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ABSTRACT
A general discussion of scaling fields and scaling variables in the 

dynamic renormalization group is given using path probability formalism. It 
is shown that scaling variables are the derivatives of the action with re
spect to scaling fields. The general ideas are illustrated on the multi- 
component relaxational model in the large-n limit, where scaling fields and 
scaling variables are calculated explicitly and flow lines, crossover and 
universality are discussed. Critical points of higher order are also included 
in the investigation.

АННОТАЦИЯ
В рамках метода динамической группы ренормировок, применяя формализм ве

роятности траекторий, исследуются поля и переменные подобия. Показано, что 
переменные подобия являются производными действия по полям подобия. Общая 
идея работы иллюстрируется на примере многокомпонентной реляксационной моде
ли в пределе n-большое, в рамках которого в явном виде вычисляются поля и 
переменные подобия, обсуждаются также линии течения, кроссовер, и универсаль
ность. Исследования обобщены и на критические точки более высокого порядка.

KIVONAT
A dinamikai renormálási csoport keretében a skála tereknek és a skála 

változóknak általános tárgyalását adjuk a pálya-valószinüség formalizmust 
alkalmazva. Megmutatjuk, hogy a skálaváltozók a hatásnak a skála terek sze
rinti deriváltjai. Az általános elveket a sok-komponensü relaxációs modellen 
illusztráljuk a nagy-n határesetben, ahol a skála tereket és a skála változó
kat explicite kiszámítjuk és az áramlási vonalakat, "crossover"-t és az uni
verzalitást diszkutáljuk. A vizsgálatokat kiterjesztjük a magasabb rendű 
kritikus pontokra is.



I. INTRODUCTION
Scaling fields [1,2] and scaling variables [3] give the 

most concise formulation of the renormalization group transforma

tion in describing static critical behaviour. Scaling fields 

are parameters with especially simple transformation rules and 

represent a special set of solutions of the non-linear renormal

ization group equations, scaling variables are random variables 

having well defined scaling dimensions.Complex phenomena, such 

as crossover [4] are most conveniently discussed in terms of 

scaling fields, while scaling variables help study certain 

properties of correlation functions [3]. The large-n system 

(n being the number of components of the order parameter field) 

[5] has served as a good example in understanding these general 

ideas in statics [3,6-10].

Our purpose here is to investigate the general properties 

of scaling fields and variables in the framework of the dynamic 

renormalization group (DRG) and carry out explicit calculations 

in the non-trivial but exactly solvable model of the large-n 

system with purely relaxational dynamics. The DRG transforma

tion in this model and related topics have been discussed in 

[11] and [12]. (ref. [12] will be referred hereafter as I).

The path probability formalism [13] with an additional 

response field [14-16] proved to be very convenient in con

structing DRG (see also I). Using this technique a general 

discussion is given on dynamic scaling fields and variables.
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It is shown that the scaling variables can be derived by 

differentiating the action with respect to scaling fields.

Turning to the large-n limit we introduce an action, based 

on the results of I, which is more general than that of a simple 

Langevinian dynamics and provides a sufficiently wide parameter 

space for studying scaling fields and variables.

In general scaling fields, scaling variables and the cor

responding exponents depend on which fixed point they are re

lated to. For 2<d<4 (d is the dimensionality of space) there 

exist two fixed points in the large-n system. Both the trivial 

and the non-trivial fixed point representations are worked out 

in this case. The scaling fields are constructed explicitly by 

means of appropriate generating functionals. The static scaling 

fields [9] are recovered as a subset of this manifold. The DRG 

transformation can be linearized around the fixed points, demon

strating the correctness of the general assumptions of RG proce

dures. The exponents of the dynamic scaling fields and the 

dimensions of the dynamic scaling variables depend on whether 

the order parameter is conserved or not. In order to illustrate 

some interesting features of the global solution in the large- 

-n limit, DRG trajectories are determined and crossover phenomena 

are investigated in course of which it is shown that the at

traction of the trivial fixed point is stronger when the order 

parameter is conserved. Furthermore, universality is also demon

strated.
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The scaling variables are explicitly given in the large-n 

case. It is shown that the scaling variables are just the coef

ficients of the scaling fields in the generating functionals 

of scaling fields. Scaling products of scaling variables analog

ous to those obtained by Ma in statics [3] are also calculated.

Inherent in the model there are critical points of higher 

order, too, whose assotiated scaling fields and scaling vari

ables are also deduced.

The outline of the paper is the following: Sect.II. con

tains the general discussion of scaling fields and variables.

In Sect.III. the DRG transformation is derived for the large-n 

system. The scaling fields associated to both the trivial and 

the non-trivial fixed points are given in Sect.IV., where flow 

lines and crossover are also discussed. Sect.V. is devoted to 

the determination of scaling variables in both representations.
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II. SCALING FIELDS AND SCALING VARIABLES IN THE DYNAMIC 

RENORMALIZATION GROUP-A GENERAL DISCUSSION

Let us consider a system the dynamics of which is described 

by the probability distribution

W = exp A {ф , ф } (2.1)

where c(>(x,t) = (ф^(х,1) | j =1,2,.. n}denotes the n-component 

order parameter with momentum cut-off Л, $(x,t) is the corre-- 

sponding response field and А{ф,ф} represents the action func

tional of the process [14-16]. ф^(х^) and $j(x,t) or alterna

tively their Fourier components ф . , and $. , (for the] ,K,(D 3 »к , u
definition see I (2.12)) are the basic random variables. With 

the help of the probability distribution the average value of 

an arbitrary random variable В can be expressed as

<B>w = /бфбф В exp А /бфбф exp A (2.2)
where

/бфбф = / П <3ф dфjkü) (2.3)
j,к<Л,u J J

The probability distribution W is specified by a set of

parameters у (the parameters of the action). The dynamic renor

malization group transformation R^ transforms у to y'^R^y . R^ 

is given by the relation

W' = exp A {у ,ф ,ф} (2.4)

•d*j,k,co d$j,k,u) exP А{^ ^ Ф }= / П
j,^<к<А>ш

ф. -*-Ь̂ ф. , , zтк,ш rbk,b ш

ф, -*-Ь̂ ф,, , zrk,o) Tbk,b из,
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The constants у, у and z are determined by the requirement of 

the existence of a fixed point y*defined as

V * = v * (2.5)

The values of y,y and z may depend on which of the fixed 

points they belong to.

