

13.0° 0

KFKI-1979-60

ORGANIC SCINTILLATOR EFFICIENCY USING A MONTE CARLO CODE

V. Fajer

Roland Eötvös University, Budapest Budapest, VIII. Puskin u. 5-7.

L. Alvarez

Central Research Institute for Physics Hungarian Academy of Sciences, Budapest, XII. Konkoly Thege ut 29-33.

> On leave from Nuclear Research Institute, Academy of Sciences of Cuba, Managua, Havana, P.O.B. 6122, Cuba

HU ISSN 0368 5330 ISBN 963 371 582 2

ABSTRACT

The TAYRA code was developed for calculating the efficiency organic scintillators for neutrons in the energy range 0.08 to 15 MeV. The algorithm uses the Monte Carlo method and considers, for the simulation, elastic scattering on hydrogen and carbon, inelastic scattering on carbon, and the reactions: $12C(n,n')12C^* \rightarrow 3\alpha$ and $12C(n,\alpha)$ Be. The code is written in FORTRAN IV for an ES 1040 computer. The results

The code is written in FORTRAN IV for an ES 1040 computer. The results obtained using TAYRA are compared with experimental and calculated efficiency data.

АННОТАЦИЯ

Программа ТАУРА разработана для определения эффективности органических нейтронных детекторов в диапазоне 0.08-15 Мэв. В программе использовался метод Монте-Карло. В испытании учитываются упругие и неупругие рассеяния на Н и С и тоже реакция 12C(n,n)²C*+3d и 12C(n,a) Be⁹.

Программа написана на языке ФОРТРАН-IV, а использована на машине EC-1040. Результаты полученные программой ТАУРА были сопоставлены с экспериментальными и расчетными данными других авторов.

KIVONAT

A TAYRA nevü számítógépi program szerves szcintillátorok hatásfokát számítja, E = 0.08 - 15 MeV energiáju neutronok esetében. A program a Monte Carlo módszert használja fel a neutronok hidrogénen és szénen történő rygalmas, ill. rugalmatlan szórásának és a ${}^{12}C(n,n'){}^{12}C^* + 3\alpha$ és a ${}^{12}C(n,\alpha)$ Be reakcióknak a szimulálására.

A program nyelve FORTRAN IV, ES 1040 tipusu számitógépre alkalmazva.

A program által számitott hatásfok értékeket kisérleti eredményekkel hasonlitottuk össze.

INTRODUCTION

Organic scintillators have many applications in experimental cross section and nuclear reaction studies. Precise knowledge of the efficiencies of these scintillators is necessary in order to obtain the minimum possible errors in the final results.

The efficiency value is, at present, obtained in two ways: experimental and calculated.

The experimental way frequently uses the time-of-flight technique; the calculated way offers two possibilities, the employment of semi-empirical formulae and the Monte Carlo method. Inherent in the first possibility is the problem that the required correction factors are approximations and they are valid only in certain energy ranges. This means that larger errors arise than those desirable for accurate calculations of the efficiency.

The Monte Carlo method, which has been widely employed for this purpose, is the best way to calculate the efficiency value. It is based on the simulation of the physical events which take place inside the scintillator because of an incident neutron.

In order to improve the physical model, TAYRA code employs the cross sections obtained in small energy intervals. From O.1 to 15 MeV a constant energy interval of O.1 MeV was selected, and from 10 to 90 keV a constant interval of 10 keV was taken.

The lower energy range permits one to extend the efficiency calculation to a zone where the neutron detection has become feasible by fast plastic scintillators because of the development of low noise fast photomultipliers.

2. NEUTRON HISTORY ANALYSIS

TAYRA can calculate the efficiency for two geometrical arrangements for cylindrical scintillators: for a parallel beam of monoenergetic neutrons incident on the lateral surface of the scintillator, and for a beam of neutrons incident on the circular flat surface of the cylinder (Fig.1).

In order to begin the neutron history, it is necessary to determine the starting coordinates (x,y,z). In the case of perpendicular incidence to the cylinder axis these are:

$$x = A\sqrt{1 - Rl^{2}},$$

$$y = A Rl,$$

$$z = B R2,$$

(1)

where A is the scintillator radius, B is the half-height and Rl and R2 are two random numbers obtained from a uniform distribution between O and 1.

The starting coordinates are points on the scintillator surface. In this case the direction cosines of the initial incidence direction are: $\cos \alpha = -1$, $\cos \beta = 0$, and $\cos \gamma = 0$.

With parallel incidence to the cylinder axis, the (x,y) coordinates are calculated in the same way and the z coordinate is:

$$z = B \tag{2}$$

and the direction cosines are: $\cos \alpha = 0$, $\cos \beta = 0$ and $\cos \gamma = -1$.

In order to determine the next neutron coordinates, it is necessary to know the neutron free path in the scintillator, which is obtained by:

$$\lambda(E) = \frac{1}{\Sigma_{T}(E)}, \qquad (3)$$

where $\Sigma_{T}(E)$ is the total macroscopic cross section. With this value it is possible to determine the neutron path length, $\rho(E)$, by:

$$D(E) = -\lambda(E) \ln R3, \qquad (4)$$

where R3 is another random number from the same distribution between O and 1. This value, $\rho(E)$, permits one to decide wheter the neutron escapes from the scintillator or, alternatively one can determine the new coordinates which correspond to the point where the first interaction takes place. Since the scintillator can be considered as a mixture of hydrogen and carbon atoms, the most probable interactions of fast neutrons with these nuclei to be taken into account in the energy range 0.02 to 15 MeV, are:

- a. Elastic scattering on hydrogen nuclei,
- b. Elastic scattering on carbon nuclei,
- c. Inelastic scattering on carbon nuclei,
- d. The reaction ${}^{12}C$ n,n' C* \rightarrow 3 α ,
- e. The reaction ${}^{12}C(n,\alpha)Be^9$.

