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ABSTRACT

The effect of the hopping on the magnetic and dielectric properties
of the box model introduced by A. Zawadowski and M.H. Cohen [1] are considered.

By symmetry reasoning it is shown that the free energy is an even func-
tion of the hopping rate as well as of the external electric Tfield.

It is proved that at finite temperature when the hopping is small enough
the hopping processes in various boxed are uncorrelated. Based on this the
magnetic and dielectric susceptibilities are calculated up to the second
order of the hopping rate.

AHHOTAUNA

WccnepoBaHo BAusAHME npbbkKa 31eKTPoOHOB /hopping/ Ha MarHUTHble U AN3NEKTpU-
YyecKne CBOWCTBA CUCTEM, OMUCAaHHLIX B pamkKax mogenun Kopobok /box model/, npea-
noxeHHoir A. 3aBagoBCcku u M.I'. KoreHow.

Ha ocHoBe coob6paxeHuii CUMMETpMM MNOKa3aHOo, 4YTO cBoboAHas 3Heprus sBAsieTcA
YeTHOM (PYHKUMEN KaK W BHEWHero noas Tak M amnanTynap MNpbbKKa.-

Joka3aHO, 4YTO NpM KOHEYHbIX TemnepaTypax B c/ydyae [OCTaTO4YHO Masioli amnav-
TyAbl MPbXKKOB, TMPbXKKM, MNPOMCXOoAslble B pa3/INyHbiX KOpO6Kax SABAAKNTCA He3aBUCUMbIMU .
Ha aToM OCHOBe paccuUuTaHb MarHuTHas W AnaneKkTpuyeckas BOCMPUMMUMBOCTM BO BTO-
poM nopsagke Mo amMnanTygam MpPbXKOB.

KIVONAT

Megvizsgaljuk a hoppingnak az A. Zawadowski és M.H. Cohen altal javasolt
"box model" segitségével leirhatd rendszerek magneses és dielektromos tulaj-
donsagaira gyakorolt hatasat.

Szimmetria érvek alapjan megmutatjuk, hogy a szabadenergia mind a
hopping-amplitidd6é, mind a kils6é tér paros fluggvénye.

Bebizonyitjuk, hogy véges hémérsékleten elég kicsi hopping-amplitado
esetén a kuloénbdz6 boxokban végbemend elektronatugrasok korrelalatlanok. En-
nek alapjan kiszamitjuk a magneses és dielektromos szuszceptibilitast a
hopping-amplitddéban masodrendig.



INTRODUCT ION

During the last decade, the study of organic transfer
salts has received a great deal of attention. Because of the
richness of composition, and the possibility of replacing
similarly functioning units by one another, these materials
hold out the hope of eventually reaching the stage when materials
can be tailormade for any desired purpose - assuming of course,
that our wishes are in accord with nature®s laws.

As the original excitement about the high a conductivity
of TTF-TCNQ gradually died down, it gives place to systematic
exploration of different properties of all kinds of TCNQ salts,
which are proved to be almost as interesting as their never-
realized superconductivity would have been. In particular,
a class of compounds with the general composition (DONOR) (TCNQ~"
was Tound to possess remarkable dielectric and magnetic proper-
ties. Recently A. Zawadowski and M.H. Cohen [1] introduced a
simple model (the so- called box model) for their description.

The a structure described by the box model is schematically
shown in Fig-.l.

The main feature of this structure is that one electron
is transfered per donor so that the acceptor chain is quarter
field. Furthermore each acceptor chain can be devided into boxes
with two acceptor sites as shown in Fig.2.

The Hamiltonian of the model is

H= EQ*+1/2) (-1*+1+1/2) (Ul-Joiai+1)+2tp~



Where ck 1is the Pauli operator used to describe the spin
state of the electron in the box i, 1™ and 1* are the components
of the 1isospin operator 1. The two eigenvalues of the operator
1~, namely, N=-1/2 and 17"=+1/2 correspond to the left and right
hand sites in the box i. The operator 1* describes the hopping
within the box 1 with rate t, and J are the effective
Coulomb and exchange interactions between two electrons accupying
adjacent acceptors in neighbouring boxes. The distance
between two molecules in a box is assumed to be smaller than
between two next molecules in neighbouring boxes and therefore
the hopping between boxes 1is ignored compared to the hopping
within a box.

In reference [1] the magnetic properties of the model
were considered in two limiting cases, when the hopping rate
t=°° and t=0. It was pointed out that in both cases the model
can be solved exactly. In the first case it was shown that
the model behaves like a 1-d Heisenberg chain,the ground state
can be ferromagnetic or anti ferromagnetic. In the second case
it was found that depending on the signs and relative magnitude
of the interactions the ground state can be singlet or para-
magnetic (doublet or triplet) . The ground state of the model
in the iIntermediate case was discussed qualitatively.

In this paper we consider the effect of a weak hopping,
on both, the magnetic and dielectric properties of the model.

In Section L we consider the effect of the hopping on the mag-
netic properties after presenting briefly the solution obtained

by Zawadowski and Cohen in the zero hopping case, and describing



the physical picture of the ground state in the iIntermediate

case. 1In Section Il. we consider the dielectric properties.