For the random variables ф, and $, with k<A/b,К f (a) K,U)

W and W' are equivalent in the sense that

<фк.,Ы-** фк ,ш $k _, со •** фк 0, ui 0 1' 1 m m m+1 m+1 ÍL l
> = bmy+(i,-m)y

<ФЬ к . , Ь 2и>, фЬк  , b Zoű фЬк , Ь 2ш - * * * фЬ к .  , b 2w .  >w'1' 1 m m m+1 m+1 I I

(2 .6)

The transformation of an arbitrary random variable В under 

R^, B+Bj is defined as follows:

<B ф . . ф. . .n. .. x . _ . my+(£-m)y
ki'wi “  w w " W  к Л  w

{сВ'ф, . , z ... , z > , - <B'> ,<ф,, . z ,z > ,}тЬк^,Ь Ybk^,b w' w тЬк^,Ь Ybk^,b w'

(2.7)
for any k^ , . . km , . . . k^< А/Ь, and m,£.

Following from the semigroup property of the RG transforma

tion one can construct a set of functions д^(у), similarly as 

in statics [1,2 ], to each fixed point such that g^ transforms 

under R, as
Yig' = д±(Вьм) = b gi(y) , i=l,2 ,... (2 .8)

The quantities g^ are called scaling fields, the constant y^ is the 

exponent of g^. The scaling fields form a more convenient set
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of parameters than у but general procedures for the construc

tion of the scaling fields are not known. We suppose here that 

the set g=(g.,g2,.••) and the corresponding exponents are 

given and use g instead of y.

Generally the random variables are functions of ф and ф 

and also depend on the set of parameters g. In introducing the 

scaling variables as special random variables and discussing 

their properties we generalize the treatment followed by Ma 

in statics [3] to the situation in dynamics.

The random variable D which obeys the transformation rule

D(g)-(D(g))' = be D(g') (2.9)

is called a scaling variable with scaling dimension (-e).

Let us consider

Di(g) = 9A(g)/9gi (2.10)

Then

D±(g') = ЭА(д')/Эд' (2.11)

where A(g')EA' represents the action functional after the 

transformation. Differentiating (2.6) with respect to g^ and

using (2 .2) and (2.7) the transformation rule
У ±

Di(g)-*-(Di(g))# = b D^g') (2.12)

follows directly. It means that D^(g) is a scaling variable 

with dimension (-y^) .

It is worth mentioning that the quantity D^Dj is in 

general not a scaling variable. The following combination,how

ever, which will be called the scaling product of and



7

{DiDj}SDiDj + 82A/8gi3gj = exp (-A) 5gJ -g - exp A (2.13)

gives a scaling variable. The corresponding dimension is 

(-y^-Yj). This can be shown by differentiating (2.6) twice with 

respect to g^ and g^.
It is often convenient to use the so called local variables • 

D^(g;x,t) is a "local variable" related to D^(g) if

Di(g) = /ddxdt D^ig/Xjt). (2.14)

From relations (2.10) and (2.14) one expects that

Di(g; x, t)=3A(g; $ (x, t) ,<j> (x, t)) / 3gi , (2.15)

where А(д;$,ф) is defined by

A{g;ф,ф }=/ddxdt A(g;ф (x,t),ф(x,t)) , (2.16)

is a local scaling variable with dimension d+z-y^. Note, how

ever, that the transformation rule

(g;x,t)+b d Z+yi Di(g';x/b,t/bZ)

is correct only if is a slowly varying function of x and t. 

The local variable related to the scaling product (2.13)

is

{Di(x1 »tp D_. (x2 ,t2) }=Di (x1 ,t1)Dj (x2 ,^)-0± j 6 (x1-x2) 6(t1~t2)

(2.17)

where

Di, j(x ,t)=32A /3gi3gj_

The associated scaling dimension is 2(d+z)-(y^+y^).

The scaling variables form a basis set, i.e. an arbitrary 

random variable can be expressed as a linear combination of the
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scaling variables. When the system is near its critical point 

only a few terms with the lowest dimensions play an important 

role in this series.

It is worth comparing the scaling fields and variables 

resulting from static and dynamic calculations, respectively.

In the course of a dynamic calculation the set of scaling fields 

g can always be constructed in such a way that a subset of it, 

g depend only on the static parameters. The scaling fields
Ь t

of this subset correspond to those of a static calculation, up 

to a constant factor. On the other hand, there is no simple 

relationship between the scaling variables obtained in dynamics 

via differentiating the action with respect to the elements 

of the set g and the scaling variables deduced in statics.Ь U
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III. THE DRG IN THE LARGE-n LIMIT

In the first part of this work (I) we have started with an 

action functional corresponding to a simple Langevin type equa

tion of motion. It has been shown there that DRG generates new 

couplings in the action. These are strongly related to the 

cumulants of the vertices which become random variables in the 

equation of motion under Rfa (see Sect.V. of I.). We have deter

mined the general form of the action arising after the DRG trans

formation in the large-n limit above Tc treating only couplings 

local in space and time which transform among themselves 

(see (3.1) of I) .

In order to construct the complete set of scaling fields

and scaling variables in this parameter space we start with

the afore-mentioned action
n

A{$,ф }=/d^xdt l {-Ф-Ьф .+i$ . (ф .-аЬДф .) }+У(ф2,ср) j=l J J J J J (3.1)

where

Ф 2 = (1/2) l ф2 
j=l 3

(3.2)

<P=i l ф.Ьф +(n/2)TV 1 I kC , (3.3)
j=l J J k<A

L = Г (i V) , c=0,2 in the case of a non-conserved and a con

served order parameter, respectively. V denotes the volume of 
the system.

