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ABSTRACT
The behaviour of a relativistic free electron in an external plane wave 

field is analysed and a review of the existing solutions of the correspond­
ing Dirac equation is presented. Completeness and orthogonality of the Volkov 
states are also proved. Based on the exact wave function obtained a relati­
vistic generalization of the perturbation method proposed in a previous paper 
is elaborated as a means of treating intense field problems in a covariant 
manner.

АННОТАЦИЯ

Анализировано поведение релятивистского свободного электрона во внешнем 
плоском волновом поле, и представлен обзор различных точных решений соответ­
ствующего уравнения Дирака. Обсуждены комплектность и ортогональность состо­
яний Волкова. На основе точной волновой функции разработано обобщение метода 
возмущения, предложенного в изданной ранее работе для обсуждения проблем ин­
тенсивных полей при помощи ковариантного метода.

KIVONAT
Relativisztikus szabad elektron külső sikhullámtérbeli viselkedését ana­

lizáltuk a megfelelő Dirac egyenlet különböző egzakt megoldásainak áttekinté­
sével. Diszkutáljuk a Volkov állapotok teljességét és ortogonalitását. Az eg­
zakt hullámfüggvényre alapozva egy előző cikkben javasolt perturbációs mód­
szer általánositását dolgoztuk ki intenziv térbeli problémák kovariáns tár­
gyalására .



INTRODUCTION

In a previous paper we have presented a review of the solu­
tions of the nonrelativistic free electron external field inter­
action problem /Bergou, 1979/. We have shown the equivalence of 
some at least superficially different solutions and proposed a 
perturbation method to treat scattering problems in the presence 
of an intense external field. In this method we used the complete 
set of the exact wave functions of the free electron in the field 
as a basis and treated the scattering potential as a perturba­
tion. In the present paper we give a similar account of some ex­
isting solutions of the corresponding Dirac equation, prove their 
equivalence, orthogonality and completeness and, using this com­
plete set of relativistic wave functions, we give a simple gener­
alization of the above mentioned perturbation method and deter­
mine the validity of the dipole approximation as well as the 
validity of the nonrelativistic Born-approximation in the present 
problem.

The exact solution of the Dirac equation of a relativistic 
free electron in an electromagnetic plane wave field has long 
been known /Volkov, 1935/. This famous result has, since that 
time, been reproduced by several authors using different methods. 
It was shown, for example, that this problem can also be solved 
by purely algebraic methods /Beers and Nickle, 1972/. In another 
paper the so-called projection technique led to the same result 
/Becker and Mitter, 1974/ . The Dirac equation, however, can also 
be solved without the direct use of the special assumptions and 
specific methods applied in these papers. By choosing an appro­
priate coordinate system the system of the coupled differential
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equations for the spinor components can be reduced to an ordi­
nary first order differential equation for each component separ­
ately if one uses Majorana representation instead of the stan­
dard representation for the Dirac matrices. In this context it 
is interesting to mention another method /Alperin, 1944/. It is 
of course well known that in the "derivation" of the Dirac equa­
tion the originally irrational Hamiltonian /given by a square 
root expression/ is rationalized by the usual Dirac matrices.
The basic idea of Alperin's paper was to exploit the symmetry of 
the problem by a suitable choice of coordinates, ensuring that 
both the rational and irrational parts show the required symmet­
ry. Based on the wave function such obtained he determined the 
scattering cross section of an arbitrarily intense classical e,m. 
field by an electron using the method of the transition currents. 
The paper did not, however, draw much attention at that time, nor 
since.

The next section is devoted to the orthogonality and com­
pleteness problem of the Volkov states - this being the central 
problem in perturbation theoretical applications. In Section 3, 
the solution in Majorana representation and rederivation of the 
Alperin solution are given and their unitary equivalence with the 
Volkov solution is proved. In Section 4, it is shown how the mul­
tiphoton radiative corrections to the scattering of a free elec­
tron on a background potential due to the interaction with an in­
tense mode of the e.m. field /laser/ can be obtained by using the 
Volkov states. In the last section we deal with the connection of the 
present approach with the method introduced by one of us in a 
previous paper. The limits of validity of the nonrelativistic 
dipole approximation as well as other consequences of the relati­
vistic generalization, are also discussed.