I. MAGNETIC PROPERTIES

1. Zero Hopping Case
Let us consider the box model iIn a static external

magnetic Ffield. The Hamiltonian of the system Iis

H = HQ+2t£l™* 1.1)
where
HO= ~"(I™M+1/2) (-1M+1+1/2) (Ul-Jaioi+1)-yH"oJd (1.2)

is the Hamiltonian of the zero hopping system in the field.
Zawadowski and Cohen pointed out that the problem with the
Hamiltonian HQ can be exactly solved, when t=0 the eigenvalues
of 1~ are good quantum numbers and the system can be in configu-
rations inwhich electrons form pairs or stand separately. The
levels of the system can be classified following the spin states
of single electrons and electron pairs and following isospin
states of electrons. In particular, when U”-J>0 and U”+3J>0

in the ground state every second site 1is occupied, the spins

are decoupled and the chain is paramagnetic, when UM-J <0 and
J>0 the ground state is built up of electron pairs in triplet
state, the ground state is paramagnetic with spin S=I, when
UN+3J<0 and J<0 in the ground state electron pairs are in singlet
state, the ground state is singlet. Since the levels of H can
be classified by the eigenvalues of 1? and by spin states of
single electrons and electron pairs,the partition function Zg
corresponding to Hq can be easily calculated. After taking the
trace in the real spin space we get.

NA,

z° * e

(1-3)



where
A, = vyInZz_ + iInz
1 it S ) p 1.4
B = 21nZ_ - InZ
S p
with
Zs = 2ch(BuH)
-BE1 -RBE2
Z = (1+2ch2BuK.)e + e (1.5)

in which E~=U"-J and E2=U"+3J are the characteristic energies

of an electron pair in triplet and singlet state, respectively.

The second factor in the right hand side of (1.3) xs the

partition function of a 1-d Ising model therefore it can be

calculated by using the conventional transfer matrix method

[2] - The result is
0 - [i;/2ij/4<tiyv 4 U4 it (16>
The zero-field magnetic susceptibility can be obtained

directly from (1.6)

2r .1 2e "B
xu = KBu-(o &+ <M 5 o+
-BE. -BE,
3e *+e
) 2e~ REI u,/ -BE. -BE, , )3
+ (i - -
a -BE. -BE /V/3e e -BE. -BE,
3e +e r 2+/ 3e +e
@.7mn

The low temperature susceptibility can be obtained by

expanding.

(i) In the case EI>O’ Ez>0, when J>0 we get
LLIVAN
(1.8)

2 1
Xh = NBW 1+ ~ e 2™}
o 2/3



the second term in the right hand side of (1.8) can be as-
sociated with the forming of a triplet pair from two single
electrons (Fig.-3a).-When J<0 we find

~DNN
Xh = NRy2( - j e 27?2

(0]

a.9
Now the second term in the right hand side of (1.9) cor-
responds to the forming of a singlet pair. (Fig-3b)

(ii) In the case E”<0 and J<0O we get

¢ fﬂﬁsyzf{n—:’sreg(EI'Eﬁ’)-/;%BEz } (1.10)
(0]

The second term in the right hand side of (1.10) corresponds
to the excitation of a triplet pair into a singlet pair
(Fig-4a), the third term corresponds to the break of a triplet
pair into two single electrons (Fig.4b)

(iii) In the case E2<0 and J<O0 we find

*h = «BM2 (4eB"E2-E1»*2e56E2> @.11)
0

The first term corresponds to the excitation of a singlet
pair into a triplet pair (Fig.5a), the second term can be
associated with the break of a singlet pair into two single
electrons (Fig.5b).

2. Finite Hopping Case
a . Independent Hopping Approximation

When the hopping is finite the problem can not b,e solved
exactly. Basing on physical arguments Zawadowski and Cohen
[1] discussed the effect of the hopping on the ground state
of the system. When the hopping is small the ground state
can be constructed starting from the ground state of the zero
hopping system and considering the effect of the hopping on

these states. In the case when UN-J>0 and U”+3J>0 as it was



mentioned the ground state of the zero hopping system is
paramagnetic, every second site is occupied. A small hopping
makes, fTor example, the electron in the box 1 jump to the
neighbouring site, then the exchange interaction acts between
neighbours and finally the electron jumps back to the original
position. In this way there is an effective iInteraction bet-
ween spins in neighbouring boxes. This interaction causes the
system to behave like a weak ferro- or antiferro-magnetic chain.
In the case when U”-J<0 and J>0 in the ground state of the zero
hopping system electrons form triplet pairs. A small hopping
makes electrons jump from one site to the other as above. Two
separated triplet pairs can interact after two jumps in which
two neighbouring pairs break up and temporarily form a new pair.
In this way a weak exchange interaction is established between
triplet pairs. Thus the triplet pairs will be ordered as in a
Heisenberg chain. In the case when UM+3J<0 and J<O0 in the ground
state of the zero hopping system electrons form singlet pairs.
The weak singlet pair breaking results in a weak spin correla-
tion existing between electrons separated by two unoccupied
sites. Thus, in any ease, at low temperatures the hopping,
though it is small gives rise to a correlation between electrons
in the chain. This makes the problem difficult to solve.