The action given by (3.1) corresponds to a general equa

tion of motion the vertices of which are delta-correlated random 

variables with non-Gaussian distributions. The parameters
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u„ _ defined as the Taylor coefficients of the function zm, z a
2Y(<J> ,cp) (for the definition see I (3.3)) form one pos

sible representation of the parameter space y. The quantities 

U2m 2 ^enote average values of random coefficients of terms
9m— 1like ф in the equation of motion, while the parameters

u„ Д >1 are related to the higher order cumulants of the 2m,2£' 4
random coefficients (for more details see Sect.V. of I).

2У(ф ,<p) can be any function with the restriction

Y ( ,0)=constant=Y(Nc ,0) (3.4)

This is required by causality which can be proved by similar 

arguments as in Appendix C. of [16]. Equation (3.4) insures 

that the response function loop cancels the contribution of 

the functional Jacobian. Later the constant Y(Nc ,0) in (3.4) 

will be chosen to be zero.

To perform the DRG transformation (2.4) we decompose the 

fields into two parts
A

ф ̂ +Ф ̂ + Ф j , j = 1 ,2 ,...n, (3.5)

where ф^ on the right hand side involves only wave numbers
A

smaller than Л/b, while Ф^ contains the large wave number com

ponents. A similar separation is valid also for Since n is
A 2 Alarge and both Ф and ф are sums of n terms, the relative 

fluctuations of these quantities are small, that is

Ф-<Ф>Ь <<0(n ) , ф2-<ф2>b <<0(n) , (3.6)

where <...>b denotes the average over field variables with 

wave numbers between A/b and A.
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It follows from (3.6) that the action functional can be
a a a2 a2expanded in an appropriate way in powers of <р-<<р>̂  and Ф -< ф 

making possible to perform the DRG transformation by simple 

Gaussian integrations. The details of the calculations are 

relegated to the Appendix. Before discussing the result we 

recall two notations already used in I:

Y. .(ф2,<р) = Э1+:’у(ф2,ф)/Э(ф2):1Зф:’ (3.7)1 Г J
) = К , ^bdq qd_1 ' (3.8)

d 4 Лwhere К^(2П) is the area of the d-dimensional unit sphere. 

The DRG transformation can more conveniently be given for the 

two first partial derivatives of Y instead of Y. We obtain for
tiiem

2 и Д-р 9 2 — гЯ ~p о
^1,0(Ф /ф)= b Yl,0(b 0(ф '<P>+Nc'b Н(ф ,Ф)) , (3.9a)

У0 /1(ф2'ф)= h2 Y0/l (b2_dQ(<{,2 '<p)+Nc ,b~d_CR(<i)2'(p))' (3.9b)

where

0(ф2,ф)=ф2-Ы +(n/2)}(qC/f2S 1-q 2) , (З.Юа)
c q

К(ф2 /Ф)=Ф- (n/2 )/(q3C/íiq2+Yi 1(ф2 ,ф))Б 1-qC ), (З.ЮЬ)q U/ J-
with

8Е{дС(д2 + у ^ 1(ф2,ф))2- 2 У ^ 0 (ф2 ,ф)}1/2 , (3.11)

Nc = (n/2)KdAd_2/(d-2) . (3.12)

Since the parameters a and Г do not transform (a similar situa

tion has been found in I, see (3.8),(3.9)of I.) they have been 

set equal to unity in equations (3.9)-(3 .11).
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An important feature of the recursion relations (3.9) is 

that at cp=0 they describe the transformation of the static 

parameters as it can also be seen by comparing (3.9) with the 

results of I. This feature can be traced back to the consequence 

of (3.4)

У1,0(ф2'0)Е0- (3.13a)
2 (1 ) 2In the special case Y(<j> ,cp)=(pU ' (ф ), which corresponds 

to the initial action used in I the recursion relations (3.9) 

reduce to equations (3.10)-(3.11) of I.

The fixed point is generated by taking the limit b-*-°° . It 

can easily be seen that the critical surface is specified by

Y0,l(Nc '0)=0 ‘ (3.13b)

For d>4 always the Gaussian fixed point is reached:

Y*(<(>2 ,<p) SO . (3.14)

For 2<d<4 the Gaussian fixed point exists but it can be stable

only if Yn _(N ,0)=0. If, however, Yn 0 (N ,0)>0 a new non-trivial

fixed point arises which is stable. The fixed functions Y* .U f 1
and Y* q associated with this fixed point are determined by the 

same equations as in I((3.20) and (3.21) of I) where we started 

from a different initial action. This is a manifestation of 

universality. The connection between Y* and its derivatives is 
given as follows:

¥*(Ф2,ф ) = (Ф2-Ис )у* 10+<(*£д  - (3.15)

-(n/2)?Kdqd-1+c{[(g2+Y;(1)2-2Yli0q-C ]2-(q2+Y;>1)+YÍi0q-2-°}dq .
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IV. SCALING FIELDS IN THE LARGE-n LIMIT

In order to construct the set of scaling fields one should 

find a function of the random variables which follows a simple 

transformation under R^.

For this purpose let us consider the Legendre transforma- 
2tion of Y(<f> ,cp) :

Z(z1 ,z2)=Y-(<}>2-Nc)z1-cpz2 , (4.1)

which is regarded as a function of the variables

21=Y± 0=9Y/3<f>2 z 2SY0,1= Э¥/9ф * (4.2)
Note that for convenience the notation z^ and z2 will be used 

for Y. _ and Yn .»respectively in this Section. It follows from-L j U U / 1
(4.1) that

<()2-Nc =-92/9z1 , ф =-92/3z2 . (4.3)

The transformed quantity 2' is defined similarly

Z'(z'^z')=У'-(ф2-Ыс)г^-фг' , (4.4)

<{>2-Nc =-92/9z ' , cp=-92/9z' (4.5)

The connection between Z' and Z is given as

2'(z',z')=bd+2+c2(b'4"cz',b-2z')+F(z',z')» (4.6)
where

F(z1,z2)=-(n/2)/f(q;z1 ,z2) (4.7a) ,

with

f (q;z1»z2)=qC { [ (q2+z2)2-2z]Lq C ]^-(q2+z2)+z1q 2-C}. (4.7b)

The transformation rule (4.6) can easily be verified using 

(3.9), (4.3),(4.5) and the fact, that
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3f/3z'=Q-(<f>2-Nc) ,

3f / 3z2=R-cp,

where Q and R are defined by (3.10 ). The recursion relation

(4.6)/(4.7) with z^ and z2 as independent variables is equivalent
2to the transformation (3.9)-(2.12) where ф and Фаге regarded 

as independent variables.