2. THE VOLKOV STATES

In an external electromagnetic field characterized by the 
A /х/ four-vector potential the relativistic wave equation of a 
spinor electron has the form /cf.Bjorken and Drell, 1964; we 
shall use the metric and notation as well as representation of 
the Dirac matrices of this reference/:
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(ifl-eA-u)'i' = О / 2 . 1/

where
e

e - ЬБ /2.1а/

/here c is the velocity of light, ft is Planck's constant divided 
by 2п/. We choose A /х/ as representing a transverse plane wave, 
i .e.:

The well-known positive and negative frequency Volkov type solu­
tions of the above Dirac equation represent modulated plane waves, 
where the modulation depends only on £. The plane wave itself can 
be parametrized by the 4-momentum lying on the free mass shell 
/initial conditions are not taken into account/:

A(x) = A(E) , £ = k* x к •A = к2 = О /2 .2/

In the case of a general elliptically polarized wave

Ais) — e-^A^(E)+e2^2( E)
/2 .2a/

k*e^ = 0, e^*ej &± . / i = 1, 2/

/2.3/

where

0 , p2 = и 2 , py = (|p0 l, £) /2.3a/

and

Jp±)(S) = ^ p [ ±2ep*A(i)-e2A 2(E)] /2.3b/

One can follow the method of obtaining the solution in this 
covariant form in a paper by Brown and Kibble /Brown and Kibble, 
1964/ .
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These Volkov states were applied by several authors to treat the 
interaction of a free electron with an intense optical mode /ac­
counted for by the external field approximation/. Interaction 
with another weak mode or some other weak potential can be taken 
into account by the usual perturbation theory. By this method ab­
sorption and emission from the intense mode can be directly com­
puted up to any order contrary to the usual Feynman-Dyson ap­
proach .

For the E^^Cx) matrices introduced in /2.3/ one can easily Pverify the following relationships to hold /Ritus, 1972/: 

d1*x E^±^(x)E^±)(x) = (p-q) »
J Er

E ^ W E ^ C y )  = 6 (')(x-y)

where

E y°e +y °

Orthogonality and completeness given in this form are not satis­
factory for our purposes since the 4-momentum components are not 
on the free mass shell. Therefore in the following treatment we 
give different orthogonality and completeness relations. For 
further investigation of the Volkov states it is convenient to 
use the light-like components originally introduced by Neville 
and Rohrlich /Neville and Rohrlich, 1971a and b; see also Becker 
and Mitter, 19 74/ . This formalism is based on the fact that the 
vectors

nu = ku = M l ,  n), 
co\/2 s/2

nu = ±-(l, -n), e. = (0, e.) i=l, 2. Ал"

72.4/

form a complete orthonormal set in Minkowski space, therefore 
any "a" four-vector can be given by its light-like components in 
the following way

a = au n + av n + + a2e2 /2.4а/
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where

a.. = n*a , a„ = n*a , a^ = -a'e^ i=l, 2u v /2.4b/

Taking into accoung /2.4/ -/2.4b/ the solution /2.3/ can be 
brought to the form

t (±)(uvxí) = YvYia1(u)]u^±)-

• e"i[upu+vpv"xipi+jfp±^ u d̂ul
/2.5/

where

u » x f , v = xu , A^(£)= a., (u) 1=1, 2 /2.5а/

and

fp+^(u) = 2|-[+2p1ai (u)+eai (u)a1 (u)]r ' T'V

The states /2.5/ /with normalization factor ---Ц т т(^~) form
(2n)3'2 P”an orthogonal set in the sense x 7

12.5b/ 
1/2

JVpr ̂ ( uvxi ) YvVp+f I f ( uvx± ) dvd2 x± =

= 6(pv-p;)6(2)(Pi- p p 6 rr/

T ̂ + ̂ (uvx±)Y £,(uvx±)dvd2 x± = О , 
pr p

W 2 W+Y°

/2 .6 /

(2 )Here r = 1, 2 are the spin indexes and 6 4 7 denotes the two-di­
mensional Dirac-delta function. The normalization of the u^~^ bi 
spinors is as usual

