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ABSTRACT
The effect of the hopping on the magnetic and dielectric properties 

of the box model introduced by A. Zawadowski and M.H. Cohen [1] are considered.
By symmetry reasoning it is shown that the free energy is an even func­

tion of the hopping rate as well as of the external electric field.
It is proved that at finite temperature when the hopping is small enough 

the hopping processes in various boxed are uncorrelated. Based on this the 
magnetic and dielectric susceptibilities are calculated up to the second 
order of the hopping rate.

А Н Н О Т А Ц И Я
Исследовано влияние прыжка электронов /hopping/ на магнитные и диэлектри­

ческие свойства систем, описанных в рамках модели коробок /box model/, пред­
ложенной А. Завадовски и М.Г. Когеном.

На основе соображений симметрии показано, что свободная энергия является 
четной функцией как и внешнего поля так и амплитуды прыжка.

Доказано, что при конечных температурах в случае достаточно малой ампли­
туды прыжков, прыжки, происходящые в различных коробках являются независимыми. 
На этом основе рассчитаны магнитная и диэлектрическая восприимчивости во вто­
ром порядке по амплитудам прыжков.

KIVONAT

Megvizsgáljuk a hoppingnak az A. Zawadowski és M.H. Cohen által javasolt 
"box model" segítségével leírható rendszerek mágneses és dielektromos tulaj­
donságaira gyakorolt hatását.

Szimmetria érvek alapján megmutatjuk, hogy a szabadenergia mind a 
hopping-amplitúdó, mind a külső tér páros függvénye.

Bebizonyítjuk, hogy véges hőmérsékleten elég kicsi hopping-amplitúdó 
esetén a különböző boxokban végbemenő elektronátugrások korrelálatlanok. En­
nek alapján kiszámítjuk a mágneses és dielektromos szuszceptibilitást a 
hopping-amplitúdóban másodrendig.



INTRODUCTION
During the last decade, the study of organic transfer 

salts has received a great deal of attention. Because of the 
richness of composition, and the possibility of replacing 
similarly functioning units by one another, these materials 
hold out the hope of eventually reaching the stage when materials 
can be tailormade for any desired purpose - assuming of course, 
that our wishes are in accord with nature's laws.

As the original excitement about the high a conductivity 
of TTF-TCNQ gradually died down, it gives place to systematic 
exploration of different properties of all kinds of TCNQ salts, 
which are proved to be almost as interesting as their never- 
realized superconductivity would have been. In particular, 
a class of compounds with the general composition (DONOR) (TCNQ^ 
was found to possess remarkable dielectric and magnetic proper­
ties. Recently A. Zawadowski and M.H. Cohen [1] introduced a 
simple model (the so- called box model) for their description.

The a structure described by the box model is schematically 
shown in Fig.l.

The main feature of this structure is that one electron 
is transfered per donor so that the acceptor chain is quarter 
field. Furthermore each acceptor chain can be devided into boxes 
with two acceptor sites as shown in Fig.2.

The Hamiltonian of the model is

H = £(I*+l/2)(-I*+1 + l/2) (U1-Joiai+1)+2tp^
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Where ск is the Pauli operator used to describe the spin 
state of the electron in the box i, 1^ and I* are the components 
of the isospin operator 1^. The two eigenvalues of the operator 
1^, namely, I^=-l/2 and 1^=+1/2 correspond to the left and right 
hand sites in the box i. The operator I* describes the hopping 
within the box i with rate t, and J are the effective 
Coulomb and exchange interactions between two electrons accupying 
adjacent acceptors in neighbouring boxes. The distance
between two molecules in a box is assumed to be smaller than 
between two next molecules in neighbouring boxes and therefore 
the hopping between boxes is ignored compared to the hopping 
within a box.

In reference [1] the magnetic properties of the model 
were considered in two limiting cases, when the hopping rate 
t=°° and t=0. It was pointed out that in both cases the model 
can be solved exactly. In the first case it was shown that 
the model behaves like a 1-d Heisenberg chain,the ground state 
can be ferromagnetic or anti ferromagnetic. In the second case 
it was found that depending on the signs and relative magnitude 
of the interactions the ground state can be singlet or para­
magnetic (doublet or triplet) . The ground state of the model 
in the intermediate case was discussed qualitatively.

In this paper we consider the effect of a weak hopping, 
on both, the magnetic and dielectric properties of the model.
In Section I. we consider the effect of the hopping on the mag­
netic properties after presenting briefly the solution obtained 
by Zawadowski and Cohen in the zero hopping case, and describing
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the physical picture of the ground state in the intermediate 
case. In Section II. we consider the dielectric properties.
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I. MAGNETIC PROPERTIES 

1. Zero Hopping Case
Let us consider the box model in a static external 

magnetic field. The Hamiltonian of the system is

H = HQ+2t£l* (1.1)

where

H0= ^(I^+l/2)(-I^+1+l/2)(U1-Jaioi+1)-yH^oJ (1.2)

is the Hamiltonian of the zero hopping system in the field. 
Zawadowski and Cohen pointed out that the problem with the 
Hamiltonian HQ can be exactly solved, when t=0 the eigenvalues 
of 1^ are good quantum numbers and the system can be in configu­
rations in which electrons form pairs or stand separately. The 
levels of the system can be classified following the spin states 
of single electrons and electron pairs and following isospin 
states of electrons. In particular, when U^-J>0 and U^+3J>0 
in the ground state every second site is occupied, the spins 
are decoupled and the chain is paramagnetic, when U^-J <0 and 
J>0 the ground state is built up of electron pairs in triplet 
state, the ground state is paramagnetic with spin S=l, when 
U^+3J<0 and J<0 in the ground state electron pairs are in singlet 
state, the ground state is singlet. Since the levels of H can 
be classified by the eigenvalues of I? and by spin states of 
single electrons and electron pairs,the partition function Zq 
corresponding to Hq can be easily calculated. After taking the 
trace in the real spin space we get.

