for the occurrence of resonances. Apart from a phase
factor, in first Born approximation the scattering can be interpreted as
being caused by an effective potential VgfAM(r) = v(r)Jdn(z sin | kr) . It is
clear at first sight that all effects of the external field result from
the non-dipole character of the effective potential, since in the Kk = 0
case the scattering reduces to the Coulomb scattering. For certain electron
separation r this effective potential may become attractive (J < 0) which
tends to cause the electrons to form pairs. It is known that to a bound
state there corresponds a resonance in the scattering amplitude. Therefore
the resonances in the scattering cross section might be regarded as the
manifestation of the attractive effective potential between electrons in the
presence of an external Tfield. From (3.10) it is clear that in the case of
a resonance the absorption and emission of virtual photons might be regarded
as real processes (energy-momentum conservation Is satisfied). The effect
bears some analogy with the formation of electron pairs in superconductors
through the electron-phonon interaction. However, for a resonance one must
simultaneously satisfy conservation of energy-momentum in the virtual photon
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exchange (labelled by m in (3.10)) and conservation of the total energy-
-momentum (as described by the argument of the delta functions in (2.17)).

At this point it should be mentioned that in our treatment we introduced
phenomenologically a damping factor in the Coulomb potential. Far from
resonances the damping can be neglected and we are left with the usual
Coulomb potential for the electron-electron interaction. In the vicinity of
resonances the role of the radiative corrections becomes significant. As was
discussed by Bos et al. (1979a and b), two types of radiative corrections
have to be taken into account: vacuum polarization for the photon and self-
-energy correction for the electron. For slow electrons and optical photons
the second of these is dominant. From their discussion it also follows that
the distances between resonances are much larger than their width given by
the radiative corrections. In beam experiments two other types of corrections
have also to be taken into account. First, the finite width of the laser
line; second, the finite width of the momentum distribution of the incoming
electrons leads to further broadening effects. It seems to be hard to over-
come this latter difficulty in the case of nonrelativistic electrons.
Nevertheless, one can assume an ideal experimental situation and neglect the
broadening due to these effects. In this case the resonant scattering occurs
at very small scattering angles (near the Coulomb resonance) and one needs
high angular resolution but the effect is in principle observable.

We finally note that in homogeneous but time varying Tfields (k = 0)
the effect disappears and the external field has no influence at all on the
scattering. This is not the case, however in the scattering of oppositely
charged particles (e.g. bremsstrahlung). In that case the particles oscillate
with opposite phases and this oscillatory motion enters the relative part
of the equation of motion. One then obtains in the Kk = 0 limit a nonvanishing
contribution which is the leading term and kK ¢ O gives only small corrections.
Thus the main effect of the external Tfield is to distinguish between the
relative signs of the scattered particles.
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