The cross section values were obtained from reference [1].

2.1 Elastic scattering on hydrogen nuclei

Elastic scattering on hydrogen nuclei is the most probable interaction below 10 MeV. From this collision are obtained a scattered neutron and a recoil proton, and their energies after the scattering are:

$$E_{\rm p} = \frac{1}{2} E_{\rm o} (1 - \cos\kappa)$$

$$E_{\rm n} = \frac{1}{2} E_{\rm o} (1 + \cos\kappa)$$
(5)

where E_0 is the incident neutron energy and κ is the scattering angle in the centre of mass system, where the elastic scattering is isotropic [2].

The magnitude of the light output produced by the recoil proton is one of the most problematic aspects of the physical model. In order to improve this aspect, light output values recently obtained or confirmed, have been employed. Tabulated values obtained from [3] have been used in the energy range 20 to 200 keV, and the following semi-empirical formula given in [4] is employed in the range 0.2 to 15 MeV:

$$L_{p} = a_{1} [1 - exp(-a_{2}E_{p}^{a_{3}})] + a_{4}E_{p},$$
 (6)

where a_1, a_2, a_3 and a_4 are parameters which depend on the

- 3 -

scintillator type. This physical event is considered in the TAYRA code in the subroutine HYDR.

2.2 Elastic scattering on carbon nuclei

The result of this collision is a recoil carbon nucleus and a scattered neutron with energies:

$$E_{c} = 0.142 E_{c} (1 - \cos \kappa),$$
 (7)

$$E_n = E_O - E_C$$
(8)

In the scintillator the carbon nucleus produces a light output whose magnitude is calculated, as is shown in [5], by:

$$L_{c} = 0.01 E_{c}$$
 (9)

The anisotropy of this event in the centre of mass system is taken into account. The angular distribution values were taken from [1]. The probabilities of the different directions are calculated from these angular distributions. This event is simulated in the TAYRA code in the subroutine ELAC.

2.3 Inelastic scattering on carbon nuclei

This interaction produces a gamma ray of 4.43 MeV and an outgoing neutron, and it becomes important for incident neutrons of low energies. The light output produced by the gamma ray is not taken into account because the detection efficiency is poor for its energy, for details see ref. [5].

The main effect of this interaction is to decrease the neutron energy in 4.43 MeV without changing its direction. 2.4 The reaction ${}^{12}C(n,n')C^* \rightarrow 3d$

This reaction begins to be important above 11 MeV and remains with low probability at 14 MeV. Nevertheless, it gives three alpha particles with energies, in the laboratory system, in the range 1 to 3 MeV; each alpha particle produces a light output of approximately 100 keV in electron equivalent energy.

In the TAYRA code, when this event takes place, the produced neutron is detected if the selected threshold is lower than 3 MeV.

2.5 The reaction ${}^{12}C(n,\alpha)Be^9$

In this reaction an alpha particle and a beryllium nucleus are produced, whose energies are:

$$E_{\alpha} = (E_{n} - Q)(B + D + 2\sqrt{AC} \cos \kappa)$$

$$E_{Be} = (E_{n} - Q)(A + C - 2\sqrt{AC} \cos \kappa),$$
(10)

where A,B,C and D are coefficients which depend on the mass of the nuclei and particles that take part in the reaction, and they also depend on the neutron energy, E, and the Q-value of the reaction, (-5.71 MeV). These coefficients are given in ref.[6].

The light output produced by the ⁹Be nucleus can also be obtained using the formula (9). The light output of the alpha particle can be determined by the following formula used in ref.[2]:

$$L_{\alpha} = 0.046 E_{\alpha} + 0.007 E_{\alpha}^2$$
 (11)

The anisotropy in the centre of mass system is also considered in this event; a constant angular distribution, measured and fitted in ref. [7], was used for the whole energy range. These calculations are taken into account in the TAYRA code in the subroutine ALPHAN. The event which takes place is determined thereby generating a random number. This number is then compared with the occurrence probability of each event. The probabilities are previously assigned taking into account the cross sections.

The new direction of the scattered neutron, after each interaction, is calculated to enable the new coordinates to be located.

When the interaction is considered isotropic in the centre of mass system, the cosine of polar scattering angle of the outgoing particle, $\cos \kappa$, and the azimuthal angle ϕ can be randomly generated, $\cos \kappa$ is generated from a uniform distribution between -1 and +1 by:

$$\cos \kappa = 2 R5 - 1,$$
 (12)

where R5 is a random number between 0 and 1. The cosine of ϕ only takes values between 0 and 1.

If the interaction is considered anisotropic, cosk is taken from the correspondent angular distribution.

The scattering angle in the laboratory system, θ , is calculated by the following formulae:

$$\cos\theta = (1 + m_2 \cos\kappa)/\sqrt{1 + 2 m_2 \cos\kappa + m_2^2},$$
 (13)

$$\sin\theta = m_2 \sin \kappa / \sqrt{1 + m_2 \cos \kappa + m_2^2},$$

where mo is the mass of the scatterer nucleus.