? ^ u (±> - ±1 p p /2.6а/
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То obtain the appropriate definition of completeness we deal in 
the first step with the completeness of free plane waves. The 
solutions of the Dirac equation of a free particle are:

(±) , * 1Ф ' (x)pr
/И (+) +i p.xV е (2.7)

(±)The definition and the normalization condition of the u bi-pr
spinors are again given by Eqs./2.3a/ and /2.6а/. The complete­
ness relation of the set of positive and negative frequency solu­
tions is

lr=l,2 d3p cp( + ) (х)ф^ (х ')+ф  ̂  ̂(х)?  ̂(x') pr pr pr pr X =x о о

Here we made use of the fact that
v (±) f±] jó±h
К г -  = Кpr pr

=x'V=0(3)
(2.8) 

(2.8a)

Relation /2.8/ can be generalized in a covariant manner such that 
instead of the xQ=const 3-space we define completeness on a space 
like hyperplane determined by an arbitrary timelike normal vector 
For the symmetry of the external plane wave field the best choice 
is the u=const null-plane. Therefore in full analogy with /2.8/ 
to establish completeness of the Volkov states on the null plane 
we investigate the expression

V(x,x') = £ 
r

,3-d p WÍ+* ( x ) w £ } (x,)+vj^” ) ( x ) ^ " 5 (x') pr pr pr pr (2.9)

or in particular

V(x,x')| ,'u=u' dp. d2p .(1+|SÍ.)Ét>*(1 = M ) Y (2.9a)2k*p'2pv 4 2kpy,v

Here and below
00 oo

0  “ ° °

= vpv - xipi (2.9b)

In obtaining /2.9а/ from /2.9/ we used the relation /2.8а/ and 
changed pv to -pv in the negative frequency term. Before giving 
the completeness relationship of the Volkov states, we investi­
gate the meaning of the operators defined by /2.9/ and /2.9а/.
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Using the /2.6/ orthogonality relations it is easy to prove the 
validity of the following projection properties

|а3й'у(х,х')^^(х') = w(*)(x)
►

|d3x ' ^ ^ ( x ,)Y0V+(x//x)Y0 = W^^(x)
/2 .10/

Introducing the bra and ket vector notation, the algebraic mean­
ing of the relations /2.10/ becomes even more apparent in the 
abstract state vector space:

V(u,u')|w^)(u')> = | W ^ )(u)>
/2 .11/

where

v(u',u) = y°V+(u /,u )y° /2.11а/

From /2.11/ it is clear that v(u,u') and v(u',u) represent pro­
pagators of the Volkov states and the Dirac-adjoint Volkov states, 
respectively. It is also clear that v(u,u) and V(u,u) are the 
projectors of the corresponding states. Other abstract algebraic 
properties of the Volkov states will be discussed in more detail 
in a subsequent paper.

Completeness of the Volkov states on a light-like hyperplane 
taking into account Eqs. /2.10/ and /2.11/ can now be expressed 
by the formula

[V(x ,x ')+Y°V+ (x ',x )y °]u=u, = 6 (3)(x-x') -

- ih| e(v-v') 6^2^(x±—x')yv
/2 .12/

where the definition of e(v) is given by the integral
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e(v)
сю

2 [ 
Ц  .

sin VPv
p. dpV V

1 v>0
0 v=0

-1 v<0

/see also Neville and Rohrlich, 1971a, App II./.
On the basis of /2.12/ we accept the assumption that any bispinor 
function can be represented as a /generalized/ linear combination 
in terms of Volkov states .