When the temperature is raised the correlation between
electrons is expected to become weaker, and in the limit when
3t is small enough the effect of the hopping in various boxes
must be independent and this makes the problem solvable.
Mathematically this can be shown as follows. For the finite
hopping system the partition function can be written in the

following form



Z = Tr{e a.12)
where for the usefullness we have introduced the formal nota-
tion t™=t. In order to calculate the trace in the right hand
side of (1.12) 1let us choose the set of eigenstates of Hq and
simultaneously of In(i=l,.._N) to be a basis. Let us suppose

that |m> is such a function. It is clear that

<m]I*|m> = O, <m] ...d1*. Lo *l Lo m> = 63 (1.13%
By these relations the expansion of the right hand side
of (1.12) in powers of Rt~ contain only even powers of the
latter. This is the consequence of the symmetry of the two
sites in each box.
By making the use of (1.13) it is easy to prove that up

to the second order of Rt~ we have

(1.14)
where
(1.15)

is the partition function of a system in which hopping occurs

in the box i1 only. The Hamiltonian of this system is

(1.16)

Equality (1.14) enables us to reduce the solving of our
problem with the Hamiltonian given by (1.1) to the solving of
the problem with the Hamiltonian given by (1.16) and shows that
indeed when Rt~ small enough the hopping processes in Vvarious
boxes are uncorrelated.

It should be noted that equality (1.14) requires the
smallness not only of Rt~ but also of ti/Ea(a=1,2) because

in the case when t~-E”~ we have no right to ignore the
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(3t )4—terms while the (BEA)4-terms are taken into account.
Thus the restrictions imposed on our approximation which is
based on (1.14) are the same as those imposed on the thermo-
dynamic perturbation theory. (In fact (1.4) can be proved
directly by using the pertubation expansion of the canonical
statistical operator exp{HQ+2tEIl~} considering 2t£Il™ as a
small perturbation). Since equality (1.14) requires the small-
ness of Rt~ the approximation is reasonable only when hopping
is small and temperature is high enough. In particular it can
not be used at T=0°K with t"0. In other words the results,
obtained by using (1.14) do not describe the effect of the
hopping on the ground state.
b . Modified Transfer Matrix Method.

In order to calculate we separate the Hamiltonian
into two parts in such a way that one of them does not contain
the dynamical variables of the electron in the box i. This can

be easily done by using the following identity
1M _1+172) (N1 72)+ (13141 72) (-1 J+1+1/72)  +

+(Ni=-141/2) (4+ 1 +1/2) + (Ni-1+1/2) (_Ni+1+1/2)=1 (1.17)

The operator then can be written in the following form

Hi= j~ ~ (I~ /72)liil+1/2)Cur IV 1+1)~ ¢ V i )]

SPHLJ+1/72) (1j+1+172) a2+ (= 1j+1/2) (“1j+1+1/2)0j+ 1]+

+(=-1i-1+172) (Li+1+1/72)H@D)+ (1A _1+1/72) (12 +1+1/2)H@ -1, i, i+1) +

F(Li-1+172) (Li+1+1/72)H(i=1"D) + (= 1i-1+;L/2) (- 17+1+1/2) H(i,i+1).

(1.18)
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where

H(i)=2ti Iy a*

HGi-1,i)=(-1*+1/2) (U1-jOi_1lai)+2ti 1*-y3t (0 a+cCd

H(L, 1+1):°(1*+1/2) (Ul-Jaiai+1)+2ti 1J-y5e(a

H(i-1,i,i+1)=(-17+1/2)(U1-Jai_lai)+(1°+1/2) (UlJaiai+l) +
(1.19)

These operators correspond to the four configurations
shown in Fig.6. where the electrons in the boxes i-1 and i+l
are situated at determined sites, the hopping takes place only
in the box 1. Each term in (1.18) commute with the others
therefore they can be simultaneously diagonalized. Let us
denote the partition function corresponding to H(i), H(i-1,i1),
H(i,i+1) and H(Ci-1,i,i+l) by Z zZ 2_, Z2+ and Z3, respectively.
By the symmetry it is clear that Z2 =72+ therefore there
remain only three independent functions Z», Z2HzZ2 =72+ , and
Z~. From (1.18) it is easily seen that the partition function
Z™ corresponding to can be expressed in terms of z», 2zZ7,

and Z~ as follows
-1J+1/72) (- j+1+1/72)+ (1 J+1/72) (1 j+1+1/72)

Z.
] X
11 “*eli-111+1*«*|N
E (.+1/72) (-1 +1/2) CHi_1+1/72) (1i+1+1/2)
% 7 jﬁi—l,i J 0 =+ ’ %
P
CC'li-1+1/72)("li+1+1/72)+(li-1+1/72) (1i+1+1/2)]
X Z X

2

(i _1+1/72) (-1i+1+1/2)