The direction cosines after the scattering are, as is shown in ref. [8]:

 $\cos \alpha' = \cos \alpha \cos \theta + (\cos \gamma \cos \alpha \sin \theta \cos \phi - \cos \beta) \sin \theta \sin \phi / (1 - \cos^2 \gamma)^{1/2},$ $\cos \beta' = \cos \beta \cos \theta + (\cos \gamma \cos \beta \sin \theta \cos \phi + \cos \alpha \sin \theta \sin \phi) / (1 - \cos^2 \gamma)^{1/2},$ $\cos \gamma' = \cos \gamma \cos \theta - (1 - \cos^2 \gamma)^{1/2} \sin \theta \cos \phi,$ (14)

except when $(1-\cos^2\gamma)$ approaches zero, in which case the following equations are used:

$$\cos \alpha' = \sin \theta \cos \phi$$

 $\cos \beta' = \sin \theta \sin \phi$ (15)
 $\cos \gamma' = \cos \gamma \cos \phi$

These equations are employed in the subroutine COSINE. The history is interrupted when the neutron escapes from the scintillator or its energy is diminished below the selected cut-off (20 keV), then the neutron is absorbed by the scintillator. When a light pulse or a sequence of pulses, whose total magnitude is greater than the light threshold, is produced, the history of the neutron is also interrupted.

Finally the efficiency value is obtained from the ratio of the detected neutrons to the number of histories followed, and the relative and absolute errors are also calculated by the TAYRA code.

3. RESULTS AND CONCLUSIONS

The Monte Carlo program was employed to calculate efficiency values of different organic scintillators. The results were compared with some available experimental data from refs.[9] and [10]; the agreement between experimental and Monte Carlo values was found to be reasonable as is shown in $Tab \cdot 1$. and Fig. 2.

The experimental data taken from ref.[9] were also compared with the Monte Carlo predictions of [5] and it was found that the TAYRA code gives also good agreement with these measurements.

In general, one can observe that the disagreement between the measured and the calculated efficiencies is around 10% overall, and this seems to be produced because of the uncertainties in the inelastic n-C cross sections [11], and in the light output values of the α particles and the ¹²C and ⁹Be nuclei. Furthermore, the Monte Carlo calculations have not taken into account the light attenuation effects inside the scintillator and in the optical coupling.

It was obviously important to be extremely careful in the simulation of each experimental condition of the measurements, especially in the selection of the light threshold.

The results of TAYRA were also compared with some efficiency values obtained by other Monte Carlo calculations, from refs. [3], [6] and [12]. The comparison with the predictions of [3] was possible because of the use of a small energy interval, 20 keV. in the range 20 to 200 keV, and also because the cut-off energy was lowered, (Fig. 3a).

In this way the TAYRA code can calculate the efficiency values in the energy range from 80 to 500 keV, which is very important nowadays because the development of low noise photomultiplier tubes and organic scintillators with large light output has permitted the use of these neutron detectors in this range.

The results given in [3] were obtained using a modified version of the O5S code developed by Textor and Verbinski, ref.[6]. The results from TAYRA were also compared with the predictions of the O5S code, as is shown in *Tab.2* and *Fig.3b*.

The very small discrepancies between the TAYRA results and the other predictions seem to be because of the employment of different cross section values for the n-C interactions and also because of the introduction in the TAYRA code of a semiempirical formula for the light output of the recoil proton, formula (6) given in ref.[4]. This formula gives good agreement with the experimental data of other authors.

Finally, Fig.4. shows the efficiency curve for an NE-102 A scintillator obtained using an interval of 0.5 MeV in the energy range 1 to 15 MeV. These results were fitted by:

$$E_{F} = (1 - T/E_{n})(A_{o} + A_{1}E_{n} + A_{2}E_{n}^{2} + A_{3}E_{n}^{3} + A_{4}E_{n}^{4})$$
(16)

where E_F is the efficiency, T is the threshold in proton energy and the values of the parameters were: $A_0 = 73.38$, $A_1 = -20.75$, $A_2 = 3.32$, $A_3 = -0.24$ and $A_4 = 0.64$.

The execution time for a run was approximately 30 sec for 10 000 histories and the relative error was less than 3% in all the runs.

ACKNOWLEDGEMENTS

We are grateful to A. Kiss and F. Deák for their comments and helpful discussions related to this work. The help of

- 8 -

Lic. J.M. Hernandez and B. Barrios in the preparation of the code is appreciated. We wish to thank Dr. I.Fodor and Dr.J.Sziklai for their kind hospitality in the Central Research Institute for Physics, Budapest, where it was possible to develop the TAYRA code.

APPENDIX

Summary of program components and input data

System: ES-1040 Language: FORTRAN IV Components:

- 1. Main program: TAYRA
- 2. Subroutines:
 - a. CARG. Provides the cross sections for the considered events and also the necessary angular distributions and the tabulated data of light output in the energetic range from 20 to 200 keV. This subroutine also stores the scintillator data.
 - b. PROBA(E). Chooses the probabilities for the neutron energy and these are stored in the blank COMMON.
 - c. COSENO(SITA,ALF,BET,GAM). Computes the centre of mass cosines of the polar scattering direction in both cases: isotropic and anisotropic scattering, and uses them to calculate the new direction cosines in the laboratory system.
 - d. HYDR(ENE,SITA,P). Computes the energies of the scattered neutron and the recoil proton when elastic scattering on hydrogen takes place, and also computes the light output due to the recoil proton.
 - e. ELAC(ENE,SITA,P). Computes the same as HYDR in the case of elastic scattering on carbon.
 - f. ALPHAN(P). Calculates the energies and the light output of the alpha particle and the beryllium nucleus when the reaction ${}^{12}C(n,\alpha)Be^9$ takes place.