In order to rewrite our results in a more convenient 

form/let us introduce the function

where

Z(z1,z2)=2(z1,z 2)-Z*(z1,z2) ,

2*(Zi,z2)=-(n /2)/Kd4d 1f(q;zi,z2)dq

(4.8a)

(4.8b)

is the expression of 2 at the non-trivial fixed point. This

can be directly seen by substituting 2* into (4.6). Furthermore

it can be shown using (A.11) and (3.9) that 2' goes over to 2*

for large b if one starts from the region of attraction of the

non-trivial fixed point. It is worth mentioning that Z*(z*,z*)
. 2is just the Legendre transformation of Y* (ф ,<p) . The function 

Z defined by (4.8) transforms in a simple way under R^:

(4.9)7 / /„ / / \ 1 dt2+c„ ,,-4-c , 1 2 гZ (zlfz0)=b Z(b z', b z2)3. 2 v 11
as a consequence of (4.6),(4.7). Equation (4.9) will play an
Ji

important role in deriving the scaling fields and scaling
variables.
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Scaling fields associated with the non-trivial fixed point

Let us consider the quantities defined by the Taylor

expansion

Z , . г a В(z ,z2) I ga gz1z2
a>o,ß>0

(4.10)

It follows from the transformation rule (4.9) and from the

definition (2.8) that the parameters are scaling fields:

' = b a 'ß''a,В ’a,В with

у „=d+2+c-(4+c)a-2Вa , p (4.11)

It is clear from (4.8a) that the scaling fields g ^  are associ

ated with the non-trivial fixed point , where all g „=0Оь 1 P
As a consequence of (3.4) and (4.2) z^=0 if cp=0. Thus from

(4.1) we obtain, that

Z(0,z2)=constant=Y(Nc ,0). (4.12)

Comparing (4.12) with (4.10) one concludes that the scal

ing fields gQ  ̂ with 8>0 can never be present. It is worth

discussing here shortly the role of the quantity gQ q=Y(Nc ,0 ).
zThis scaling field increases with b as b . It is related to 

the constant term of the action (to the normalization factor 

of the probability distribution W). The role of gQ o is analog

ous to that of the static scaling field gQ with exponent d 

(which represents the non-singular part of the free energy 

[2]). Similarly to gQ neither gQ Q influences the critical 

behaviour of the system, therefore from now on, we shall set

Y(N ,0) equal to zero. Thus in what follows the sum over a c
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in (4.10) will start with a=l.

It will be more convenient to use the derivatives of Z: 

Ti(zl'z2)E_3Z/8zi ' i=l,2 . (4.13)

According to (4.8a) we can write

Tiizl ,z2)=:fi(zl'z2)_:fi(zl ,z2) (4.14a)
where

xi=32/3z^ , x*=3Z*/3zi , i=l,2. (4.12b)

From (4.10)

W * 2)-
v 0 a ß-1

~l a ga ,8ßziz2a>0 ,8^0
(4.15)

T2 (zl'z2>"
г a-1 8- L ga 6«z1 z2

a>o,8>o
(4.16)

At the non-trivial fixed point x*(z^,z2)=x*(z^ , z^)=0.

Using the explicit expressions (4.3) and ( 4.7b) , (4.8b) one 

easily sees that these conditions and (3.20)-(3 .22) of I are 

equivalent (the difference lies only in the choice of independent 

variables).

As it has been mentioned,the transformation of the static 

parameters is recovered from the recursion relations at cp=0 . 

Since for <p=0 we have z^=0 it follows from (4.16) that the 

expansion

x2(0 ,z2)= -£ g1/j3z^ (4.17)

generates the static scaling fields. Comparing this with 

equation (3.8b) of ref. [9] one finds, that g. Q = (8+1)g,a, , ._- 

where g^c denotes the static scaling fields associated with 

the non-trivial fixed point as determined by Zannetti and
Di Castro.
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The next step is to find the relation between the scaling 

fields and the parameters in the action. Here it is convenient 

to use the representation of the parameter space as follows.*

м=={и2т ,2 J m>*-1}' (4Л8)
where U2m is defined bY

00

У(ф2,ф)= I I U2m 2 (V | 2^ 2"N ) I"1’* (4Л9)
m=i 1<Л<т c

(see also Sect. IV. of I.) In order to obtain the scaling
2fields g „ we return in (4.16) to the variables Ф and <p,

calculate the derivatives of the equation and evaluate the
2expressions at ф =NC , cp=0 .

Although above Tc the expressions obtained are very com

plicated they become tractable at Tc , where both z^ and 
2vanish at ф =N^ , ф=0. due to (3.13). By this reason in

the following only the scaling fields on the critical surface

(T=T )will be discussed. This means that the relevant scaling c
field g. _ with exponent у. =d-2 is chosen to be zero. (It1 f U X g и
can be seen from (4.11) that there is no other relevant scal- 

in field for 2<d<4).

The first few irrelevant scaling fields are obtained as

(4.20)

^ o ’ «1'4>(U4 , 4 < 2 (4.21)

*Since a and Г do not transform they are not involved.
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9l,2= a / 2 ><U6,2U4?2’U6,2D4'2)' <4 -22>

92,l=(1/4)(U6,4U4!2'US,4Ud )-

-(U6,2U4,4U4!2-US,2U:,4U 4;2> .