NA,
z° * e

(1.3)
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where
A, = vlnZ + ilnZ 1 4 s 2 p
В = 21nZ - InZ s p

(1.4)

with
Zs = 2ch(BuH)

-ßE1 -ßE2
Z = (l+2ch2BuK.)e + e (1.5)

in which E^=U^-J and E2=U^+3J are the characteristic energies 
of an electron pair in triplet and singlet state, respectively.

The second factor in the right hand side of (1.3) xs the 
partition function of a 1-d Ising model therefore it can be 
calculated by using the conventional transfer matrix method 
[2] . The result is

i0 - [i;/2ij/4<*i,v ,4 1/4 ,4>i‘' (1-6>
The zero-field magnetic susceptibility can be obtained 

directly from (1.6)
-BE.„„ 2 r,l , 2e MiJl Xu = NBM ( U  +

-BE. -BE, 
Зе *+е

-) +

+ (i - 2e~ ßEl ч, / -BE. -BE
2 -BE. -BE /V/3e

Зе +e г
+e 2 + -) }-BE. -BE, 

2+/ 3e +e
(1.7)

The low temperature susceptibility can be obtained by 
expanding.
(i) In the case E.>0, E,>0, when J>0 we getI z .

2 1 " ^Xh = NBW (1+ ~
о 2/3

e 2^ } (1 .8)
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the second term in the right hand side of (1.8) can be as­
sociated with the forming of a triplet pair from two single 
electrons (Fig.3a).When J<0 we find

2 1 ~2^^2Xh = Nßy (1 - j e } (1.9)
о

Now the second term in the right hand side of (1.9) cor­
responds to the forming of a singlet pair. (Fig.3b)
(ii) In the case E^<0 and J<0 we get

1MO 2 r . 4 ß(E.-E0) 1 2ßE2 ,(, = TNßy {4—sr e 1 2 - - e }
ho 3 3 /3

(1 .10)

The second term in the right hand side of (1.10) corresponds 
to the excitation of a triplet pair into a singlet pair 
(Fig.4a), the third term corresponds to the break of a triplet 
pair into two single electrons (Fig.4b)
(iii) In the case E2<0 and J<0 we find 

*h = «вМ2 (4ев'Е2-Е1»*2е5бЕ2> (1.11)
О

The first term corresponds to the excitation of a singlet 
pair into a triplet pair (Fig.5a), the second term can be 
associated with the break of a singlet pair into two single 
electrons (Fig.5b).
2. Finite Hopping Case
a . Independent Hopping Approximation

When the hopping is finite the problem can not b,e solved 
exactly. Basing on physical arguments Zawadowski and Cohen 
[1] discussed the effect of the hopping on the ground state 
of the system. When the hopping is small the ground state 
can be constructed starting from the ground state of the zero 
hopping system and considering the effect of the hopping on 
these states. In the case when U^-J>0 and U^+3J>0 as it was
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mentioned the ground state of the zero hopping system is 
paramagnetic, every second site is occupied. A small hopping 
makes, for example, the electron in the box i jump to the 
neighbouring site, then the exchange interaction acts between 
neighbours and finally the electron jumps back to the original 
position. In this way there is an effective interaction bet­
ween spins in neighbouring boxes. This interaction causes the 
system to behave like a weak ferro- or antiferro-magnetic chain. 
In the case when U^-J<0 and J>0 in the ground state of the zero 
hopping system electrons form triplet pairs. A small hopping 
makes electrons jump from one site to the other as above. Two 
separated triplet pairs can interact after two jumps in which 
two neighbouring pairs break up and temporarily form a new pair. 
In this way a weak exchange interaction is established between 
triplet pairs. Thus the triplet pairs will be ordered as in a 
Heisenberg chain. In the case when U^+3J<0 and J<0 in the ground 
state of the zero hopping system electrons form singlet pairs.
The weak singlet pair breaking results in a weak spin correla­
tion existing between electrons separated by two unoccupied 
sites. Thus, in any ease, at low temperatures the hopping, 
though it is small gives rise to a correlation between electrons 
in the chain. This makes the problem difficult to solve.

When the temperature is raised the correlation between 
electrons is expected to become weaker, and in the limit when 
3t is small enough the effect of the hopping in various boxes 
must be independent and this makes the problem solvable. 
Mathematically this can be shown as follows. For the finite 
hopping system the partition function can be written in the 
following form
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Z = Tr{e (1.12)
where for the usefullness we have introduced the formal nota­
tion t^=t. In order to calculate the trace in the right hand 
side of (1.12) let us choose the set of eigenstates of Hq and

By these relations the expansion of the right hand side 
of (1.12) in powers of ßt^ contain only even powers of the 
latter. This is the consequence of the symmetry of the two 
sites in each box.