3. CONNECTION WITH OTHER SOLUTIONS

It is obvious from the preceding section that the problem 
of a free spinor electron interacting with an external plane wave 
field can be solved exactly in a covariant manner by using the 
light-like formalism. In this section we show two important ex­
amples where the Hamiltonian form of the corresponding Dirac 
equation, with appropriate coordinate systems, can also be solv­
ed exactly. Let us chose the у-axis of our coordinate system as 
coinciding with the direction of the wave vector of the light 
field given by the A/х/ vector potential, and polarization paral­
lel to the x-axis. The Dirac equation of the problem in this 
coordinate system is

- EAx) + V 1!?) + +
+ &X]T = 2.— - Ф 

Эхо

/3.1/

where

Ax = A(|E) , E - X0-y /3.1а/

A is an otherwise arbitrary function of £.
We look for the solution of /3.1/ again in the form of a 

plane wave modulated by the external field:
W = exp{-i(x0p0-xpx-ypy-zpz)}®(£) /3.2/
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f

I

1

Here ф(£) is a bispinor function for which, after substituting 
/3.2/ into /3.1/, we get the following ordinary differential 
equation

{ax [px-eAx(£)] + ayPy +. azP z + Эк-ро )Ф =

= (1-a
/3.3/

In the representation of the Dirac matrices used throughout the 
present paper this is a system of coupled equations since ay on 
the r.h.s. couples the derivatives of the different bispinor com 
ponents of Ф. It is easy, however, to get rid of this difficulty 
in Majorana representation /Majorana, 1937/, where the /3.3/ sys 
tern of equations is decoupled:

[ax(*Px+eAx)+ßPy-azp z+ay>i-po]®' = (l-ß)ig|- /3.4/

If we introduce ф' and x' the upper and lower components of Ф' 
resp., /3.4/ gives a simple algebraic equation between ф' and x'

Ф' = p- ^p-[(-Px+eAx^ax-pzaz+MOy /3*4a/ о *y

where о-s are 2x2 Pauli matrices.
If /3.4а/ is substituted into the lower component equation of 
/3.4/ we get

2i3E“ = < i ^ K P x-eAx)2+p^-H2 ]-pg>x' /3 .4b/

where

Pp “ Po'Py ' P e = Po+Py /3 .4c/

Without loss of generality we can assume that the parameter p 
satisfies the usual free mass-shell relationship

2 2 2 2 2 p* = p^+p^+p^+x у z
2 2 2P Pr - P +P +и £ *X/ / 3.4 d /
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Then from /3.4Ь/ 

x' = exp[i

V E) - z|-t2EPxAx(E)
ip (E)dE]xi

A 2 (E)] = - »
/3.4e/

Jp ' (E)

Here Xq is a constant spinor. The final form of the solution of 
/3.4/ using /3.4а/ then becomes

T' =
— (-p a -p о +ИО )x,+—  eA a x'T~* 4 v ~ r r  \r7 Л*Г* r* X X^OX X CZ Z у o p j—i [p*x+|j^+  ̂(E)d£]

/3.5/

The exponent of /3.5/ agrees with that of the Volkov states, 
while the proof of the equivalence of the bispinor amplitudes 
will be given in what follows. In the special coordinate system 
introduced in the above calculation the Volkov-bispinor reads

u (v) = ( l + # £ ) u  =p v 2k«py p
eA

l - d + a y K j ^ : u 13.61

In Majorana representation this becomes
eA.

u<v>' = p l+(l+&)a. x
X 2p^ u: /3.7/

where now u^ satisfies the transformed free energy eigenvalue-
-equation

P0u; " la'E + P ' * ] <  - t-axPx+ePy-azPz+ayH]u^ /3.7а/

ion /3.7/ written out
( \ - f \ f

0 °x eA
1+ =

0 0 x fKol J J V У \

now
eA

cpfH-- x*vo p^ x^o
X'ло

/3.8/

On the other hand from /3.7а/

cp' = — (-p a -p a +40 )xA p 4 *x x z у' оЛ
/3.8а/
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Substituting /3.8а/ into /3.8/ and comparing the result with /3.5/ 
one can see that the solution given here is equivalent with the 
Volkov solution.