The fixed point values U*m 2 р i-n (4.20) - (4.22) can be read off 
from (3.24) of I using

U2m, 2?, = m!2m-£ V  Ym-Í.,1 (Nc '0) (4.23)

In the large-n limit one can explicitly see, that in the 

immediate neighbourhood of the fixed point the DRG transforma

tion can be linearized which is in accord with the general 

assumptions of RG procedures. In the linear approximation the

scaling fields g go over to the linear scaling fields \iOt / p a, B*
у1Д .(1/2)бо4(2и;;2

>j2,0=(1/4)6U4,4U4"2 - ul,lU3,4U47l (4.24)

-3
4l,2=<1/2>6U6,2U4;2 - 4 , 1 ^ , 2UUU* „и*-2

M2,1= (1/4)6U6(4ü »;2-2u1 j2u :,4U4 ; H ‘'2,0US,2U4;
* - 2  _2

*-3-yl,l(3ü6,4üb +U6,2ü4,4)ü4,2
where 6u2m/2Jl=U2m, 2jTU2m, 2£ *

It is of particular interest that near the fixed point an

explicit expression can be given for Y in terms of the linear 

scaling fields. Namely,here g in (4.10) can be replaced by 

the small quantity  ̂ and thus in a linearized calculation 

one can put z* and z* for z^ and z2,respectively,on the right 

hand side of (4.10). (Here we have returned to the variables
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ф and cp) . Furthermore expanding 2* around z*, z* we find 

using (3.15) that in leading order the left hand side of (4.10) 

is equal to Y-Y* and consequently

У(ф2 ,ф )-Y*(ф2 ,ф)= I уа gZ*az*^ (4.25)
a>o,ß>_o '

„а *ß -а *6This expression suggests that the quantities z* z^ = Y* ^Y*  ̂

are eigenoperators of the linearized DRG transformation. We 

shall return to this question in Sect. V.

Equation (4.10) makes possible to obtain the recursion 

relations for large b independently how far away from the 

non-trivial fixed point, on the critical surface we started.

For this purpose let us consider (4.10) after the transformation 

where 2' is given by (4.4). For large b it is sufficient to keep 

only the term with the largest exponent on the right hand side 

and z^ and z' can be replaced by their fixed point expressions.

On the left hand side since z'-z* and z'-z* are small quanti

ties 2* can again be expanded around z* and z* and for 2<d<4 
we obtain at in leading order that

Y' (Ф2 ,(p)-Y*(4>2 ,ф)=д^ iziz2

in accordance with (3.29) of I got by a direct calculation. The 

scaling field g of I corresponds to g, . in the present notation.

Seating fields associated with the trivial fixed point at ordinary 

and higher order critical points

In order to determine to scaling fields associated with the 

trivial Gaussian fixed point we consider the Legendre transforma

tion of Z with t 1 and x2 defined by (4.13),(4.14) as independent

2
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variables:

Z(t 1 ,t 2)=Z+t 1 z 1+ t 2z 2 (4.26)

As a consequence of the transformation of Z, (4.9)/the follow

ing recursion relation is valid for £ :

E'(T',T')=bd+2+C£(b-d~CT'fb2"dT') (4.27)

Owing to this equation the quantities g^Gl defined by the
OL f p

expansion

E(t1't 2)= £ gaGßTlT2 (4.28)1 г ct>o,ß>o a,P 1 г

are scaling fields with exponents

y (G„=d+2+c-(d+c)a-(d-2)ß (4.29)a, p
í G)The scaling fields gv Í are associated with the trivial fixeda, p

point where of course Z*G (T^»T2  ̂ =Z2G^T1 ,T2^E0‘
Following from the requirement of causality, (3.13), 

x^=0 if cp=0, (z^O) thus E (0,T2 )=Y(Nc ,0) .

Comparing this with (4.28) one concludes that g v 1=0 for allo,v
(Q)positive ß-s. Furthermore g v -g_ =Y(N ,0) which vanishes due0/0 0/0 c

to our previous choice of Y(Nc,0). So the sum over a in (4.28) 

will start with a=l.

The subset of the static scaling fields is related to the 

value a=l also in this case

I(G) =
fl,ß (ß+l)g (ß+l)t 9

where g ^  denotes the static scaling fields associated with 

the trivial fixed point determined in [9].
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When deducing the relation between the scaling fields

q^G  ̂ and the elements of the parameter space (4.18) we return^a, 8
2 í G)to the variables ф and ф in L  The quantitites g'; ' are ob-Ot i P

tained by differentiating (4.28) and evaluating the expressions 

at ф =Nc and <p=0. Here again only the scaling fields on the 

critical surface will be discussed i.e the relevant scaling 

field g|G^ with exponent y£G^=2 he chosen to be zero.

The expressions for the scaling fields g^ and g^ Q 

and g| 2 can he summarized in the formula
,(G) = r--na~ ~ -(«+ß)
ga 8 (_1) ga ,8 gl,l (4.30)

g^G} , however, can not be expressed in terms of the scaling 

fields associated with the non-trivial fixed point in a simple 

way since

92?! - 2(U6,4U4!2-UI,4U4,2)<U:,2-U4,2>"3 ' <4'31>

-8(U6,2U4!2-U?,2U4,2><U4,4U4,2-U4,4U4,2)<U4,2-U4,2>'4 
where U*m 2£ denotes the fixed point values at the non-trivial

(Q\
fixed point. Note that the scaling field g| | is a relevant 

one for d<4 since y|  ̂=4-d. This reflects the instability of 

the trivial fixed point: for gjG| Ф О the non-trivial fixed 

point is reached as b goes to infinity, while g£v  ̂ diverges 

(crossover phenomena will be discussed in the next subsection 

in more details). When g^ | is chosen to be zero, which accord

ing to (4.20) and (4.30) is possible only if U4 2 ~°' the 
trivial fixed point becomes stable for d>3. This situation cor

responds to a tricritical point. For d<3 g|G2 is also a relevant
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<G> =6 —2d ,(G)scaling field with y^'-'' =6-2d. If, however, also g^ 2 is chosen 

to be zero (U4 2=U6 2=0  ̂ the trivial fixed point becomes 
stable already for d>8/3. This specifies a critical point of 

fourth order.