By making the use of (1.13) it is easy to prove that up 
to the second order of ßt^ we have

is the partition function of a system in which hopping occurs 
in the box i only. The Hamiltonian of this system is

Equality (1.14) enables us to reduce the solving of our 
problem with the Hamiltonian given by (1.1) to the solving of 
the problem with the Hamiltonian given by (1.16) and shows that 
indeed when ßt^ small enough the hopping processes in various 
boxes are uncorrelated.

It should be noted that equality (1.14) requires the 
smallness not only of ßt^ but also of ti/Ea (a=l,2) because 
in the case when t^-E^ we have no right to ignore the

simultaneously of I^(i=l,...N) to be a basis. Let us suppose 
that |m> is such a function. It is clear that

<m|l*|m> = 0, <m| . . .1*. . . I *. . . |m> = 6i;j (1.13$

(1.14)

where
(1.15)

(1.16)
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4 4(ßt ) -terms while the (ßE^) -terms are taken into account.

Thus the restrictions imposed on our approximation which is 
based on (1.14) are the same as those imposed on the thermo­
dynamic perturbation theory. (In fact (1.4) can be proved 
directly by using the pertubation expansion of the canonical 
statistical operator exp{HQ+2tEl^} considering 2t£I^ as a 
small perturbation). Since equality (1.14) requires the small­
ness of ßt^ the approximation is reasonable only when hopping 
is small and temperature is high enough. In particular it can 
not be used at T=0°K with t^O. In other words the results, 
obtained by using (1.14) do not describe the effect of the 
hopping on the ground state.
b . Modified Transfer Matrix Method.

In order to calculate we separate the Hamiltonian 
into two parts in such a way that one of them does not contain 
the dynamical variables of the electron in the box i. This can 
be easily done by using the following identity

(-I^_1+l/2)(I^+1+l/2)+(-lJ_1+l/2)(-lJ+1+l/2) +

+ (Ii-l+1/2) (4 + l +1/2) + (Ii-l+1/2) (_Ii+l+1/2)=1 (1.17)
The operator then can be written in the following form

Hi= j^ ^ ((I^ /2)(‘Iii1+1/2)C(ur JV 1+l )^ (̂ V i )]

-рН[(Ij+l/2)(Ij+1+l/2)a?+(-Ij+1/2)(“Ij+1+ l/2)оj+1]}+ 

+(-Ii-l+1/2)(Ii+1+l/2)H(i)+(I^_1+l/2)(-I^+1+l/2)H(i-l,i,i+l) + 

+(Ii-l+1/2)(Ii+l+1/2)H(i-1'i) + (-Ii-l+;L/2)(-I^+1+l/2) H(i,i+1).

(1.18)
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where
H(i)=2tiI^-y^a*

H(i-l,i)=(-I*+l/2) (U1-j0i_1ai)+2tiI*-y3t (о^д+сф
о

Н(1,1+1)=(1*+1/2) (U1-Jaiai+1)+2tilJ-y5e(a

H(i-1, i ,i+1)=(-1^+1/2)(U1-Jai_1ai)+(I^+l/2)(U1Jaiai+1) +

(1.19)

These operators correspond to the four configurations 
shown in Fig.6. where the electrons in the boxes i-1 and i+1 
are situated at determined sites, the hopping takes place only 
in the box i. Each term in (1.18) commute with the others 
therefore they can be simultaneously diagonalized. Let us 
denote the partition function corresponding to H(i), H(i-l,i), 
H(i,i+1) and H(i-l,i,i+l) by Z Z 2_, Z2+ and Z3 , respectively. 
By the symmetry it is clear that Z2_=Z2+ therefore there 
remain only three independent functions Z^, Z2HZ2_=Z2+ , and 
Z^. From (1.18) it is easily seen that the partition function 
Z^ corresponding to can be expressed in terms of Z^, Z^, 
and Z^ as follows

(-Ij+l/2)(-Ij+1+l/2)+(Ij+l/2)(Ij+1+l/2)
Zi x

I1 ‘*•Ii-lIi+l*•*IN
E (I.+l/2)(-I +1/2)

„ j#i-l,i J 0 ±x Z JT '
(~Ii_1+l/2)(Ii+1+l/2)

* xP
C("Ii-l+1/2)("Ii+l+1/2)+(Ii-l+1/2)(Ii+l+1/2)]

x Z2 x

(Ii_1+l/2)(-Ii+1+l/2)
Z3x (1.20)
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Using identities Zs=exp[lnZg ] etc. we get
, „ E BI.I.^.+CI, nI. ,, + D ( I . .-I..,)(N-2)A1+A2 7 3 + 1 i-1 i + 1 i“l i + 1

1 Ii*•,Ii-lIi+l*‘*IN (1-21)

where A^ and В are given by (1.4) and

A_=-x(lnZ1-21nZ„ + lnZ0)2 4 1 2 3
C =-lnZ^+21nZ2~lnZ (1 .22)

D=|(lnZ3-lnZ1-lnZp )
The structure of Z , in (1.21) is again somewhat similar 

to the partition function of a 1-d Ising model therefore it 
should be expected to be calculated in some way similar to the
transfer matrix method. Let us introduce two matrices and
P2 defined as follows. P^ is the matrix with elements