Another interesting solution of the present problem was 
given by Alperin /Alperin, 1944/ . In the following we shall re­
peat with some modification the original derivation of Alperin's 
solution. We start from the relativistic energy-momentum formula

h  - M  - e£)2 + к2 /3.9/

or in operator form

In the special coordinate system used throughout in the preceding 
calculation it is more convenient to take the square root in a 
different way, namely

£> -eAx i y - p ^ ^ l + u 2 /3.10/

where

^  - !y> - k' \  ^  + У  -3n '
/3.10а/

£ = xo-y , Л = x0+y

The matrices = 7(ay+iax) and = 2-(a.y~iax) satisfy the com­
mutation relation

a ca_+ a a c = -1 5 Л Л 5 /3.11/

By using these matrices the Dirac equation corresponding to 
/3.10/ has the following rational form:

tfx-eAx)W = i ( a ^ g-KxTlßn+azß 2+ßH)’P /3.12/

The solution can be looked for again with the usual ansatz



el(xpx+2pz4 E P E4 n p n)e(E) f
/3.13/

P£ = Po+Py' Рл = Po-Py

After substituting /3.13/ into /3.12/ we obtain a coupled system
of equations for the components of Ф :

-i [px-eAx (£) ]®1 «* -pT1®4+pz®3+K®1 /3.14а/
d<Eu -

-i[px-eAx (E)]Ф2 = P£® 3+2i-g|~p2®4+H®2 /3.14b/

-i [px-eAx (E) ]Ф3 = -pn®2+Pz®i“H®3 /3.14с/
d®.

-i [px-eAx (E) ]®4 = Pg®1+2i-g|~pz®2-H®4 /3.14d/

From /3.14а/ and /3.14c/ ®2 and Ф4 can be expressed by Ф^ and Ф3

®2 = {i [ (Px-eAx) +iw 1ф з+р2ф1 > /3.15а/
РЛ

Ф4 = ^-{i t (px-eAx)-í h ]®1+P2®3 } / 3.15b/
РЛ

and substituting these expressions into /3.14b/ and /3.14d/ we
Iobtain two similar uncoupled equations for Ф^ and Ф3:

21- a H =  (5-t(px-eAx)2+p2+H2 ]-pE )®1>3 /за«/

The solution of /3.16/ taking into account /3.4 d/ will be

Ф -L 3 = Фд̂  3 (0)e_ijJp 3 (0) = const /3.16а/

Through /3.15а/ - /3.15Ь/, all four components of ф are known, 
thus another solution of the Dirac equation is found. The func­
tion in the exponent of this wave function coincides with ex­
ponents of the Volkov states and the state found in Majorana re 
presentation. All we have to show is the equivalence of the bi­
spinor part with the previous solutions. From /3.4а/
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-1*1 = i-{[i(p -6A J-KlXjj-tPjiX!)
r n

ф2 = i-{[i(px-eAx)+K]iXl+PzX2 }

/3.17а/ 

/3.17b/

/3.18/

As the T matrix defined here is unitary the Alperin type solu­
tions are equivalent with the solutions obtained in the Majorana 
representation and due to the transitivity property of the uni­
tary transformations the three formally different wave functions 
considered so far are interrelated by unitary transformations 
and they are therefore equivalent from the physical point of 
view.

4 .  AN APPLICATION OF THE VOLKOV STATES

In a previous paper of one of the present authors /J.B./, 
the wave functions of a nonrelativistic free electron moving in a 
homogeneous external field /dipole approximation/ were used as 
the basis set of a perturbation method to calculate the cross 
section of the inverse as well as induced multiphoton bremsstrah- 
lung process /Bergou, 1979/. In this section we work out an ob­
vious generalization of the method for the relativistic case and

/primes are omitted for the sake of simpler notation/. Comparing 
the above relations with /3.15а/ and /3.15b/ we can immediately 
see that the same relation holds between J 1ср1̂  and as bet-К )  К )  l l * 2J
ween Ф . and Ф0 , therefore if we make the identifications

anĉ  X2 "* ф3 corresPonding -itpjL - Ф2 and ф2 - Ф4 id
identification must also hold. From this consideration the con­
nection between Ф = (̂ ) and (ф) can be written in the following 
compact form
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beyond dipole approximation by using the Volkov states as the 
basis set. Similar problems were touched on earlier /Denisov and 
Fedorov, 1967; and Brehme, 1971/ where the analytical and the 
numerical behaviour of the relativistic cross section formulae 
of the scattering by a Coulomb background were investigated by 
different methods and in a recent paper /Ehlotzky, 1978/ results 
beyond dipole approximation but using nonrelativistic descrip­
tion were published.