In general at a critical point of order a U2m 2=0 f°r

m<a and o>0 are required . In this case g.v = 0 for2a,2 1 , m
m<a-l and it is easy to deduce the most relevant scaling field 

g^a| related to this critical point

gi°i=2<0'l)u2o ,2 ' with y<“}=2-(d-2)(0-1).

It indicates that the trivial fixed point is stable for 

d>d =2a/(o-l). Further scaling fields g^°p can be obtained from 

relations like (4.30),(4.31) and from the condition U2m 2=0 for 

m<a.

The linear scaling fields y^G ĵ of the trivial fixed point 

are given as the linearized expressions of the scaling fields 

g^Go . Sufficiently close to the trivial fixed point g^Gn inOt, p ot, p
(G)(4.28) can be replaced by the small quantity у t . As aot, p

consequence of (4.1),(4.8)and (4.26) in leading order in z^ 

and z2 E=Y and thus near the trivial fixed point

yot7ß ф“(Ф“-Мс) K . (4.32)У(ф2,Ф)= I ..(G> -“-2 ••
a>o, B^o

It has been used that and x2 in this approximation go over 
2to ф and ф -N , respectively,as it follows from (4.13),(4.14)• 

Comparing (4.19) and the generating function of the linear scal

ing fields (4.32) one obtains the relation 

U (G>=2S U.a,В 2 (a+B) , 2a (4.33)
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a 2 ßIt follows from (4.32) that cp (ф -N ) is an eigenoperator 

of the linearized DRG transformation near the trivial fixed

point.
Finally it is of interest that equation (4.28) applied

after the transformation makes possible to obtain the recursion

relations of Y for large b, provided the trivial fixed point

is stable. At a critical point of order a we find in leading

order in b at T that for d>d^ c a

Y ' U 2 , « » ^ ^  <Р(Ф2-Мс )а_1 (4.34)

in accordance with (3.30) of I.

Finally we want to stress that the trivial fixed point 

representation and the non-trivial fixed point representation ~ 

of the scaling fields are equivalent for 2<d<4 as far as the 

ordinary critical point is concerned and one can use that set 

of scaling fields which appears to be more convenient. A non- 

Gaussian fixed point does not exist above four dimensions in 

case of the ordinary critical point and in any dimensions 

in case of higher order critical points and consequently only 

the scaling fields associated with the trivial fixed point are 

meaningful in these situations.

Crossover and trajectories

The phenomenon of crossover is described in the renormaliza

tion group picture as an effect of fixed points of competing 

stability. In order to analyse crossover one needs to know the 

complete set of scaling fields. As for the statics of the
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model in the large-n limit the crossover has already been 

discussed [9].

Let us examine the b dependence of the simplest dynamic 

parameter 4 at Tc . (As a consequence of (4.33) 4 is at

the same time proportional to the linear scaling field g ) 

It follows from (4.20),(4.21) and (4.30) that

U /U* = u (G) lu^G) =U4,4' 4,4 y2,0/y

=[q(G)/u*(G) +(a(G)/u(G))2 ](l+q(G)/u*(G)) Lg2 ,o/y2,o + ĝl,l/yi,i; gl,l/yl,l ;
-2 (4.35)

í G)where y*v 'denotes the value of the linear scaling field as-01 i P
sociated with the trivial fixed point taken at the non-trivial 

fixed point. Equation (4.35) indicates that for d>4 or in the 

case of gjG| =0 for 2<d<4 (tricritical point) U' 4 tends to 

zero as b goes to infinity. However, if we start from a point 

of the parameter space which corresponds to small, finite scaling 

fields in the trivial fixed point representation, (4.35) des

cribes a crossover between the Van Hove behaviour and the true 

critical behaviour. In this case for b values near b=l 

U' 4 ^ d C g2^cP i‘e U4 4 decreases first since the
attraction of the trivial fixed point is decisive but with in

creasing b values the relevant scaling field g'^G  ̂ starts to
9

dominate and finally U' .-U* . , thus the non-trivial fixed4,4 4,4
point is reached for b-°° . In order to characterize the approach

to this fixed point it is more appropriate to use у (g ) 
2,0

Figure 1 illustrates the b dependence of U' .at T for a
л ̂ 4 C

given initial value in different dimensions both for conserved
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(c=2) and for non-conserved order parameter: At increasing 

dimensionalities (for d<4) the approach of the non-trivial 

fixed point is continually slowing down and the tendency ceases 

at d=4. In the case of a conserved order parameter the initial 

decrease, i.e. the attraction of the trivial fixed point is 

always stronger then for a non-conserved order parameter.

The knowledge of the scaling fields makes also possible to 

determine the flow lines of the DRG trajectories in the para

meter space. Here we shall discuss the subspace spanned by the 

simplest static parameter (U^ 2) and the simplest dynamic one 

(U. .) at T . Due to (4.30)4^4 C
и /и* =U<G >/u*CG> = (crCG)/li*CG >) (i+CTCG>/u*CG>)-1 (4 36)
U4,2/U4,2 У1,1/У1,1 Cgl,l/Pl,l M i + g l,l/yl,l '

From (4.35) and (4.36) the desired relation between 2 an<̂

U' . can easily be deduced.

Figure 2 shows the DRG trajectories in the subspace 

2~^4 4 three dimensions for conserved and non-conserved 
order parameter, respectively. The flow lines approach the 

parabola 4 ,/и* 4 = (U4 2^U4 2' a^on9 which they tend to the 
point (1,1) corresponding to the non-trivial fixed point. The 

origin represents, of course, the trivial fixed point. In the 

case of a conserved order parameter the flow lines are steeper ■ 

before reaching the parabola. Similar situations are found also 

in other dimensions for 2<d<4 ; with increasing dimensions the 

flow lines are steeper and steeper before reaching the parabola.
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Finally it is to be noted that the special initial action 

corresponding to a usual Langevin type equation of motion 

(treated in I) is represented by the straight line ^=0 

on Figure 2. It can be seen that the behaviour in the immediate 

vicinity of the non-trivial fixed point (the large b behaviour) 

is independent from the initial conditions. This is again a 

manifestation of universality.
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V. SCALING VARIABLES IN THE LARGE-n LIMIT

From the general relations derived in Sec. II and from the 

scaling fields deduced in the previous section it is straight

forward to determine the scaling variables in the large-n limit.

