KFKI-1978-64

E11 TK 61.180

Т. КАТОНА

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ОПРЕДЕЛЕНИЯ Состояния теплоносителя на основании анализа флуктуаций местной температуры среды

Hungarian Academy of Sciences

1978 DEC 2 9

BUDAPEST

CENTRAL RESEARCH INSTITUTE FOR PHYSICS

KFKI-1978-64

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ОПРЕДЕЛЕНИЯ СОСТОЯНИЯ ТЕПЛОНОСИТЕЛЯ НА ОСНОВАНИИ АНАЛИЗА ФЛУКТУАЦИЙ МЕСТНОЙ ТЕМПЕРАТУРЫ СРЕДЫ

and a second and the second and the second second

Т. Катона

HU ISSN 0368 5330 ISBN 963 371 449 4

AHHOTALINS .

В настоящей работе анализируется взаимосвязь между состоянием теплоносителя и флуктуаций местной температуры среды. В качестве характеристики флуктуации температуры выбрана функция плотности вереоятности. Приводятся кривые плотности вероятности флуктуаций местной температуры, полученные экспериментально в различных состояниях теплоносителя и дается качественный анализ результатов. Результаты экспериментов свидетельствуют о тесной зависимости характера флуктуаций местной температуры среды от состояния её таким образом кажется возможным использовать для диагностики состояния теплоносителя анализ флуктуаций температуры.

ABSTRACT

In the paper the connection between the coolant state and local temperature fluctuation is analysed.Probability-density function is applied to characterise the temperature fluctuations.The probability-density functions and their qualitative analysis is given, measured in different coolant states. According to the measurements, the characteristics of local temperature fluctuations are in strong correlation with the coolant state, so the coolant state diagnostics is possible on the basis of the temperature fluctuations.

KIVONAT

A dolgozatban a hütőközeg-állapot és a lokális hőmérséklet fluktuációja között meglévő kapcsolat elemzésével roglalkozunk.A hőmérsékletfluftuációk jellemzésére a valószinüségi sürüségfüggvényt használjuk.Bemutatjuk a különböző hütőközegállapotokban mért hőmérsékletfluktuációk valószinüségi sürüségfüggvényét és megadjuk azok kvalitativ elemzését.A mérési eredmények azt mutatják, hogy a lokális hőmérséklet fluktuációjának jellege szoros kapcsolatban van a hütőközegállapottal és igy a hőmérsékletfluktuációk alapján lehetőség van a hütőközegállapot diagnosztizálására.

Введение

Одним из эффективных и перспективных методов исследования проблем физики кипения и двухфазного течения является измерение и анализ флуктуаций физических параметров среды. в том числе флуктуаций температуры. В последние годы проделано в этой области немало работ (см. напр. /1,2,3/). Эти работы, а также успехи в области анализа шумов различных физических параметров ЯЭУ (напр. /4/) дают некое обоснование для рассмотрения возможности диагностики состояния теплоносителя в активной зоне реактора на основании измерения и анализа флуктуаций температуры. В случае реакторов типа ВВЭР информация о состоянии теплоносителя в том или ином канале активной зоны при различных режимах эксплуатации может оказаться полезной с точки зрения обеспечения надежности и безопасности установки. В связи с этим исследование возможности идентификации состояния теплоносителя на основании температурных флуктуаций может оказаться практически интересным.

В настоящей работе приводятся результаты экспериментов проведенных с целью выяснения взаимосвязи между состоянием теплоносителя и характером флуктуаций местной температуры. В отличии от работ /I,2,3/, направленных на выяснение физической природы кипения и двухфазного течения, применялись вместо микротермопар, очехлованные изолированные термопары диаметром 0.8 мм, которые соответствуют представлениям о практических требованиях диагностики. В качестве характеристики температурных флуктуаций была выбрана функция плотности вероятности. Дается качественный анализ зависимости формы кривых плотности вероятности флуктуаций местной температуры от состояния среды.