3. FORTRAN functions:

a. RANDOM(KS). Computes random numbers uniformly distributed between 0 and 1, using any odd number as input parameter.

- b. SEGN(X). Attributes values +1 or -1 if the argument X is negative or positive.
- c. ALAMDA(ENE). Computes the mean free path of the neutron depending on its energy ENE.
- 4. INPUT DATA:
 - a. CARD SET 1, one card, OL(10)
 FORMAT(10F7.0)
 OL(1): light output in the energetic range from 20 to
 200 Kev with 20 Kev as step.
 - b. CARD SET 2, two cards, SEM(8,2) FORMAT(8F10.0) SEM(J,I): cross sections in the energetic range from 20 to 90 Kev with 10 Kev as step, J is the index for the energy and I is for the interaction channels in this energetic range (elastic scattering on hydrogen and carbon).
 - c. CARD SET 3, 75 cards, SE(150,5)
 FORMAT(10F8.0)
 SE(J,I): cross sections in the energetic range from 100
 Kev to 15 Mev with 0.1 Mev as interval, J is the index for
 the energy and I is for the interaction channels.
 - d. CARD SET 4, 3 cards, PE(42)
 FORMAT(16F5.0)
 PE(I): energetic groups for the angular distributions of
 the elastic scattering on carbon.
 - e. CARD SET 5, 126 cards, AD(21,42) FORMAT(7F10.0)

AD(J,I): angular distributions of the elastic scattering on carbon, J is the index for the energy and I for the value of the cosine of the scattering angle in the centre of mass system.

f. CARD SET 6, 3 cards, ADA(21)
FORMAT(7F10.0)

ADA(I): angular distributions for 14 Mev of the reaction ${}^{12}C(n,\alpha)Be^9$ which is taken to remain the same in the whole energy range.

g. CARD SET 7, one card, HN,RHC,A,C,G FORMAT(5F10.0)

HN: number of hydrogen atoms/cm-barn,

RHC: hydrogen/carbon ratio,

A: scintillator radius,

- B: scintillator half height,
- G: geometry code, G=1 if the neutron incidence is perpendicular to the cylinder axis and G=2 if the neutron incidence is parallel to this one.

CARD SET 8, one card, RN FORMAT(F10.0)

RN: number of neutron histories.

- i. CARD SET 9, one card, EMI,UMBRAE FORMAT(2F10.0) EMI: cut off energy, UMBRAE: energetic threshold.
- j. CARD SET 10, as many cards as you need, EI FORMAT(F10.0) EI: initial neutron energy, if it is necessary to consider more than one energetic threshold one must put a last card of the set 10 with EI=0, and after a card of the set 9 and so on. If one needs to finish the sequence it is necessary to put a last card of the set 10 with EI = -1.
- NOTE: When using the TAYRA code to calculate different efficiencies for different experimental arrangements, the only change is to alter card sets 7,8,9 and 10.

REFERENCES

- P. Vértes, FEDGROUP-A program system for producing group constants from evaluated data files disseminated by IAEA: INDC(HUN)-13/L+sp, 1976.
- 2) R. Batchelor and W.B. Gilboy, Nucl. Instr. and Meth. 13(1961)70.
- C. Renner, N.W. Hill, G.L. Morgan, K. Rush and J.A. Harvey, Nucl. Instr. and Meth. 154 (1978) 525.
- R. Madey, F.M. Waterman, A.R. Baldwin, J.N. Knudson, J.D. Carlson and J. Rapaport, Nucl. Instr. and Meth.151(1978) 445.
- 5) R.J. Schuttler, ORNL-3888, (1966).
- 6) R.E. Textor and V.V. Verbinski, ORNL-4160, (1968).
- 7) M.L. Chaterjee and B. Sen, Nucl. Phys. 51 (1964) 583.
- G.B. Beam, L. Wielopolski, R.P. Gardner and K. Verghese, Nucl. Instr. and Meth. 154 (1978) 501.
- 9) T.A. Love, R.T. Santoro, R.W. Peelle and N.W. Hill, Rev. Sci. Instr. 39 (1968) 541, No.4.
- 10) P. Leleux, P.C. Macq. J.P. Meulders and C. Pirart, Nucl. Instr. and Meth. 116 (1974) 41.
- 11) A. Del Guerra, Nucl. Instr. and Meth. 135 (1976) 337.
- 12) V.V. Verbinski, W.R. Burrus, T.A. Love, W. Zobel, N.W. Hill and R. Textor, Nucl. Instr. and Meth. 65 (1968) 8.

Comparison of calculated and experimental efficiency values for a bias threshold - 180 keV p.e.q. for two NE-213 scintillators and neutron incidence parallel to the cylinder axis.

Scintillator dimensions	Neutron energy	TAYRA code	Experimental Ref.[9]	Calculate Ref.[5]		
CM	MeV	8	8	8		
12 x 2.61	2.7	16.97 + 0.20	17.22 + 0.11			
	14.5	10.06 + 0.16	10.62 + 0.08	9.70		
12 x 6.10	2.7	30.40 + 0.28	33.75 + 0.15			
	14.5	20.89 + 0.23	22.60 + 0.20	21.70		

Table 2.

Comparison of calculated efficiencies by two different codes for an NE-213 scintillator, bias threshold = 0 keV and neutron incidence perpendicular to the cylinder axis.

Scintillator	Neutron	TAYRA	055			
dimensions cm	energy MeV	code %	code, Ref. [6]			
5.419 x 9.174	2.39	48.12 + 0.35	49.1			

Fig.1. Geometrical arrangements that can be simulated by the TAYRA code.