<IjipiiIj+i>=e
BIjIj+l (1.23)

with j^i-l,i+1; and P2 is the matrix with elements

CIi-lIi+l+D(Ii-l'Ii+l) (1.24)i-11 ‘ 2 1 J'i+1'
The right hand side of (1.23) can be written in terms of the 
matrix elements of these matrices as follows

(N-2) A. +A_
Z±=e x ^Е<1.|Р1 |12>< <Г1-2'B1 'Ii-1> X

rl* • •Ii-lIi+l* * л ы

X<Ii-lIP2IIi+l><Ii+l1P1IIi+2> X

x --*<IN lPllIl> (1.25)

where N is the number of boxes in the chain. 
(N-2)A +A

Zi=e Tr{P1N_2P2} (1.26)

The eigenvalues of P^ can be easily found. They are 

X, =(Z1/2Z'1'4 + z ^ z 1'4)1+ s P —  S p (1.27)
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Denoting the matrix which diagonalizes by T, and the 
diagonal matrix elements of the matrix TP2T 1 by X2 + from
(1.26) we have

Zi=e (N-2)Al+A2 ( X ^ 2X2++x5II2X2_) (1.28)
Since N is very large a . m , A„

Zi=(e Л1+) e Л2+ (1-29)

X ^ c a n  be easily found. It is

X2+=eC ^ + e  chD (1.30)

Comparing (1.29) with (1.6) we see

Z =Z AZ (1.31)i о
where

AZ=(e 1X1+) e ^X2+ (1.32)

Due to the equivalence of the boxes in fact Z^ is 
independent of the box index and therefore (1.14) gives us

Z=Zq (AZ)N (1.33)

Substituting (1.32) into (1.33) and using (1.4),(1.22),
(1.27) , and (1.30) we can express the partition function Z 
in terms of Z^, Z2, and Z^.

c . Calculation of Z ,̂_Z2 , and Z^
The Hamiltonian H(i) can be easily diagonalized and 

therefore the corresponding partition function Z^ can be 
easily found

Z.=2Z ch(ßt) (1.34)X s
Assuming that 8t<<l we have

Zl-2Zs« s <Bt)2 (1.35)
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In order to calculate we write the Hamiltonian 
H(i-l,i,i+l) in the following form

H(i-lf i)=Ho (i-l,i)+2tiÎ C (1.36)

where

Ho (i-l,i)=(-I^+l/2)(U1-Jai_1a1)-uU(o^_1+ o p  (1.37)

The eigenstates of this operator can be easily found.
They are

*íl=<l1/2>i-ll1/2>i
1. *

Ф10=/2ф1 [I1/2>i-lI1/2>i + l1/2>i-ll1/2>i ] 

Ф11=ф1 U 7 2 > i_1|i72>.

= /f |l/2>i_1 |l/2>.-|l/2>i_1 |l/2>.00

(1.38)

Where ф* and are the eigenfunctions of the operator 
1^ with the eigenvalues +1/2 and -1/2, respectively, |l/2>^ 
|l/2>^ are the eigenfunctions of the operator with the 
eigenvalues +1/2, and -1/2, respectively. The signs at ф 
indicate the site of the electron in the box i, the first 
index indicates the total spin of the pair formed by the 
electrons in the box i-1 and i, the second index indicates the 
z-component of the total spin.

The matrix corresponding to the operator H(i-l,i) is 
denoted by the same symbol. In the basis formed by the system 
of functions in (1.38) it has the following form

H (i-1,i)=Qq q (-2)®Qq q (0)©Qq q (2)®Qq q (0)

where

QPq (s) = /pEl+qE2+SM fc J
p'q' t p'E1+q'E2 + su j

(1.39)

(1.40)
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The eigenvalues of the matrix H(l-l,i) can be easily 
found by solving the characteristic equations corresponding 
to the submatrices in the direct sum (1.39). In this way we 
obtain 2 2

-ß(E1+ |-) ß§-
Z„=(l+2ch2ßMtf)(e 1 +e 1)

i  2 2

+ - ß(E2+lj> ^
(e +e z )

(1.41)

The first term in the right hand side of (1.41) is the 
contribution of the states with 6=1, the second term is the 
contribution of the states with S=0.

In getting this we used the condition (t/Ea)<<l (a=l,2)
Assuming that ßt<<l we have

Z2=(Zs+Zp )+
-BE. -ßE,

(l+2ch2yiß )(1-e ) , (1-e
BE, BE,

(Bt)‘ (1.42)

The partition function can be found in a similar way 
Let us write H(i-l,i,i+l) in the following form

H(i-l,i,i+l)=H (i-l,i,i+l)+2t±I* (1.43)
where

Ho (i-l,i,i+l)=(-l^+l/2)(U1-Jai_1ai)+(I^+1/2)(U1-Jaiai+1)-

-M*(o*_1+aJ+a*+1) (1.44)

This operator describes the zero hopping system of the 
three electrons in the boxes i-1, i and i+1 in which the 
electron in the box i-1 occupies the right hand site and the
electron in the box i+1 occupies the left hand site. In this
system the electron in the box i can form pair with the 
electron in the box i-1 or i+1 depending whether it is 
situated in the left or right site in its box. Paring with
the electron in the box i-1 it leaves the electron in the
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box i+1 alone and viceversa. Basing on this the eigenstates 
of HQ (i-l,i,i+l) can be constructed in the following way. 
From the eigenfunctions of the operators a^_^, , and
we can construct the following independent functions