Consider the problem of the scattering of a relativistic 
free electron by a V /г/ scalar background potential in the pre­
sence of an intense electromagnetic mode /laser light / . The in­
tense mode can be accounted for by the external field approxima­
tion and the corresponding Dirac equation reads /using light-> 
-like formalism/

(Yv í 3v +y u í 9u -y í [ia-̂ -Ea-j.(u) ]-е^ (v-u, x í )-k }W = 0 /4.1/

я - 9 a - 9 a - 99u~ 3u ' 9v“ 3V ' l

We look for the solution in the form

W = + ) + ш /4.2/qr к

where q,r are determined by the parameters of the initial state 
and the correction term is a superposition of the /2.5/ Volkov 
states taking into account the /2.12/ completeness relation:

00 00

Wk (uvx±) = I dpv (uvXl) +

+ c ^  ( u ) W ^  (uvx. ) ]PvPir Pr 1

/4.3/

Here c/+/ and c^  ̂ are scalar amplitudes to be determined. For 
the sake of simplicity we choose the initial conditions

'br1 <u i  V  = 0 for all p and r /4.3а/
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Upon substitution of /4.3/ into /4.1/ we obtain the equation /in 
more compact notation/

V dc (+I( + ) .dc ( } 
“du +^ u  * = e ^ + )+elirwk /4.4/

In first approximation we neglect the second term on the r.h.s. 
which contains the product of the correction term and the per­
turbing potential thus giving higher order corrections only. 
Then we take the scalar product of the remaining terms with

from the left and obtain the following ordinary differen-Si ■*- I /tial equation for с^  /и,и^/

d c (+)ŰCq'r'
^dZT- dvd2xi^y^7(uvx1)eyWg^ (uvx^ /4.5/

Here we directly made use of the /2.6/ orthogonality relations— P v —and that for arbitrary spin orientation u v .u_ = —  u_u andp v p к P P
UpYvVp = 0. Equation /4.5/ can be integrated in a simple way 
leading to

u
qt^f(u,ui ) = -ie duf |dvd2x1W^f^™, (+)

qr /4.5a/
Uj

The transition matrix element of the qr+q'r' process is con­
nected to the (u,u') amplitude in the following way4

T fi = cq^r' (u * Ui ■) /4.6/

or

fi = -ie a 4x ^ T | ,  ? /4 .6а/

We perform the calculation for a circularly polarized wave

A^ (E) = a cosE , A2 (£) = a sin£ /4.7/
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Then from /4.6/

fi -i e d4x Uq,r,(l-ím r)Y°(l+5 Ö lr)u„r .2q • k.' qr

• V(x)ei[(g,"^),X+2 Sln(kX“X)]
/4.8/

^x^+a0 ,~T
l2

q ' • e
a l,2 ea  ̂~2q'-k

1,2 _ f l , 2 ,
2q*k ' '

a.
sin x = —  ,

2 2,e а ,q = q+^n--- к^ 2k*q
/4.8а/

To evaluate the integration in /4.8/ we use the well-known 
Fourier expansion

iz sincp г J (z)e i = l n
n  =  -o o

incp

Jn denotes a Bessel function of integer order. Thus the transi­
tion matrix element represents an infinite sum of photon absorb­
ed and photon emitted terms

oo

Tf i  “ I ТЙ> - Tf i ) = ~2ni t f i >6(3i -5o+nk) /4-9/n = - o o

(П) _ 
fi s V V (V r Mnuqr^ Q = q'-q+nk , “n

v(Qn} = d3x V(x)e i^n -
/4 .9a/

Relation /4.9/ expresses, in an explicit way, energy conservation, 
the wavy line stands for the fact that electron energies in the 
presence of the external field are different from those of a bare 
electron /see e.g. the last of the /4.8а/ relations/. In /4.9а/