X  Z, (1.20)
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Using identities Zs=exp[InZg] etc. we get

. E BI1.1.~.+Cl,. nl_,,+D(1. _.-1_._,
(N-2)A1+A2 7 3+1 i-1 i+l ( il |+1?
1 li*e li-11i+01*“*IN (1-21)
where A™ and B are given by (1.4) and
A2=7f(ln2}-21n22+ln28)
C =-InZ™+21nZ2~InZ @ .22)

D=](InZ3-1InZ1-1InZp)
The structure of Z, in (1.21) is again somewhat similar
to the partition function of a 1-d Ising model therefore it

should be expected to be calculated in some way similar to the

transfer matrix method. Let us introduce two matrices and
P2 defined as fTollows. P~ Is the matrix with elements
BlIjlj+1 (1.23)

<ljipiilj+i>=e
with j2~i-1,i+1; and P2 is the matrix with elements

Cli-11i+1+D(li-1"1i+1)
i-11°2 1Ti+1" (1.24)

The right hand side of (1.23) can be written in terms of the

matrix elements of these matrices as follows

(N-2) A +A_
Zt=e X ~E<1.]P1]12><

<f1-2"B1"1i-1> X
ri*eeli-11i+1* */1 bl
X<li-LIP211i+I><1i+11P1I1i+2> X
X-=*<IN IPILID> (1.25)
where N is the number of boxes in the chain.

(N-2)A +A
Ziz=e Tr{PIN_2P2} (1.26)

The eigenvalues of P» can be easily found. They are

_ “qe ~ .
X, =(Z1/22;174 + z, "z 174) (1.27)
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Denoting the matrix which diagonalizes by T, and the
diagonal matrix elements of the matrix TP2T 1 by X2+ from

(1.26) we have

Zi=e (N-2)ALI+A2 (XN 2X2++x5l12X2) (1.28)
Since N is very large a. m , A,
Zi=(e Ni+) e 12+ (1-29)

X~can be easily found. 1t 1is
X2+=eC"+e chD (1-30)
Comparing (1.29) with (1.6) we see
Zi:ZOAZ (1.31)

where

AZ=(e 1X1+) e ~X2+ (1.32)

Due to the equivalence of the boxes in fact Z* is

independent of the box index and therefore (1.14) gives us
Z=Zq (AZ)N (1.33)

Substituting (1.32) into (1.33) and using (1.4),(1.22),
(1.27) , and (1-30) we can express the partition function Z

in terms of 7Z~, Z2, and Z/.

c . Calculation of z», Z2, and ZN

The Hamiltonian H(i) can be easily diagonalized and
therefore the corresponding partition function Z» can be
easily found

2,=2Z .ch(Rt) (1.34)

Assuming that 8t<<l we have

Z1-2Zs« s<Bt)2 (1.35)
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In order to calculate we write the Hamiltonian

H(i-1,i,i+1) in the following form
H(i-1Ffi)=Ho (i-1,i1)+2tiI’C (1.36)
where
Ho (i-1,1)=(-1"+1/2)(U1-Jai_lal)-uU(o”™_1+o0p (1.37)

The eigenstates of this operator can be easily found.

They are

*Tl=<11/2>1-111/2>1

1_ *
010=/201 [11/251-111/2>i +11/2>i-111/2>i ] (1-38)

011=1 U72>i_1]i72>.

oo/ F 117250 1 |1/2>. | 1/2>0_1|1/2>.

Where ¢* and are the eigenfunctions of the operator
1™ with the eigenvalues +1/2 and -1/2, respectively, |J1/2>7
|1/2>~ are the eigenfunctions of the operator with the
eigenvalues +1/2, and -1/2, respectively. The signs at ¢
indicate the site of the electron in the box i, the first
index indicates the total spin of the pair formed by the
electrons in the box i-1 and i, the second index indicates the
z-component of the total spin.

The matrix corresponding to the operator H(i-1,i) 1is
denoted by the same symbol. 1In the basis formed by the system

of functions in (1.38) it has the following form
H(i-1,1)=Qaa (-2)®Qqq (0)©Qq g (2)®Qq q (0) (1.39)
where

QPg (s)=/pEIl+gE2+SM T .J (1.40)
p q" t p"El+q"E2+su |
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The eigenvalues of the matrix H(I-1,i) can be easily
found by solving the characteristic equations corresponding

to the submatrices in the direct sum (1.-39). In this way we

obtain 2 2
-B(E1+ |]-) RS§-
Z,,=(1+2ch2RMtF) (e 1 +e 1
= )( , L .41
+ -B(E2+1j> n
(e +te z )

The Tfirst term in the right hand side of (1.-41) is the
contribution of the states with 6=1, the second term is the
contribution of the states with S=0.