<u>Fig.2.</u> Comparison with experimental data. Parallel neutron incidence to the cylinder axis. Diameter: 20 cm. Height: 2 cm.

<u>Fig.3.</u> Comparison of TAYRA calculations with other predictions: (a) 05 modified; (b) 055 code. Parallel neutron incidence to the cylinder axis.

<u>Fig.4.</u> Efficiency curve fitted by expression (13). Perpendicular neutron incidence to the cylinder axis. Diameter: 5 cm. Height: 10 cm.

TAYRA LISTING

	MAIN DATE = 79150	11/16/27
Casses NONTE CARLO CODE EL	On CALCULATING ELETCIENCIES DE OPCANIC	CTNT
C C C C C C C C C C C C C C C C C C C	of two columns constructes of ordenie :	SCINI.
COTTON/LIGHI/OL(10))	
COPPON/ANI/ENE, PEC	62), AD(29, 62), ADN(21)	
CONNON/JN/HN, RHC, A	· B , G	
CONPON/SEMI/KS		
CONTON/HILDA/RM1, R	NARE ACUNULATER THE DOODADAL STOCE FOR	
C THE EVENTE CONCERNE	DEP ACOMULATED THE PROBABILITIES POR	
COLLION DUD DEC DNG	- D 2 A D A	
BM1=4	1234,24	
CALL CARG		
READ(S, 900, RN		
400 READ(S, 900) EME, UMB	RAE	
WRITE(6,901)G		
WRITE(6,800)A,B		
WRITE(6,802)RN		
WRITE(6,803)EMI,UM	URAE	
405 READ(5,900) EI		
75(57)410,400,420		
A10 STOP		
420 RI=0		
RND=0		
RH=O		
PC=0		
RG=O		
RE=O		
Campany THE ENERGERYC T	HEESHOLD IS LADCER THAN & 3 MEV. THE LT.	euT
C THRESHOLD IS CALCU	LATED BY A SEMI-EMPYRICAL FORMULA. IF T	7 15
C LOWER THAN O. 2 MEV	TABULATED DATA ARE TAKEN.	
1F(UMBRAE)500,500,	501	
500 UMBRAL=0.00001		
GO TO 140		
509 IF (UMBRAE - 0 . 2) 5021	5021503	
502 UMBRAL=OL(IFIX(((U	MBRAE+.01)/2,)*100.))	
GO TO 140		
\$03 T1UE.95 *UMBRAE	G (UNDALCH)	
TZUE TELAPY OVALU	UNBRACI	
UMBDAL = TALLA TALLA		
140 ENEEFI		
CTHE POSITION OF TH	E INCIDENT NEUTRON IS CALCULATED USING	THE
C RANDOM NUMBERS R1	A.D R2. IF THE KEY G=1 THE INCIDENCE IS	PERP. TO
C THE CYLINDER AXIS.	IF G=2 IS //, AND THE PROCEDURE IS DIF	ERENT.
CTHE DIRECTION COSI	NES ARE (-1,0,0) AND (0,0,-1) RESPECTIV	ELY.
R1=RANDOM(KS)		
XEA+SQRT(1, "R1++2)	an and the second s	
15(6-2.)1101.1102.	1102	
1901 ALF=-1		
BETEO		
G A ^M = 0		
R2=RANDOM (KS)		
Z = B = R 2		
H=2, +X		