Короткое описание экспериментов

Эксперименты были проведены на теплофизическом стенде NVH ЦИФИ. Измерительным участком служила труба с внутренним диаметром IO мм, что соответсвует эквивалентному гидравлическому диаметру ячейки тепловыделяющей сборки ВВЭР-440. Равномерный электрический обогрев осуществлялся непосредственно, длина обогрева была 2500 мм.

Для детектирования флуктуаций температуры теплоносителя использовались очехлованные изолированные термопары диаметром 0.8 мм. Расположение термопар, а также схема измерения показана на рис. І. Обработка сигналов осуществлялась анализатором Юлетт-Паккард.

Эксперименты проводились при условиях близких к реакторным: давление 90-100 бар, температура на входе 160-180⁰С, массовый поток 1300-1900 кг/м²сек.

Экспериментальные результаты

А. Однофазное течение

При номинальном режиме эксплуатации ВВЭР теплоноситель находится в однофазном состоянии, кроме нескольких каналов зоны где возможно поверхностное кипение. Исходя из этого рассматривался случай однофазного течения при различных значениях мощности обогрева. Полученные при этом результаты служили основой сравнения при дальнейшем анализе.

При однофазном течении, как это показывает кривая плотности вероятности (см. рис. 2), флуктуация местной температуры среды вызвана прежде всего турбулентностью течения. Температура среды распределена по закону близко к нормальному т.е. можно записать функцию плотности в форме

 $f(T) = \frac{1}{6_{0.\phi} \sqrt{2s_{1}}} exp\left(-\frac{(T - \overline{T_{34c}})^{2}}{26_{0.\phi}^{2}}\right)$

где 6.4 - среднее квадратичное отклонение от математического ожидания \overline{T}_{m} .

Кривая находится в соответствии с предположением о характере турбулентных флуктуаций температуры :

Где $T'(\vec{x},t) = \overline{T}_{m}(\vec{x}) + T'(\vec{x},t)$ где $T'(\vec{x},t) = 0$

Б. Состояние начала недогретого кипения

Перед анализом экспериментальной кривой плотности вероятности, полученной при наступлении недогретого кипения, рассмотрим для этого случая характер плотности вероятности местной температуры теоретически.

Предположим, что на выходе из равномерно-обогреваемого канала имеется недогретое кипение. Обозначим через $n_R(\vec{x},t)$ (или в стационарном случае $n_R(\vec{x})$) число паровых пузырей радиуса R в объеме dV в точке \vec{x} . Как показано в работах /5,6/ можно записать дифференциальное уравнение в частных производных, решение которого – совместно с уравнением энергии – при соответствующих граничных условиях даёт $n_R(\vec{x})$ т.е. распределение пузырей по сечению канала.

Запишем $n_{R}(\vec{x})$ в следующей форме $n_{R}(\vec{x}) = h(\vec{x}) \cdot f(R)$

где n(x) - число пузырей в единице объема

f(R) – функция плотности распределения пузырей по радиусам.

При такой записи надо иметь ввиду, что f(R) в общем случае зависит от пространственных координат.

Согласно определению $h_{R}(\vec{x})$ можем записать местное объемное паросодержание следующим образом:

 $\int h_{R}(\vec{x}) \left(\frac{4}{3} \operatorname{fr} R^{3}\right) dR = n(\vec{x}) \int \left(\frac{4}{3} \operatorname{fr} R^{3}\right) f(R) dR = h(\vec{x}) \overline{V_{n}} = \alpha(\vec{x})$

- 3 -

где V_n - средний объем пузырей.

В дальнейшем рассмотрим как должно отражаться появление паровых пузырей в сигнале местной температуры, иными словами как меняется функция плотности распределения температуры по сравнению со случаем без кипения.

Исходим из следующих предположений:

- распределение температуры по сечению канала пренбрежимо мало возмущается с появлением небольшого количества пузырей пара;
- пузыри маленькие по радиусу и сферические;
- флуктуация температуры жидкой фазы имеет неизменные вероятностные характеристики с появлением небольшого количества паровых пузырей.