In getting this we used the condition (t/Ea)<<l (a=1,2)

Assuming that Rt<<l we have

-BE. -RE,
(I+2ch2yifl ) (1-e ) , (1-e
_ ’ (Bt)“ (1.42)
Z22=(Zs+Zp)+ BE, BE,
The partition function can be found in a similar way

Let us write H(i-1,i,i+1) in the following form

HGi-1,0,i+1)=H @-1,i,i+D)+2t1* (1.43)

where
Ho(i-1,i,i+D)=-1"+1/2)(Ul-Jdai_lai)+(I™M+1/2)(Ul-Jaiai+l)-
-M*(o*_1+aJ+a*+1) (1.44)

This operator describes the zero hopping system of the
three electrons in the boxes i-1, i1 and i+l in which the
electron iIn the box i-1 occupies the right hand site and the
electron in the box i+l occupies the left hand site. In this
system the electron in the box i can form pair with the
electron in the box 1i-1 or i1+l depending whether it is

situated in the left orright site in its box. Paring with

the electron iIn thebox 1-1 i1t leaves the electron iIn the
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box i+1 alone and viceversa. Basing on this the eigenstates
of HQ (i-l1,i,i+1) can be constructed in the following way.
From the eigenfunctions of the operators a™ ™, , and

we can construct the following independent functions

Xi=]| 1/2>i_1 11/2>x 11/2>xhi  »  X5=]172>1_1 |1/2>01 | 1/2>1+1
x2=11/2>i-i l1~2>+ 11/72>++i ,  X6e=]172>i_1|172>i |1/72>1+1 (1.45)
X3=|1/72>i_ill72>ill/72>i+i , X7=]0172>i_1|1/2>i |[172>i+1
X4&=|1/2>i_il172>1 |I72>1+1 x8=11r2>+ 11172+ 11T2>1+1

The three electrons can be iIn states of total spin equals
to 3/2 or 1/2. The spin functions corresponding to these states
can be constructed from the functions in (1.45). For total

spin S=3/2 we have four states

3/2,3/2 X1 -~ X372 ,1/2 X2+X3+X5 (1.46)
3/2,-3/2=X8 - X3/72,-1/2=xX4+x6+%x7
For S=1/2 we have eight states
xgg&’1/2:/2(x5~X2) xgy&’_1/2:/2(xg_XZ)
X = ji -V \
525,1/2 )ZSYB XZ) - X1/2 ,-1/2 /72U 4‘&7; (1-47)

3 YO 9 XS X<3
CI(/)2,1/2=/%‘[(¥1% A9 ek X<1)2,-1/2 /6 (X6+X7~2X4)

X1/2,1/72 /6 (x3+x2~2x5) ,x0/2,-1/2 /6 (X4+X7~2%X6)

The eigenstates of Hq (i-1,i,i+1) now can be constructed from

these spin functions and the isospin functions <~ . There are



16

16 functions of them. For S=3/2 we have-

$©3/2,+3/2 $©1x3/2,+3/2

(1.48)
$©3/2,£1/2=p1X3/2,+1/2
For S=1/2 we hawe
h1/2,+1/2

(1.49)

01,2..1/2 o1 AP 1172

where the signs at ¢ indicate the isospin state of the
electron iIn the box i, the Tirst index indicates the total
spin of the three electrons, the second index indicates the
z-component of the total spin.

From the functions in (1.49) we construct the following

symmetric and antisymmetric functions

(1.50)

The matrix corresponding to H(i-l,i,i+l) 1in the basis formed
by the system of functions in (1.48) and (1.50) (denoted

by the same symbol) has the following form
HCi-1,i,i+1)=0"(-1)0Qr(1)®QT0o(“3)RQIO(3)®

© R+ (-1)OR~(1)OR+ (1)Or"(-1) . (1.51)
where Q ~, (s) 1is given by (1.40) and

/e 2+8 +suK
(1.52)
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The eigenvalues of the matrix H(i-1,i,i+l) can be

easily found. The corresponding partition function is

-RP [+ 3(3t)2 Bp . 3(Rt)2
23=27s{e "hiRt~re * 1 4R(E2-El) +te *E2 TOI1~T]j ch(]t)}
(1.53)
In getting (1.53) we used the condition (t/Ea)<<l (a=1,2).
The Ffirst term in the right hand side of (1.53) is the
contribution of the states with S-3/72, the second term is that
of the states with S=1/2.

Assuming that Rt<<l we have

z3-2zs V zS(t2oh2e® w S ~ T - le 6El + (154)
1 1 ~3E_ 2
+i4 " 23(E2-E1) }(61)

d. Free Energy and Magnetic Susceptibility
|
Making use of (1.33),(1.35),(1.42), and (1.54) we can
calculate the partition function Z and therefore the free

energy. The result is

F=Fo+AF1+AF2+AF3 (1.55)

where Fq 1is the free energy of the zero hopping system,
A, (y=1,2,3) are the contributions of the hopping correspond-
ing to the configurations shown in Figs. 6a, 6b and 6c, and

6d, respectively.