MAIN

6

4

GO TO 1103 1102 ALF=0 RETEO GAME-1 7=8 H=2.+8 C----THE TRAJECTORY RO IS COMPUTED TO KNOW IF THE NEUTRON ESCAPES C OR NOT. 1103 R3=PANDOM(KS) RO=-ALAMDA(ENE) +ALOG(R3) IF (RC-H) 1100, 1100, 1100 1106 IF (G-2.) 1104, 1105, 1105 1104 X=X+RO GO TO 190 1105 Z=Z+RO GO TO 190 1100 RE#25+1. GO TO 370 C THE RANDOM NUMBER R4 SERVES TO DECIDE WHICH EVENT TAKES PLACE. 190 PLERANDON(KS) IF(R4-P%P)230,230,220 220 IF(R4-(PHP+PEC))240,240,222 222 IF(R4-(PNP+PEC+PNG))223,223,225 225 IF(R4-(PNP+PEC+PNG+p3A))362,362,226 C REACCION C12(N, ALFA)BE9 226 CALL ALPHAN(P) GO TO 270 INTERACCION INELASTICA CON EL CARBONO 223 ENEEENE-4.4 C IF (ENE-EMI) 370,224,224 224 CALL PROBACENES RG=RG+1. GO TO 190 Ç INTERACCION NP 230 RM2=1 C----THE SUBROUTINE COSE O COMPUTES THE NEW DIR. COSINES OF THE SCA-C TTERED NEUTRON ALF, BET AND GAM. CALL COSENO(SITA, ALF, BET, GAM) CALL HIDR (ENE, SITA, P) RH=RH+1 GO TO 270 C INTERACCION ELASTICA DEL CARBONO 240 FM2=12 CALL COSFNO (SITA, ALF, BET, GAM) CALL ELAC(ENE, SITA, D) RC=RC+1. C----IF THE LIGHT PULSE IS > THRESHOLD, THE NEUTRON IS COUNTED, IF IT IS NOT THIS PULSE IS ACCUMULATED IN XL IN ORDER TO BE ADDED WITH OTHER PULSES PRODUCED FOR THE SAME NEUTRON DURING ITS "HISTORY" C C 270 IF(P-UMBRAL) 120, 360, 360 120 XL=XL+P C----THE HISTORY OF THE EUTRON IS FOLLOWED UNTIL IT IS ABSORBED C ESCAPED, OR ITS ENERGY IS DIMINUISHED TO 20 KEV 1F(ENE-EMI)370,290,290 290 R10=RANDOM(KS) C----THE NEW POSITION (X,Y,Z) OF THE NEUTRON IS COMPARED WITH THE C----SCINTILLATOR DIMENSIONS ROS-ALAMDA (ENE) + ALOG (R10)

```
MAIN
                                              DATE = 79150
                                                                     11/16/27
      X=X+(RO+ALF)
      Y=Y+(RO+BET)
      Z=Z+(RO+GAM)
      1 F (ABS(Z) - B) 310, 310, 370
  310 RAD=SQRT(X+*2+Y+*2)
      1F(RAD-A)340,340,370
 340 IF (XL-UMBRAL) 190, 305, 300
      REACCION CIZ(N, JALPHA)
C
      THIS REACTION ES ONLY TAKEN INTO ACCOUNT IF THE THRESHOLD IS
C
      IS GRATER THAN 0.22
C
  362 1F(UMBRAL=0.22)370,360,360
  360 XL=0
      RND=RND+1.
C-----IN RI ARE ACUMULATE, THE FOLLOWED NEUTRONS, AND IN RND WHICH OF
        THEM WERE DETECTED. RN IS NUMBER OF SELECTED HISTIRIES
C
  370 RI=RI+1.
      1F(RI-RN)140,390,390
  390 EFIC=RND/RN*100.+.0001
      ER=100. +SOR ( (RN3) /RND+.00001
      RC=RC/RN+100.+.0001
      RH=RH/RN+100. +.0001
      RG=RG/RN+100.+.0001
      RE#RE/RN*100. +.0001
      WRITE(6,806) RH
      WRITE(6,807) RC
      WRITE(6, 808) RG
      WRITE(6,809)RE
      WRITE(6,811)EFIC
      WRITE(6,812)ER
      WRITE(6,902)
  800 FORMAT(5X, +SCINTILLATOR RADIUS(CM)++F7.3.10X++HALF-HEIGHT(CM)++F7.
     13//)
  802 FORMAT(5X, 'NUMBER OF HISTORIES', F8.0//)
803 FORMAT(5X, 'CUT-OFF ENERGY(MEV)', F7.3, 14X, 'ENERGETIC THRESHOLD(MEV)
     21, 87.3/1)
  805 FORMAT(5X, 'INITIAL ENERGY (MEV)', F7.2//)
  806 FORMAT(5X, '% ELASTIC SCATTERING ON HYDROGEN', F8.2//)
  807 FORMAT(5X, 'X ELASTIC SCATTERING ON CARBON', F8.2//)
  808 FORMAT(SX, '% INELASTIC SCATTERING ON CARBON', F8.2//)
  809 FORMAT(5X, '% ESCAPE: NEUTRONS', F8.2//)
  811 FORMAT(5X, '% EFFICIENCY', F8.2/)
  812 FORHAT(5X, * % ERROR ', F8.2///)
  900 FORMAT(5F10.0)
  901 FORMAT(5X, 'CODE=1 OR 2 IF THE INCIDENCE IS PERP. OR PARAL. ', F5.2//)
  002 FORMAT(5X, '-----', 20X, '-----'////)
       GO TO 405
       END
```

- 23 -

				CARG		DATE = 79150	11/16/27
		SUBROUTINE	CARG				
C							
C		CARG PROVI	DES THE	C:OSS S	ECTIONS FO	R THE EVENTS CO	NSODIRED
C		SEM : ARE TH	E CROSS	SECTION	FOR THE E	LASTIC EVENTS I	NTHE
C		ENERGERIC	RANGE (O.	02.0.09	MEV WITH	INTERVAL=0.01ME	V
C		SEIARE THE	CROSS S	ECTION	FOR ALL TH	E EVENTS IN THE	ENERGETIC
0		RANGE (0.1	,15) 'HEV	WITH I	NTERVAL=0.	1).	
5		TABI AND	AB ARE I	HE PROB	ABILITIES.		
c		CARG ALSO	PROVISES	THE AN	GULAR DIST	ALBOLIONS TO CO	STOPRINE
c		OF THE OUT	COND AL	PUADUND	TICLE TH T	HE PEACTION CAR	AL AL DHALAF
c		OL (T) TAG	ALLATED D	ATA OF	ITCHT OUTP	UT IN THE ENERG	V PANCE EPOM 30
c		TO 200 KEY	I I I I I I I I I I I I I I I I I I I	ATA OF	Light our	of the the energy	T ANNUE PROM 20
		CONTINUA LIT	SEEN(S)		2) TARME	6 2)	
		COMPONIANT	LENE DEC	42) 40(21 42) ADN	(21)	
		COMPON PRO	B (5) . TAB	(200.5)	SE(200.5)		
		COMMONIJM	HN, RHC. A	1. H. G	,		
		COMMON/AI	PHAIADAS	21)			
		COMMON/LI	HI/OL(10	1)			
		NCPES					
		1RE=150					
		RFAD (5, 13)	(OL(I), I	=1,10)			
		READ (5,6)	((SEM(J,I), J=1,8), [=1,2)		
		READ (5,4)	((SE(J,I)	1 J= 1 . NR	E),I=9,NCP)	
		READ(5,7)	(PE(I), I =	1,42)			
		READ(5,8)	(CAD(J,I)	· J=1,21), I=1,42)		
		READ (5,9)	(ADA(I),I	=1,21)			
		READ(5,14)	HN, RHC, A	· B . G			
		DO 1 J=1,1	NRE				
	1	TAB(J, 1)=	SE(J,1)/(SE(J, 1)	+(SE(J,2)+	SE(J,3)+SE(J,4)	+SECJISJJIRHCI
		DO 3 I=2,	NCP				
	1	DO 2 J=1,1		BUCACE			11132211 113
	S	TAD(J, J)=:	25.7.111.	WHC#SEC	J111+52(J,	21+52(1,57+52()	, 4) + 3 = (] , 5))
	3	CONTINUE					
		00 21 J=1	- C - H / I - A)	1.00000	41465444	21/04/01	
	24	TABICI 2):	SEM(1 2)	/ DHC+C	EM(1 4)+SE	M(1,2))	
	-	EOPHAT(10	58.01	. (
	4	FORMATCRE	10.0)				
	2	FORMATCIA	E5.0)				
	8	FORMATCZE	10.0)				
	0	FORMATCZE	10.0)				
	13	FORMATCIO	F7.0)				
	14	FORMATCSE	10.0)				
		RETURN					
		END					

```
PROBA DATE = 79150
                                                       11/16/27
COMMON/LIL/SEEM(5), SEM(16,2), TABM(16,2)
     COMMON PROB(5), TAB(200, 5)
COMMON/JM/HN, RHC, A, B, G
     IF(E-0.1)1,2,2
   2 DO 20 I=1,5
0 PROB(I)=TAB(IFIX(E*10.+.5001),1)
  05
     GO TO 3
     DO 21 1=1,2
PROB(I)=TABM(IFIX((E=0.01)*100.+.5001),1)
   9
  29
     PROB(3)=0
     PROB (4)=0
   PROB(5)=0
S CONTINUE
     RETURN
     END
```