Xi=| 1/2>i_i 11/2>± I 1/2>±-hi » X5=|l72>i_1 |l/2>i |l/2>1+1

X2=l1/2>i-iI1~2>± I1/2>±+i , X6=|l72>i_1 |l72>i |l/2>1+1 (1.45)

X3=|1/2>i_il172>il1/2>i+i , X7=|l72>i_1 |l/2>i |l72>i+1

X4= | 1/2> i _ i l 172> i |l72> i + i , x 8 =l 1Г2> ± _ 11172> ± I l T 2 > i + 1

The three electrons can be in states of total spin equals 
to 3/2 or 1/2. The spin functions corresponding to these states 
can be constructed from the functions in (1.45). For total 
spin S=3/2 we have four states

3/2,3/2 X1 ' X3/2,1/2 X2+X3+X5 (1.46)
3/2,-3/2=X8 ' X3/2,-l/2=x4+x6+x7

For S=l/2 we have eight states

x(1) = /2(x5~X2 ) ' x(1) =/2(x6_X7)1/2,1/2 1/2,-1/2 b '

X(^) = ji(Y -V ) _y \1/2,1/2 /2Ц 3 X2 ’ ' X1 / 2 , -1 / 2 /2U 4 X7; (1.47)

(3)
Cl/2,1/2 /6l/,Xc'*"Xo— 2 X-i'> , x < 3 )= .7c (Л5 A2 "л3) 1/2,-1/2 /6(Х6+Х7~2Х4)

X1/2,1/2 /б(х3+х2~2х5),xl/2,-1/2 /6(x4+x7~2x6)

The eigenstates of Hq (i-1,i ,i+1) now can be constructed from 
these spin functions and the isospin functions <p~ . There are
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16 functions of them. For S=3/2 we have-

фЗ/2,±3/2 ф1хЗ/2,±3/2 

фЗ/2,±1/2=ф1Х3/2,±1/2
(1.48)

For S=1/2 we hawe

ф1/ 2 , ± 1/2

ф1/2,±1/2
_ - (3)
Ф1 Xl/2,±1/2

(1.49)

where the signs at ф indicate the isospin state of the 
electron in the box i, the first index indicates the total 
spin of the three electrons, the second index indicates the 
z-component of the total spin.

From the functions in (1.49) we construct the following 
symmetric and antisymmetric functions

The matrix corresponding to H(i-l,i,i+l) in the basis formed

(1.50)

by the system of functions in (1.48) and (1.50) (denoted
by the same symbol) has the following form

H(i-l,i,i+l)=Q^(-l)©Q^(l)®QÍo(‘3)®QÍŐ(3)®

© R+ (-1)©R~(1)©R+ (1)©r "(-1) . (1.51)

where Q ^ ,  (s) is given by (1.40) and

/e 2±§ +suK
(1.52)
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The eigenvalues of the matrix H(i-l,i,i+l) can be 
easily found. The corresponding partition function is

-RP Г _ f t F  + 3(3t)2 _ßp _  3(ßt)2
Z3=2Zs{e ^ h i ß t ^ e  * 1 4ß(E2-El) +e *E2 T O I ^ T j  ch(|t)}

(1.53)
In getting (1.53) we used the condition (t/Ea)<<l (a=l,2). 
The first term in the right hand side of (1.53) is the 

contribution of the states with S-3/2, the second term is that 
of the states with S=l/2.

Assuming that ßt<<l we have

z3-2zs V zS(t2oh2e^ w S ^ T - Ie 6El + (154)
1 1 —3E_ 2

+ i4 " 23(E2-E1) }(6t)

d. Free Energy and Magnetic Susceptibility
I

Making use of (1.33),(1.35),(1.42), and (1.54) we can 
calculate the partition function Z and therefore the free 
energy. The result is

F=Fo +AF1+AF2+AF3 (1.55)

where Fq is the free energy of the zero hopping system,
AF̂ , (y=l,2,3) are the contributions of the hopping correspond­
ing to the configurations shown in Figs. 6a, 6b and 6c, and
6d, respectively.
4p . ___ < i « 2 ,1 /2,

1 „ 1/2, 2 Zp Zs
2ß< V Zp >

-ßE
Д f2= (ßt) * (l+2ch2ßufc) (1-e x) + l^e. 

ß(Zs+Zp)2 ßE2

-ßE,

AF3= (ßt) T7272- z;1/2Zs{[20h2ey*+ i +
2ß ( Z +Z s p 2ß(E2-E1)

-] e
-ßE-

2ß(E2-E1)
■] e

-ßE,
(1.56)
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(1.55) is nothing but the perturbational expansion of the 
free energy in powers of (ßt) up to the second order.

In principle, this result can be obtained by using 
the conventional thermodynamical perturbation theory, in 
practice, however, we can not do it because of the high 
degeneracy of our system. By (1.13) the free energy is an even 
function of t. Its expansion in powers of (ßt) contains only 
even powers. This is the consequence of the equivalence of 
the two sites in each box.