4p . < 1«2 172,
1 . /2,2 Zp Zs
2B< V Zp >
-RE -RE,
Nf2= 19 (1+2ch2ilufc) (1-e x) + l17e.
R(Zs+Zp)2 RE2
Q9 i —RE-
AF3= T7272- z;1/2Zs{[20h2ey*+ 1 + Je
25ty 2R(E2-E1)
-RE,
o e (1.56)

2R(E2-E1)
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(1.55) 1is nothing but the perturbational expansion of the
free energy in powers of (3t) up to the second order.
In principle, this result can be obtained by using

the conventional thermodynamical perturbation theory, in
practice, however, we can not do it because of the high
degeneracy of our system. By (1.13) the free energy is an even
function of t. Its expansion in powers of (t) contains only
even powers. This is the consequence of the equivalence of
the two sites iIn each box.

The magnetic susceptibility can be obtained directly by

using (1.55) and (1.56). The result is

V*h +4Xh +*Xh +iXh (1.57)
0 1 2 3
where x” is the magnetic susceptibility of the zero hopping
o]
system given by (1.7) and Ax~ (y=1,2,3) are the contributions
Y
of the hopping corresponding to the configurations shown 1in
Fig. 6.
ax =(Bt)2 --——- .- NI ———— X
1 / “BE. -BE_ 3 /-BE. BE,
(2+/3e X+e z) /3e +
-BE. -BE, -BE. -BE,
x (2-/3e +e "Me 1-e
Axh =(et)2 _._._._....... ANRH-——- = -
2 / -BE.-BE, 3 -BE. -BE,
(2+/3e +e z) /3e X+e
-BE. / -BE. -BE -BE,
(1-e )(/3e +e +2e )
x [
BE,
-BE / -BE. -BE, -BE.
(1-e )(/3e X+e ~N+2e X)

BEO
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Axh =(Rt)" Ny

3 / -BE, -RE., 3£ -BE, -BE

evRe v TV 7'Be +e *"2

/ -BE. -RE -BE. -RE-
x {(2-/3e +e (e -e A)

~ -BE. —RBE- mEI / -BE. -RE- -RE-
3[(14+943e H-e e -#/Re X+e z)e 1
-RE -RE,
2R (3e t+e
. . ~RE. . . RE-

For hopping small enough we can find its contribution
at low temperatures by expanding (1.58).

(i) In the case E~>0 and E2>0 we find Ox~ =Ax~ =0 and

4*h24 (st) 21)61,2(Je~ - BE. 2 (1-59)
If J>0 we have approximately
2

o= 716152 (1.60)

It is the contribution of the hopping corresponding to the
configuration shown in Fig.6b (or Fig.6¢c) 1in state with S=1

(Fig-7a). If J<O0 we have approximately

(1.61)

>

2 2E2
This is the contribution of the hopping corresponding to the

configuration shown in Fig.6b (or Fig.6¢c) in state with S=0
(Fig. 7b).

(ii) In the case E. <0 and J>0 we find Axu =0 and

>, 2
ixh = - - (et)2N6u2e (1.62)
nl 3/3
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(1.63)

OX~  can be associated with the break of a triplet pair to

form the configuration shown in Fig.6a (Fig-8a). The first

term in (1.63) corresponds to the break of a triplet pair to
form the configuration shown iIn Fig.6d iIn state with S=3/2
(Fig-8b), the second term corresponds to the break of a triplet
pair to form the configuration shown in Fig.6d in state with
S=1/2 (Fig.8c)

(iii) In the case E2<0 and J<0 we find Ax~ =0 and

2

(1.64)

(1.65)

OX~  corresponds to the break of a singlet pair to from the
configuration shown in Fig.6a (Fig-9a), [Oxb can be associated
with the break of a singlet pair to form ths configuration
shown in Fig.6d, in state with S=1/2 (Fig.9b). From (1.54)

it is clear that at low temperature the configura-

tion shown in Fig.6d in state with S=3/2 gives no contribution.
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11, DIELECTRIC PROPERTIES

1. Zero Hopping Case

The box model contains not only spin but also coordinate
variables therefore it can also be used to describe the
dielectric properties of corresponding systems.

Let us consider the model in a static electric field

The Hamiltonian of the system is

H*=H"+2tZI1* .
°© il
where
HA=E(I™M+1/72) (1IM+1)(U1-Jai01+1)+e£ZIN 2.2)

is the Hamiltonian of the zero hopping system in the field.
The problem with H™ can also be solved exactly in the
same way as when solving the problem with HQ in Section 1.
The partition function Z~ corresponding to H™ can be found by
taking the trace in the real spin space first. After doing

this we get

NA
Zéze T e 2.3)
11> XN
where

. ling-
Al 4 Inzp+linz; 2.9

B*=21nZ"-1nZ"

with S P

-PE.  -BE,

K_2" Z£:3e 1+e 2 (2.5)

The second factor in the right hand side of (2.3) again is
the partition function of a 1-d |[Ising model in an external
field therefore it can be calculated by using the conventional

transfer matrix method. The result is
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r@z(chh£8e€+lz§23h2}8e£+ZJ)N 2 .6)