Sealing variables associated, with the non-trivial fixed point

It follows from (2.15),(2;16)and (3.1) that the local

scaling variables D „are obtained as* a , 6

Da y x , t )  = 3Y (g;<Hx,t),<Kx ,t))/3ga>6 • (5.1)

where g^  ̂ is defined by (4.10). In order to find an explicit 

g-dependence it is convenient to express Y from (4.1) and (4 „8). 

Due to (4.13) and (4.14) the partial derivative of Y can be 

given as

3Y/3goe.3Z/3gcijB , 

which means according to (4.10) that

Da f0(X't) = [Y1(o(í2(x-t) ,cp(x,t)) ]2 [Yo a (<J>2(x,t),cp(x,t)) ]ß (5.2) 

with dimension

(4+c)a+2ß , a=l,2,... 6=0,1,...

Also the scaling product of these variables can easily be

worked out. From (2.20) 

D
2Э Y

a;6;«» 6 aV e '  Э 9 - , ~
2 .„„a „6-1
a , 6 9ga{ß

,уа у® ) =CY1,0*0,1'

¥0®1ЭВа;в'/Эф‘+вУЬ 0 У5 д  ЭВс.;в'/Эф !

(5.3)
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which gives by (2.19)

{Da:e'!ci,e)= tDa,e;a:e,} =

=Da ,e(xl'tl>ll+6(xl-x2)S<tl-t2)<c‘Yí V /S','2+eYö)l9/9<p,)Da:e'<x2't2)

The corresponding dimension is

(4+c)(a+a')+2(8+8') .

Finally we note that near the non-trivial fixed point the

random variables
Y*a Y *B a=l,2,... 8=0,1,...1,00,1

i.e. the eigenvalues of the linearized DRG transformation are 

the local scaling variables as it follows also from (4.25).

Scaling variables associated with the trivial fixed point

In this case the local scaling variables are given by

D^G ^(x,t)=9Y(g(G) ; <j> (x, t) , ф (x,t ) ) / d g (Gl ot, p ot, p (5.5)

( G )where g ' is defined by (4.28). Now it is convenient to express a , p
Y from (4.26). Since ЭЕ/Эт = Y , and ЭЕ/Эт = Y, „ we obtain1 0,1 ' 2 1,0

9Y/9g<G> = 9E/9g<G) a , p a , p

which according to (4.28) gives

( х ^ ) = [ т 1 (ф‘г ( х ^ )  , cp ( x ,  t )  ) ] а [ т 2 (ф2 ( х ^ )  , < p ( x , t )  ] (5.6)

with dimension

(d+c)a+(d-2)8 cx 1,2 ,... 8—0,1,.. .

The scaling product can be derived similarly as in the previous
case.
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Close to the trivial fixed point the random variables
ft<ра (ф -N ) a=l ,2, . . . 0=0,1,...

are the local scaling variables as it follows also from (4.32).

The set of scaling variables obtained is complete in the

sense that any local random variable which is given by a power 
2series in ф and <p can be expressed as a linear combination

í G )of the scaling variables D _ or D ’ ̂ a,0 a ,0
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VI. SUMMARY AND DISCUSSION

We have determined here the complete set of scaling fields 

and scaling variables in a non-trivial dynamic model. Both the 

trivial and the non-trivial fixed point representations have 

been worked out.

The difference whether the order parameter is conserved 

or not is clearly reflected in the scaling fields. From Table I 

which gives the hierarchy of scaling fields associated with the 

non-trivial fixed point, the following properties can immediately 

be seen: for a conserved order parameter the exponents of the 

dynamic scaling fields are smaller (in absolute values larger) 

than the corresponding ones in the other case. There are scal

ing fields sharing the same dimensionality. The degree of this 

degeneracy is smaller when the order parameter is conserved.

As for the scaling fields associated with the trivial fixed 

point there is only one scaling field belonging to one exponent 

in general. If however, the dimensionality of space is a rational 

number degeneracy may occur. In d=3 we obtain the hierarchy 

indicated on Table II. From (4.29) one sees that in the case 

of a conserved order parameter is the attraction of the trivial 

fixed point stronger, provided we start from its vicinity.

This fact may play an important role in crossover phenomena 

also in systems with a finite n.

Let us shortly compare the scaling fields and scaling 

variables resulting from static and dynamic calculations,
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respectively. As it has been demonstrated the manifolds 

{g. c} and {g. „} are subsets of the parameter space the1 f P J- Г P
elements of which transform among themselves and are of purely

( Г1\static character. The scaling fields g. D and g, Í correspondif P if P
to the scaling fields obtained by a direct static calculation

[9] in the non-trivial and the trivial fixed point representa

tion, respectively.

As for the scaling variables those associated with g, 0J-fPQ_|_l
turn out to be t p with dimension 2+2$ in the static calcula-

2 2tion [3] where the function t(<}> ) corresponds to Y. ,(ф ,0)U r -L
in our notation, while the result of the dynamic calculation

О
is D1 oY0 1 dimension 4+c+2$. Furthermore it can be

/ Г» \
shown that the scaling variable associated to g; „ in a statict » $ß+ 1calculation is xp with dimension (d-2)($+l), where the func

tion T corresponds to x2(0,z2), whereas the dynamic calculation 

gives D.v o=x.x_ with dimension d+c+(d-2)$. Thus we concludeif P 1 ^
that two types of scaling variables can be associated with the 

static scaling fields when the dynamics of the system is also 

considered.

As it has been derived in I by a direct calculation and 

here within a more general framework the deviation of Y' from 

its fixed function can be expressed for large b at Tc as the 

product of the scaling field with the leading exponent and 

the corresponding eigenvector of the linearized transformation. 