The magnetic susceptibility can be obtained directly by 
using (1.55) and (1.56). The result is

V * h  +4Xh +*Xh +iXh (1.57)0 1 2  3
where x^ is the magnetic susceptibility of the zero hopping 

о
system given by (1.7) and Дх^ (y=l,2,3) are the contributions

Yof the hopping corresponding to the configurations shown in 
Fig. 6.

ДХ =(ßt)2 ----- ■ -.. Ni^----
1 /  “BE. -ßE_ 3 / - ßE. BE„

(2+/3e x+e z) /Зе +
x

-BE. -BE,
x (2-/3e +e 'Me

-BE. -BE, 
1-e

Axh =(et)2 ..... .....  4NßH---- = -
2 /  - B E . - B E ,  3 -BE. -BE,

(2+/3e +e z ) /Зе х+е

x [
-BE. / -BE. -BE -BE, 

(1-e )(/3e +e +2e )
BE,

-BE / -BE. -BE, -BE. 
(1-e )(/3e x+e ^+2e x)

BE0
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Axh =(ßt)' 
3

Nßy

(2+/3e +e1-  " V / i  *"2
/  -BE, -ßE„, 3 / -BE, -BE 

V3( '3e +e

/ -BE. -ßE -BE. -ßE- 
x {(2-/3e +e (e -e A)

• Á>e
-ßE. — ßE- ■ 

3 [ (14+9/3e J4-e )e
■ßEl /

(2-/3.
-ßE. -ßE- -ßE- 

(2-/3e x+e z)e ]
-ßE -ßE, 

2ß(3e ±+e

x t (
. . ~ßE. . . ßE-

E--E. ” 2 ^ e _ ^E0-E. + 2^)B ^ (1.58)
J2 "1 J2 "1

For hopping small enough we can find its contribution 
at low temperatures by expanding (1.58).
(i) In the case E^>0 and E2>0 we find Дх^ =Ах^ =0 and

4*h24 (st) 21)61,2 (|ё ^  -
If J>0 we have approximately

2

BE. -) (1-59)

% =  f ^ 16t>2 (1.60)

It is the contribution of the hopping corresponding to the 
configuration shown in Fig.6b (or Fig.6c) in state with S=1 
(Fig.7a). If J<0 we have approximately

■>„ - -2 2E2
(1.61)

This is the contribution of the hopping corresponding to the 
configuration shown in Fig.6b (or Fig.6c) in state with S=0 
(Fig. 7b).
(ii) In the case E. <0 and J>0 we find Дхи =0 and

> ,  2
i x h  =  - — ( e t ) 2 N 6 u 2 e

nl 3/3
(1.62)
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(1.63)

ДХ^ can be associated with the break of a triplet pair to 
form the configuration shown in Fig.6a (Fig.8a). The first 
term in (1.63) corresponds to the break of a triplet pair to 
form the configuration shown in Fig.6d in state with S=3/2 
(Fig.8b), the second term corresponds to the break of a triplet
pair to form the configuration shown in Fig.6d in state with 
S=1/2 (Fig.8c)
(iii) In the case E2<0 and J<0 we find Дх^ =0 and

ДХ^ corresponds to the break of a singlet pair to from the
configuration shown in Fig.6a (Fig.9a), Дхь can be associated

3
with the break of a singlet pair to form the configuration 
shown in Fig.6d, in state with S=l/2 (Fig.9b). From (1.54) 
it is clear that at low temperature the configura­
tion shown in Fig.6d in state with S=3/2 gives no contribution.

<

2

(1.64)

3
(1.65)

c
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11, DIELECTRIC PROPERTIES

1. Zero Hopping Case
The box model contains not only spin but also coordinate 

variables therefore it can also be used to describe the 
dielectric properties of corresponding systems.

Let us consider the model in a static electric field 
The Hamiltonian of the system is

H'=H'+2tZI* (2.1)
° i 1

where
H^=E(I^+l/2)(I^+1)(U1-Jai01+1)+e£ZI^ (2.2)

is the Hamiltonian of the zero hopping system in the field.
The problem with H^ can also be solved exactly in the 

same way as when solving the problem with HQ in Section I.
The partition function Z^ corresponding to H^ can be found by 
taking the trace in the real spin space first. After doing 
this we get

NA
Z'=eо T. e

II* XN
(2.3)

where

with

K-2'

Ai 4 inzp+!inz;
B'=21nZ'-InZ' s p

-PE. -BE,
Z'=3e 1+e 2P

(2.4)

(2.5)

The second factor in the right hand side of (2.3) again is 
the partition function of a 1-d Ising model in an external 
field therefore it can be calculated by using the conventional 
transfer matrix method. The result is
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гД=( Z 'chiße€ + /z' 2sh2iße£+Z ')NS z S Z pO S Z ' S

The dielectric susceptibility can be obtained directly 
from (2.6)

(2.6)

*eo
NBe

/  BE. -BE 
2/3e +e z

(2.7)

This quantity is always positive. Thus the zero hopping 
system is paraelectric. At T=0°K Axeo diverges when U^-J>0 
and U1+3J>0,and becomes zero when U1~J<0 and J>0 as well as 
when U1+3J<0 and.;J<О . This indicates some charge ordering in 
the ground state. Namely, as it can be easily seen, the ground 
state is ferroelectric in the first case and antiferroelectric 
in the second and third cases* and at high temperatures when
even ßE «<1 (a=l,2) we have a

^eo= (2.8)

The first term has the form of the Curie law describing 
the free dipól- moment system. The second term describes the 
effect of the Coulomb interaction. The latter supports or 
prevents the polarization depending whether it is repulsion 
or attraction thereby X0Ű(U^>O)>XeQ(u1<0) as it can be seen 
from (2.8).
2. Finite Hopping Case
a . Independent Hopping Approximation

The problem with Hamiltonian H' can not be solved 
exactly. It can, however, bf* solved approximately if Bt is small.