Mn = (Yo+'4q‘ f ^ v K  + (||-YoYv +nV* V ^v
/4.10/

ea \
+ 2^r-YvYo) ^ v

(+)c + é (" }cn-1 * cn+l
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where

n
, , -inx (+)Jn (z)e , e 2 (el"ie2)

(-) / 4 . loa/

After averaging over initial and summing up for final spin vari­
ables one obtains finally for the scattering cross section

da (n)
dfl

, I 0 da^n  ̂ .. q q' + q q.' q'
qf" Jn (z)— der 7 <1+----- Г2---- >ЧГ> +и

(n)
^  ~ | Q - ( i r ) ( anV+0nv2+Ynv3+6nv 4 )

/4.11/

where
da.(n)В

dfi 2H E V <5„> V = ea
и v2 = 8»10-11X2I /4.11а/

The parameters an, 8n, Yn and depend upon the four-momentum of 
the electron as well as on the frequency and polarization of the 
light field but they are almost independent of light intensity. 
Their analytical expression is rather complicated and ddes not 
give a better insight into the physical process involved there­
fore we omit them here. In /4.11/ the first term is just the gen­
eralization of the result obtained by the nonrelativistic dipole 
approximation, while the second term comes from the interaction 
of the spin momentum with the e.m. field and is exact in the 
sense that in all orders it is given by a fourth order polynomial 
of the intensity parameter v, only the coefficients being slowly 
dependent on the order of the process and intensity.

5 .  DISCUSSION AND SUMMARY

As is well known, an intense mode of the electromagnetic 
field can be represented by a c-number plane wave field. The 
central problem of the semiclassical theory is, therefore, the 
solution of the wave equations of charged particles in such a 
surrounding. As an extension of previous work /Bergou, 1979/ on
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exact wave functions, in the present paper we have given a de­
tailed study of the Volkov states from some special aspects.
In Section 2 using the light-like formalism we have shown that 
the Volkov states paremetrized by the four-momentum on the free 
mass-shell form a complete orthonormal set on the k-x = const 
null-plane. The orthogonality and the completeness of this kind 
are consequences of the special symmetry of the external plane 
wave field, i,e. of the dependence of the vector potential on the 
quantity k-x only. As several authors have made direct use of 
these solutions in perturbation theoretical calculations of dif­
ferent kinds, it seemed to us to be important to prove the com­
pleteness of this system and to examine in what sense they can 
be applied as a basis set.

In the next section we gave two simple methods for the solu 
tion of the Dirac equation under consideration, each of the 
methods was based on the fact that with appropriate choice of 
the coordinate system the coupled system of equations for the 
bispinor components can be decoupled into ordinary differential 
equations for each component separately in a suitable representa 
tion for the Dirac matrices.• This was first performed in the 
Majorana representation and another solution was found by a suit 
able rationalization of the relativistic energy-momentum formula. 
We note here that neither of these two methods of solution re­
quired the solution of a second order equation as was done in 
the original derivation by Volkov. We.have shown that the bi­
spinor amplitudes of the solutions found in this way are related 
to the Volkov amplitudes through unitary transformations /the 
agreement of phases is obvious/ and consequently they are equiv 
alent with each other from the physical point of view.

In the last section the use of the Volkov states was de­
monstrated in the derivation of the nonlinear inverse and in­
duced bremsstrahlung scattering cross section. The expression ob 
tained can be considered as a relativistic generalization of the 
results obtained in the n^relativistic dipole approximation. 
Scattering is elastic with respect to the background potential 
and inelastic with respect to the external field. This last pro­
perty is expressed by the Bessel functions, while corrections to 
this result were found from two different origins. The first is
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what one would expect when nonrelativistic dipole approximation 
is dropped /relativistic non-dipole part/ and the second comes 
from the relativistic interaction of a spin momentum with an ex­
ternal field. It is interesting to note at this point that this 
second correction is given by similar finite /fourth order/ 
polynominal of the intensity parameter in all orders, the coeffi­
cients of the polynomial being only slowly dependent on the order 
and intensity. From here we may conclude that in a sufficiently 
intense external field, relativistic effects may become important.
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