The dielectric susceptibility can be obtained directly

from (2.6)
NBe

/ BE. -BE
2/3e +e z

weo (2.7)
This quantity is always positive. Thus the zero hopping
system is paraelectric. At T=0°K Axeo diverges when U"-J>0
and U1+3J>0,and becomes zero when U1~J<0 and J>0 as well as
when U1+3J<0 and.;J<O . This indicates some charge ordering in
the ground state. Namely, as it can be easily seen, the ground
state is ferroelectric in the first case and antiferroelectric
in the second and third cases* and at high temperatures when

even BEa«<1 (a=1,2) we have

(2.8)

Neo=
The first term has the form of the Curie law describing
the free dip6l- moment system. The second term describes the
effect of the Coulomb interaction. The latter supports or
prevents the polarization depending whether it is repulsion
or attraction thereby XOU@U~”>0)>XeQ(u1<0) as it can be seen
from (2.8).
2. Finite Hopping Case
a . Independent Hopping Approximation
The problem with Hamiltonian H* can not be solved
exactly. It can, however, bff solved approximately if Bt is small.
Since the eigenstates of have the same structure as
that of Hgq the same reasoning as in Section I.can be used here

to get

=z'n &
oi Z°

z D (2.9)
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where Z° 1is the partition function corresponding to H", Z£
is the partition function of the single hopping system

described by the following Hamiltonian

Hy "= +2t, k* (2.10)

b. Modified Transfer Matrix Method
The function Z» can be calculated in similar way as

when calculating Z» in Section I. By using identity (1.17) we

can write in the following form
Hi= E ar+1/72)(-1* +1/72)((U.-Ja.o .)+ef E I*
1 j*L-1,i 3 3+1 11 1+1 J*i 1+

+CLi-1+172) (NP +1+172)H D)+ (Li-1+172) (“Li+1+1/72)H (i _1"i "i+1)+

+(IA_1+1/72) (1A+1+1/72)H, (=1, D)+ (=i i_1+1/72) (=17 +1+1/2)H, (i, i+1)

2 .11)

where
H* (i)=2tilM+e€l” [ (2.12)
H*(Ci-1,D)=(-1*+1/2) (U1-Joi_lai)+2ti IM+efl” (2.13)
H (i, i+D)=(I"+1/2) (Ul-Jaioi+1)+2tilM+efIN 2.14)

H Ci-1,i0,i+1)=(-1*+1/2) (U1l-Jai_1lai)+ (1"+1/2) (Uj-J0jO ~)

+ 2txIN+efIN (2.15)
The structure of (2.11) is the same as (1.18) therefore the
same arguments as in Section I.can be used here. By using

the identity

- : Aj+H1j+D+1 di-1+1i+ 1> (2.16)

which can be easily proved by using the ayclic boundary condi-
tion

IN+1 11 2-17)
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we can write Z» in the following form

N-2)A"+Al =1
Z[:e( ) 1 Ee jli—l,i B 1j1j+1—2 & <|J+|J+1)
>, 1i-1hi+1** JON
CT li-ili+i+D" li-rD+li+i (2-18)
X e
where A and B*" are given by (2.4) and
A*=i(InZ*+InZ*+InZ"+InZ"%)
(2.19)
C"'=-InZ*+InzZ*_+InZ*+-InZ"
Dx=j(InZ"-InzZ™ +InZ"_+InZ"+xBef£-1nZp)
where Z£, zZ* , Z"+f an<* Z3 are Partiti°n functions cor-

responding to H"(i), H"(i-1,i), H"(i/Zi+D» and H*(i-1,i,i+l)

respectively. In order to calculate the right hand side of

(2.18) let us indtroduce the matrices and P2 with matrix
elements
<IjIPI11J+1>-¢ (2.20)

with j~i-1,i+1 and

c"li-111+1+D Y-roO0 ri+l @-21)
<li-1Ip21li+l>=e
Relation (2.18) then can be written as
(N-2)A."+A/
Z[=e 1 2 Tr(P"N_2p"} @ 22)
The eigenvalues of P~ can be easily found. They are
p— ) L - 1 LN 1 -
’?szs—llzsz 1/4 (zsch &8e£i/z < 3h2&8e£+zp_) (2.23)
Denoting the matrix which diagonalizes by T* and

the diagonal matrix elements of the matrix T"P"T" ~ by

*2+ from (2.22) we have



(N-2)AT+A: Mo, M,
I SIE v (R @29

For large N we have approximately

r1-(eAYLf+)b-2A2C+ (2.25)

XE; can be easily found. A simple calculatloerglﬁ?srgg

[/sh2iRe£+e“B "ch(D_/2)+sh(iRe£)sh(D_/2)]e4d 2+e 4 ch(D+/2)
X"

2+:_
/Cr
/e Sh2 ifke6 +1 (2.26)
where
D+=D++D- 2.27)
Comparing (2-25) with (2.6) we see
Z&=ZOAZ (2.28)
where
AZ"=(eA™NX[+)"2eA2X"+ (2.29)
Due to the equivalence of the boxes in fact is

independent of the box index therefore from (2.9) and (2.28)
we have

Z"=Z~(AZ*)N (2.30)

c. Calculation of z»~, Z1+, and Z-*

The Hamiltonian H"(i), H*(i-Ifi)f and H*(i,i+1)can be
exactly diagonalized in the same way as when treating with H(i)
H(i-1,i), and H(i,i+1) in Section 1. The Hamiltonian
H*"(i-1,i,i+1) can not be diagonalized exactly. 1Its spectrum
can be found approximately by treating the last term in (2.15)
as a small perturbation and using the perturbation theory.