Since the eigenstates of have the same structure as 
that of Hq the same reasoning as in Section I. can be used here
to get

Ziz ' = z ' n  —  oi
oi Z'

(2.9)
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where Z' is the partition function corresponding to H', Z£ 
is the partition function of the single hopping system 
described by the following Hamiltonian

H.'=H'+2t,I* (2.10)i о l i
b . Modified Transfer Matrix Method

The function Z^ can be calculated in similar way as 
when calculating Z^ in Section I. By using identity (1.17) we 
can write in the following form

Hi = E (I^+l/2)(-1* +1/2)(U.-Ja.o .)+e£ E I*
1 j*L-l,i 3 3+1 1 1  1+1 j*i 1 +

+('Ii-l+1/2)(Ii+l+1/2)H'(i)+(Ii-l+1/2)(“Ii+l+1/2)H'(i_1'i 'i+1)+

+(I^_1+l/2)(I^+1+l/2)H,(i-l,i)+(-ii_1+l/2)(-I^+1+l/2)H,(i,i+l)
(2 .11)

where
H' (i)=2tiI^+e€l^ ■ (2.12)

H'(i-l,i)=(-I*+l/2)(U1-Joi_1ai)+2tiI^+e£l^ (2.13)
H'(i,i+l)=(I^+l/2)(U1-Jaioi+1)+2tiI^+e£l^ (2.14)

H' (i-l,i,i+l)=(-I*+l/2) (U1-Jai_1ai) + (l^+l/2) (Uj -JOjO ^ )

+ 2t±I^+e£l^ (2.15)
The structure of (2.11) is the same as (1.18) therefore the 
same arguments as in Section I. can be used here. By using 
the identity

E E (Ij+Ij+l)+I (Ii-l+Ii+l> (2.16)

which can be easily proved by using the ayclic boundary condi­
tion

IN+1 I1 (2.17)
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we can write Z^ in the following form

(N-2)A'+Al 
Z[=e 1 Е е

II* *,Ii-lIi+l**,JN
j|i-l,i B 1j1j+1 2-  «* <Ij+Ij+1)

x ec 'Ii-iIi+i+D"Ii - r D+Ii+i
(2.18)

(2.19)

where A^ and B' are given by (2.4) and

A'=i(lnZ'+lnZ'+lnZ'+lnZ')

C'=-lnZ'+lnZ'_+lnZ'+-lnZ'

D ±=j(lnZ'-lnZ^ +lnZ'_±lnZ'+±ße£-lnZp)

where Z£, Z'_, Z' + f an<* Z3 are Partiti°n functions cor­
responding to H'(i), H'(i-l,i), H'(i/i+D» and H ' (i-1, i, i+1) 
respectively. In order to calculate the right hand side of 
(2.18) let us indtroduce the matrices and P2 with matrix
elements

<IjlPllIJ+1>-e (2.20)

with j^i-l,i+l and

<Ii-llp2I1i+l>=e
c 'Ii-lIl+l+D Ч - г 0 ri+l

Relation (2.18) then can be written as 
(N-2)A.'+A/

Z[=e 1 2 Tr(P'N_2p'}

The eigenvalues of P^ can be easily found. They are

(2.21)

(2 .2 2)

л. =z'_1/2z'Tl/4(z'chÍ8e£±/z'^3h2Í8e£+z')1± s p s 2 s 2 p' (2.23)

Denoting the matrix which diagonalizes by T' and 
the diagonal matrix elements of the matrix T'P'T'  ̂ by 
*2+ from (2.22) we have
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(N-2)AÍ+A: м , M ,'I"« <X1+ X2++Xí- XP (2.24)

For large N we have approximately

г1- ( е А Ч £ + )Ы - 2еА2х ’+ (2.25)

XI. can be easily found. A simple calculation gives us 2+ ___________ _ Cr^ Q, rC>
[/sh2iße£+e“B 'ch(D_/2)+sh(iße£)sh(D_/2)]e4 2+e 4 ch(D+ /2)

X ' =- 2+ /СГ
/e Sh2 i-ße 6 +1ße (2.26)

where
D±=D+ ±D- (2.27)

Comparing (2.25) with (2.6) we see

Zj = Z 'AZ' (2.28)i о
where

AZ'=(eA^X[+ )"2eA2X'+ (2.29)

Due to the equivalence of the boxes in fact is 
independent of the box index therefore from (2.9) and (2.28) 
we have

Z'=Z^(AZ')N (2.30)

c. Calculation of Z ,̂_Zl+, and Z'
The Hamiltonian H'(i), H'(i-lfi)f and H'(i,i+l)can be 

exactly diagonalized in the same way as when treating with H(i) 
H(i-l,i), and H(i,i+1) in Section I. The Hamiltonian 
H'(i-1,i,i+1) can not be diagonalized exactly. Its spectrum 
can be found approximately by treating the last term in (2.15) 
as a small perturbation and using the perturbation theory.
In this way we find
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Z^=4ch(ßt+ ß e V
8t