42194 N 3180

ちゃいまでもうす

COSENO

			SUBROUTINE COSENO(SITA, ALF, BET, GAM) COMMON/ANI/ENE, PE(42), AD(21,42), ADN(21)	
C				
C	-		COSENO COMPUTES THE CENTER OF MASS COSINE OF POLAR	SCATTERING
C			ANGLE (SITA) IN BOTH CASESI ISOTROPIC AND ANISOTROP	TC SCATTERING.
C			AND USES IT TO CALCINATE THE NEW DIRECTION COSINES	TNTHE LABORA-
C			TORY SYSTEM.	THE FROM
-			CONTON ATTINA PM. BM.	
			company architer	自己的是吗?"这一 是 在身体的分子
			COMPON/SEMI/KS	
			IF(RM2-12.)10,11,11	
		10	RSERANDON(KS)	in the ton ac
			SITA=(2.*R5)-1.00001	
			GO TO 14	
		11	R12=RANDOM(KS)	
			IF(ENE.GE.10.89) GO TO 16	
			DO 1 J=1,41	
			D=((PF(J)+PE(J+1)))/2.=PF(J)	
			TE(DE(1) LE.(ENE+D))60 TO 15	
			TELLENETD) IT DELANGE TO AN	
		4 .	Tr((ENC+D) LT Br(1+,))co TO 40	
		13		
		1	CONTINUE	
		12	Lal	
			GO TO 17	
		16	L=42	
		17	DO 13 I=1,21	
		13	ADN(I)=(AD(I,L))/1.67118	
			SATO	
			DO 40 K=1,21	
			SA=ADN(K)+SA	
			TE(R12-SA)21.21.40	
		40	CONTINUE	
		24	N-Y	
		21		
		22	SITA=FLUAT(M=11)/IV.	
		14	RB=RANDURI(K3)	
			X=R8-0.5	
			SSITAmSEGN(X) *SQRT(1. *SITA**2)	
		6	R6=RANDOM(KS)	
			X=R6	
			R7=RANDOM(KS)	
			Y=(2.*R7)=1.	
			Q=X++2+Y++2	
			1=(0-1,)5,5/6	
		5	CDHT=((Y**2)-(X**2))/0	
		-	CDHT-/2 +V+Y>/0	
			ROTRANDON(KO)	
			X=K9-0.5	
			A=SEGN(X)*SURT(1.*2,*RM2*SITA+(RM2**2))	
			CCHI=(1.+RM2*SITA)/A	
			SCHI=(RM2*SSITA)/A	
			B=1GAM**2	
			IF(B)7,8,7	
		7	R11=RANDOM(KS)	
			X=R11=0.5	
			BB=SEGN(X)+SQRT(B)	
			ALF=ALF+CCHI+(GAM*ALF+SCHI+CPHI-BET+SCHI+SPHI)/RR	
			BETERET+CCHI+(GAM+BET+SCHT+CDHT+ALE+CCHT+SDHT)/BB	
			GAM=GAM+CCHI_BB+SCH++COHT	
			00 10 0	

	32303311	COSENO	C	ATE	35	791	50		11/1	6/2	7		
8	ALF=SCHI+CPHI BET=SCHI+SPHI GAM=GAM*CPHI RETURN END	ons Hostusi usitisid Likai pigosoda Hija J A 120118 Int bi sid T	101 103 970			LOAT DO L	2 A A A A A A A A A A A A A A A A A A A	481 481 100 110 110 110 110 110 110 110 110 1					
									5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				
												*	