This can be traced back to the fact that there is only scaling
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field which belongs to the largest exponent. Similar behaviour 

is expected also when the number of components of the order 

parameter is finite.
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APPENDIX: THE EVALUATION OF (2.4) IN THE LARGE-n LIMIT

After separating the fields according to (3.5) the "action 

density" (3.1) reads
П Л Л А »  A Т аЭ л

A=A + I {-ф.Еф.+1ф.( ф.-aLA ф. ) }+ У(ф +Ф ,ф+Ф),° 3 3 3 3  3
(А.1)

п

where

{-ф .L$ .+i<J> . (Ф •-аЬДф.)}3 3 3 3 3 9

cp=i I ф.Ьф . + (п/2)ГУ_1 I кС (А.2)
j=l 3 3 к<Л/Ь
П А А 1 П

<p=i I $.L Ф. + (п/2) rv~ I к (А . 3)
к=1 3 3 Л/Ь<к<Л/Ь

А

Here we have used the fact that terms like фф,фф,... etc. are 

to be neglected in the large-n limit, as it has been shown in 

Sect. IV. of I.

According to (3.6) Y is expanded in terms of <р-<ф>b
In leading order

О О о о
Y (ф +ф , ф+ ф) =Y (ф +ф ,Ф+<ф>^) +

+Y0 1 (Ф2+ Ф2 »Ф+< Ф^) f'P“<‘P>b  ̂'

with Yq  ̂ defined by (3.7). Thus W, (2.1), becomes a simple 

Gaussian distribution in $ and different averages can easily 

be calculated. In terms of Fourier components we obtain that

< Ф3,k,»*j-k,-co>b=1<l*j ,k,J‘'9<k'M)>b /<2rk'') ' (A.4)

where Л/Ь<к<Л , and

д(к,ш) =iui+rkC (ak2+Y0 ^(ф2+ф2 ,ф+<ф>^)) (A.5)
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After integrating over ф the following new term arises in

the exponent of W

I 1ф%  к J 2 |g(k,co) I2/(4ГкС) ,
Л/Ь<к<Л,ш 3,К,Ш

apart from an unimportant constant. Then the exponent is expanded 

in powers of ф'-<ф and according to (3.6) one may keep only 

the leading term. A lot of new terms appear but several of them 

cancel if

<Ф> =(п/2)ГУ-1 I kC - (A.6)
b А/Ь<к<Л

-V_1 I (1/2)<|ф |2> ГкС (ак2+У .(ф2+<ф2>ь Ф+<Ф>Ь))
j,Л/Ь<к<Л,ш b ° fl b ' Ь

holds. We shall verify this equality only later but use it at 

this point already to simplify the calculation. Finally we

obtain in the exponent:

A=Ao+Y"Y1,0<ф2V Y0 ,1<^ (n/2>ГV_1 l kC >,

-V-1
A/b<k<A

2 , „2, 2c , _,_2l (1/2) I ф (|w + Г ^ с (а1Г+У -I ) I / (2Гкс ) -Y. }
,Л/Ь<к<Л,ш D'KÜ) U,i 1,0

(A.7)
where the functions Y, Yq  ̂ have in their arguments
2 „2 A ' 2Ф + <Ф and ф+<ф>^ . It has been used here that ф and ф

can be considered as nearly constant quantities since their

deviation from the mean is small.

According to (A.7)

'1^3,4, J 2>b=2rk°<“2+r2k2c<ak2+Yo,i)2-2Yi,orkC>'1 (A,8)
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In the large-n limit

< i 2 V ( l / 2 ) V - 1  I  < I Í J i k , J 2 > b  •
j,A/b<k<A,w J' '

(A.9)

л2 л2The expansion in terms of ф -<ф >b applied to (A.4) gives in

leading order
(A.10) 

« 2where g is defined by (A.5) but now with <Ф >b replacing 

It follows from ( A . 3) , (A. 8) and (A.10) that (A . 6) is a correct assump

tion. The integration over ф yields a new term in the exponent of 

W and finally the action associated with the small wave number 

components can be written as /ddxdt(Aq +w ) where

w-Y-Y, <ф‘> -Yrt ,<ф -(п /2)Г? dk К0кс +d-1>l1,0'^ 'b "0,1 A/b

+ (n/ 4 тг) / dk K,kd 1/dü)ln [ n / 2 < | ф . , |2>, ] (A.11)д/b d -со b
with the same arguments of Y and of its derivatives as in 

(A.7). Differentiating w one obtains

Э«/Эф2=У1 0̂ (ф2+<ф2>ь ,ф+<^>ь) , (A.12)

Эw/Эф=У0 1(ф2+<ф2>ь ,Ф+<Ф>ь) . (A .13)
After introducing new scales according to (2.4) from (A.6),

(A.8),(A.9) and (A .12),(A .13) we recover the transformation 

rule (3.9)-(3.12) where a and Г are chosen to be unity.
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FIGURE CAPTIONS

Fig.l. U^4 as a function of b with g^GQ =У*2 о̂̂  
and as initial values at b=l.1,1 1 Д

Fig. 2. Flow diagram for d=3 at T==TC • The solid and dashed 

lines correspond to the case of the non-conserved 

and conserved order parameter, respectively.
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exponent scaling field

non-conserved •a•0 (c=o) conserved о •P-

d-2 g10 gio
d-4 gll gll
d-6 g12 g20 g12

CO1TJ

g13 g21 g13 g20
d-10 g14 g22 g30 g14 g21
d-12 g15 g2 3 g31 g15 g22
d-14 g16 g24 g32 g40 g16 g2 3

(c=2)

g30

Table I



exponent
(d=3)

noh-conserved o.p.

scaling field

2

1

О

-1

-2

-3

-4

(c=o) conserved o.p. (0=2)

(G) n(G)gio gio
(G) _(G)

gll gll
(G) _ (G)

g12 g12
_(G) „(G) „(G)
g13 g20 g13
„(G) _ (G) a (G)g14 g21 g14
(G) (G) _(G) _

g15 g22 g15 9
(G) (G) „(G) (G) _

g16 g23 g3Q g16 g

(G)
20
(G)
21

Table II.



d = 2,2
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