Z'±=3{exp[-ß(E1+ |- ±M1e£'+N1e2e2) ] + 

2
+exp[B(|-±M1e£+N1e2£ 2) ] } +

2
+ exp[-ß(E2+|-±M2e£+N2e2£.2) ] +

2
+exp[ß (g—±M2e£+N2e2£ 2)]} .

e2c2 e2^ 2~3(E, + t+ =j£-) -ß(E -t-
Z'=4[e 1 8t + e 1 8t

+ 2 [ e

+ 2 [ e

~ß(
+ e 

where
M =

2 4<E2-El)

.t. 3t2
+ 2+ 4(E2-El)

. 4. 3t2
4(E2-E1)

Eа

2л 2 . T. 2 2C 2
4r~) -ß(E,+i- - Л- Л — —  + Ч ~  )

+ e
, c 2 C 2 15e £
и 6(е 2-е 1:

1 2  4(E2-E1) 4t

+ i^ 2£ 2 )336(E2-E1);

01 2 (E2+4t2)1/2а а (E2+4t2)3/2

(2.31)

(а=1,2) (2.32)

In getting (2.31) we assumed that t>>£ therefore the results 
obtained in the following are true only for t=̂ 0.

d . Free Energy and Dielectric Susceptibility
By making the use of (2.29), (2.30), and (2.31) it can be

easily seen that the free energy of the system is an even 
function of the electric field. This is quite general result 
and independent of the approximations used. It is the consequence
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of the left-right symmetry of the system under consideration. 
Since for our system there is no difference between the left 
and right the free energy is of course independent of the 
direction of the field.

For the dielectric susceptibility we find

Xe=Xeo+AXe (2.33)

where x e o  is the dielectric susceptibility of the zero hopping 
system, Дхе is the contribution of the hopping.

ДХ 4Nße2{-2Z'-1/2-ieB '/4 +e 2 p 2

+Bl+E2+ ®3+ eC'/4+e-C'/4chD,ieC ' / 4 [ S 2 - S 1 +

+ S3+^(2S eB>/4+e3B'/,4)2]+e C ’ [2(S3-S1) x

x shD'-(S2-S1+S3)chD'}} (2.34)
where

c — 1 
1_

sh(ßt/2)ch(ßt/2) 

ßt .2 7

S = _ 1
2 Ц

-ß(E.+|-) 
-|C3N,(e 1 E1 

ß f2
e|-- e El) + 
.2

-ß(E,+§-) 
+ N2(e 2 E2 ef-- e E2 ) ]

"ßEish(ßt/2)f 
C ßt L

ßt2

CO Ы II 1 N| U)

4 <e2- V  - 2ohtfb)
2 7

s - 1 -
1 , -e(Ei V^t 1 3M. l e 1 - 
Z2 1 2

ß|-e E1 ] + 
.2

-ß(E +§— ) 
M2le E2 - ß|-e E2 ] } (2.33)
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in which Z^, Z', Z', and C' and D' are determined by (1.34),
(1.41), (1.54) , and (1.22), respectively with it =0.
At high temperature when even 8Ea<<l (a=l,2) we have ap­
proximately

*e - + l eUl-3TB(Ul-J) 1 (2-36)
Comparing (2.36) with (2.7) we see that at the same 

temperature the dielectric susceptibility of the finite hopping 
system is smaller than that of the zero hopping one. This is 
the direct consequence of the fact that the hopping breaks the 
order which has been established by the field.

CONCLUDING REMARKS
The method used here can clearly be generalized to consider 

the effect of the hopping on the behaviour of the 3-d box 
model coupled by the Coulomb interaction Í 3].

Since the method is based on the uncorrelated hopping 
processes, which take place only at finite temperature, it can 
not be used to consider the effect of the hopping on the ground 
state. This problem is hoped to be solved by using the varia­
tional method [4].
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FIGURE CAPTIONS
Fig.1. Schematic representation of ordered salts of (DONOR) 

(TCNQ)2 with alternating donor-ion dipole moments. 
The donor sites are represented by arrows and the 
dimerised acceptor sites by open circuits.

Fig.2. The structure of an acceptor chain (d^<d2)
Fig.3. The processes giving contributions to the magnetic 

susceptibility at low temperatures in the case

Fig.4.
E^>0 and E2>0
The processes giving contributions to the magnetic 
susceptibility at low temperatures in the case

Fig.5.
E^<0 and J>0 .
The processes giving contributions to the magnetic 
susceptibility at low temperatures in the case

Fig.6.
e 2<o J<0
The configurations corresponding to the four 
Hamiltonian in (1.19).

Fig.7. The processes corresponding to the contribution of the 
hopping to the magnetic susceptibility at low tempera­

Fig.8. 

Fig.9.

tures in the case E^>0 E2>0 .
The processes corresponding to the contribution of 
the hopping to the magnetic susceptibility at low 
temperatures in the case E^<0 and J>0 .
The processes corresponding to the contribution of the 
hopping to the magnetic susceptibility at low tempera­
tures in the case E2<0 and J<0 .
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Fig. 6.
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