11/16/27

4

A

¥

```
SUBROUTINE HIDR(ENE, SITA, P)

C----HIDR COMPUTES THE ENRGIES OF THE SCATTERD NEUTRON AND THE RECOIL

C PROTON WHEN THE ELASTIC SCATTERING WITH HYDROGEN TAKES PLACE,

C AND ALSO COMPUTES THE LIGHT OUTPUT DUE TO THE RECOIL PROTON.

COMMON/LIGHT/OL(10)

EPR=ENE+(1.0-SITA)/2.0

ENE=ENE+(1.0+SITA)/2.0

IF(EPR-0.02)5,6,6

S P=0.00001

GO TO 4

6 IF(EPR-0.2)2.2.3

2 P=0L(IFIX(((EPR+.01)/2.)+100.))

GO TO 4

3 T1=.95*EPR

T2=-.1*EXP(.0*ALOG(EPR))

T3=-8.*(1.-EXP(T2))

P=T1+T3

4 CONTINUE

RETURN

END
```

ELAC DATE = 79150 11/16/27

ALPHAN

11/16/27

è

Y

```
SUBROUTINE ALPHAN(P)
C----ALPHAN COMPUTES THE ENERGY AND THE LIGHT PULSE OF THE ALPHA
C PARTICLE AND OF THE BERILIO WHEN THE REACTION C12(N, ALPHA)BE9
С
        TAKES PLACES.
C
        COMMON/ALPHA/ADA(21)
        COMMON/ANI/ENE
        R13=RANDOM(KS)
        58=0
        DO 1 I=1,21
        SB=ADA(1)/127.46+58
        1F(R13-SB)2.2.1
     I CONTINUE
     2 M=I
        SITA=FLOAT(M-11)/10.
        0=5.71
F=ENE_0
        A=0.05325+(ENE/F)
        B=0.02367*(ENE/F)
       C=0.28402*(1.=(Q/(12.*F)))
D=0.63905*(1.=(Q/(12.*F)))
WRITE(6,4)ENE,A,C,F
     4 FORMAT(5X, 'ENE-A-C-F', 4F10, 4)
        G=2. + SORT (A*C)
        EAL=F*(B+D+G+SITA)
        EBE=F*(A+C-G+SITA)
        PAL=0.046+EAL+0.007+(EAL++2)
        PBE=.01+EBE
        P=PAL+PBE
        RETURN
        END
```

14 July 1		RAN	DOM	DATE = 79150		11/16/27
6	FUNCTION RANDO -RANDOMCCOMPUTE	M (KS)	NUMBERS	UNIFORMLY	DISTRIBUTED	BETWEN(0,1)
5	1Y=KS+65539 IF(IY)5,6,6 IY=IY+21474836	47+1			262012000	18. 18.638 [198] - 03 [18.600 + 19.53] - 24 2.6360 - 1
6	YFL=IY RANDOM=YFL+.46 KS=IY	566132-9				1994 - 1999 1996 - 1997 - 1999 1994 - 1997 - 1997 1994 - 1997 - 1997
	RETURN					1221.8

4

.

```
FUNCTION SEGN(X)

C----SEGN IS ONLY TO PROVIDE A SIGN (+ OR -) IF THE ARGUMENT

C IS NEGATIVE OR POSITIVE.

IF(X)10,20,20

10 SEGN=1.
     RETURN
20 SEGN=-1.
           RETURN
           END
```

```
ALAMDADATE = 791501FUNCTION ALAMDA(ENE)C-m--ALAMDA COMPUTES THE MEAN FREE PATH OF THE NEUTRON<br/>COMMON/LIL/SEEM(5),SEM(16,2),TABM(16,2)<br/>COMMON/JM/HN,RHC,A,B,G<br/>COMMON PROB(5),TAB(200,5),SE(200,5),SEE(5)<br/>CALL PROBA(ENE)<br/>IF (ENE-0.09)24,23,2323 DO 22 I=1.522 SEE(I)=SE(IFIX(ENE*10.+0.5001),I)<br/>ALAMDA=1./(HN*(SEE(1)*(SEE(2)*SEE(3)*SEE(4)*SEE(5))/RHG))<br/>GO TO 2524 DO 21 I=1.221 SEEM(I)=SEM(IFIX((ENE*.01)*100.+.5001),I)<br/>ALAMDA=1./(HN*SEEM(1)*(SEEM(2)/RHC))25 CONTINUE<br/>RETURN<br/>END
```

8

0

v

.

```
11/16/27
```


CODE=1 OR 2 IF THE INCIDENCE IS PERP.OR PARAL. 2.00 SCINTILLATOR RADIUS(CM) 6.000 -HALF-HEIGHT(CM) 3.050 NUMBER OF HISTORIES 40000. CUT-OFF ENERGY(MEV) 0.020 ENERGETIC THRESHOLD(MEV) 0.900 INITIAL ENERGY(MEV) 2.70 X ELASTIC SCATTERING ON HYDROGEN 45.26 X ELASTIC SCATTERING ON CARBON 25.68 X INELASTIC SCATTERING ON CARBON 0.00 X ESCAPED NEUTRONS 33.05 X EFFICIENCY 30.40 X ERGOR 0.91

INITIAL ENERGY(MEV) 14.50 X ELASTIC SCATTERING ON HYDRUGEN 20.27 X ELASTIC SCATTERING ON CARBON 18.77 X INELASTIC SCATTERING ON CARBON 9.03 X ESCAPED NEUTRONS 56.97 X EFFICIENCY 20.89 X ERROR 1.09

Kiadja a Központi Fizikai Kutató Intézet Felelős kiadó: Szegő Károly Szakmai lektor: Kardon Béla Nyelvi lektor: Harvey Shenker Példányszám: 310 Törzsszám: 79-762 Készült a KFKI sokszorositó üzemében Budapest, 1979. szeptember hó

MTA

*

62. FJ2