In this way we find
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BeV

N\ —
ZN=4ch(Rt+ 8t

Z"+=3{exp[-BR(E1l+ |- £Mlef£"+Nle2e2)] +

2
+exp[B(]-£tM1le£+N1le2£2)] }+

2
+ exp[-B(E2+]|-+M2e£+N2e2£2)] +

2
+exp[R (g—EM2e£+N2e2£2)]} -

e2c2 e2n 2
~3(E, +t+ =jE-) -R(E -t-
Z"=4[e 1 8t + e 1 8t
2n2 ) T.2 2c2
_ 4r-~) —R(E, b - . + Yuze )
v 2fe 2 4<E2-El) e Ty - Aéz—E1) 4T
-t. 3t2 156282
+ 2[e +2+ 4(E2-EIl) m 6(e2-el:
_ 4. 3t2 + in X2
~R( i 3 ) (2.31)
+ e 4(E2-E1) 336(E2-E1)]
where
E
M = a
a 2 (Eg+4t2)1/2 a (E2+4t2)3/2
(a=1,2) (2.32)

In getting (2.-31) we assumed that t>>f£ therefore the results

obtained in the following are true only for 0.

d. Free Energy and Dielectric Susceptibility

By making the use of (2.29), (2.-30), and (2.31) it can be
easily seen that the free energy of the system is an even
function of the electric field. This is quite general result

and independent of the approximations used. It is the consequence
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of the left-right symmetry of the system under consideration.
Since for our system there is no difference between the left
and right the free energy is of course independent of the
direction of the field.

For the dielectric susceptibility we find

Xe=Xeo+AXe (2-33)

where Xe0 IS the dielectric susceptibility of the zero hopping

system, [xe is the contribution of the hopping.
ﬂXe4§H3e2{—226—1/2—£eB'/4 +

1eC "/4[S2-S1+
+BI+E2+®3+ eC*"/4+e-C"/4chD, :

+ S3+~(2S eB>/4+e3B"/AH2]+e C*  [2(S3-S1) x

X shD"-(S2-S1+S3)chD"}} (2.34)
where

c - 1 sh@t/2)ch(Rt/2)
1

_ B .
-RE-4[-) el
S=_ 1c3N,(e 1E1—eél) +
2 U R f2 2
-R(E,+§-)  ef-
+ N2 (e 2 E2 - e E2 )]
REish(Rt/2)f sz
R "REish(Rt/2 _ _
2 7
. RI-
L _ Aasw e-eEi vy _ "l ] +
S-t 72 1 2 2

-B(E +8-) Bé_
M2le E2 - e E2 1} (2.33)
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in which z~, z°, ZzZ*, and C* and D" are determined by (1.34),
(1.41), (1.54) , and (1-22), respectively with t=0.
At high temperature when even 8Ea<<l (a=1,2) we have ap-

proximately

*e - + 1eUlI-3TB(UI-J) 1 (2-36)
Comparing (2.-36) with (2.7) we see that at the same
temperature the dielectric susceptibility of the finite hopping
system is smaller than that of the zero hopping one. This is
the direct consequence of the fact that the hopping breaks the

order which has been established by the Tfield.

CONCLUDING REMARKS

The method used here can clearly be generalized to consider
the effect of the hopping on the behaviour of the 3-d box
model coupled by the Coulomb interaction 13].

Since the method is based on the uncorrelated hopping
processes, which take place only at finite temperature, it can
not be used to consider the effect of the hopping on the ground
state. This problem is hoped to be solved by using the varia-

tional method [4].-
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FIGURE CAPTIONS

Fig.1. Schematic representation of ordered salts of (DONOR)
(TCNQ)2 with alternating donor-ion dipole moments.
The donor sites are represented by arrows and the
dimerised acceptor sites by open circuits.

Fig.2. The structure of an acceptor chain (d™<d2)

Fig.-3. The processes giving contributions to the magnetic
susceptibility at low temperatures in the case
E~>0 and E2>0

Fig.-4. The processes giving contributions to the magnetic
susceptibility at low temperatures in the case
E~<O0 and J>0 .

Fig.-5. The processes giving contributions to the magnetic
susceptibility at low temperatures in the case
e2<o0 J<O

Fig.6. The configurations corresponding to the four
Hamiltonian in (1.19).

Fig.-7. The processes corresponding to the contribution of the
hopping to the magnetic susceptibility at low tempera-
tures in the case E”>0 E2>0 .

Fig.8. The processes corresponding to the contribution of
the hopping to the magnetic susceptibility at low
temperatures in the case E”<0 and J>0 .

Fig.-9. The processes corresponding to the contribution of the
hopping to the magnetic susceptibility at low tempera-

tures in the case E2<0 and J<O0 .
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