На основании этих предположений можем сказать, что детектор в точке 🕺 соприкосаясь с жидкой фазой в момент t фиксирует температуру T = T, с вероятностью

$$P_1(T \leq T_1) = \int f_{ave}(T) dT$$

где $f_{m}(\tau)$ плотность распределения температуры жидкой фазы, т.е. функция известная нам из эксперимента "без кипения".

При недогретом кипении может оказаться, что детектор в точке \vec{x} в момент t соприкосается с паровым пузырем радиуса R, т.е. фиксирует температуру насыщения соответствующую давлению внутри пузыря. Предположим, что температура пара внутри пузыря может определяться в зависимости от радиуса по формуле /8/

$$T_n(R) = T_s e \times p\left(\frac{2e}{R} \frac{v_{pg}}{h_{fg}}\right) = g(R)$$

Предполагая известным плотность распределения f(R)(см. по этой теме /7/) можно определить функцию плотности вероятности температуры T_{II} как

- 4 -

 $f_n(T) = \frac{1}{g'\left(\frac{26}{\ln T_n/T_s} \frac{v_{fg}}{h_{fg}}\right)} f\left(\frac{26}{\ln T_n/T_s} \frac{v_{fg}}{h_{fg}}\right)$

- 5 -

Это означает, что детектор соприкасаясь с паровым пузырем дает температуру T = T, с вероятностью

$$F_2\left(T \leq T_1\right) = \int_0^T f_n\left(T\right) dT$$

Полная вероятность события Т≤Т, при недогретом кипении записывается как

$$P(T = T_1) = P_{\mathcal{H}} \int_{0}^{t_1} f_{\mathcal{H}}(T) dT + P_n \int_{0}^{t_1} f_n(T) dT$$

- где р_ж вероятность соприкосновения детектора с жидкой фазой;
 - р_П вероятность соприкосновения детектора с паровым пузырем.

Так как $p_{\pi}+p_{\Pi}=$ I, достаточно определить p_{Π} . Для этого рассмотрим интервал времени Δt и определим p_{Π} следующим образом:

р_{II}= <u>сумм. время соприкосновения</u> пузырей с детектором заΔt

Можно показать, что р_П= ((я), при этом учитывать надо, что детектор – здесь принят точечным – при соприкосновении с пузырем может пройти в нем путь 0≤ 5≤2R со скоростью и_n ≥ и_ж.

Таким образом получим для полной вероятности события Т = Т, 7, 7, (

$$P(T \leq T_{4}) = (1 - \overline{\alpha}) \int f_{m}(T) dT + \overline{\alpha} \int f_{n}(T) dT$$

а плотность вероятности будет

$$f(T) = (I - \overline{\alpha}) f_{m}(T) + \overline{\alpha} f_{n}(T)$$

Так как местная температура жидкой фазы при недогретом кипении имеет среднее значение T_ж - T_s, а средняя температура паровой фазы T_п ~ T_s, функция f(T) будет иметь два пика, один при Тж и один при Тп.

На основании данных выкладок и результатов работ /I,2/ следовало бы получить соответствующие результаты.

На рис. З показана экспериментальная кривая плотности вероятности местной температуры при наступлении недогретого кипения. Как видно эта кривая существенно отличается от ожидаемой. Характер кривой на рис. З как бы свидетельствует о том, что местная температура при начале кипения также как и при однофазном течении распределена примерно одинаково по нормальному закону. Надо отметить однако, что среднее квадратичное отклонение при недогретом кипении существенно больше чем в однофазном случае.

Рассмотрим здесь причины отклонения кривой на рис. З от теоретически-ожидаемой.

Одной из этих причин является сам детектор температуры, т.е. применяемая термопара диаметром 0.8 мм. Эту термопару уже далеко нельзя считать точечной т.е. она фиксирует некую среднюю по поверхности температуру, а не местную температуру в точке. С другой стороны изна своего относительно большого размера (массы), а также из-за конструктивных особенностей (горячий спай изолирован от чехла тонким слоем воздуха) термопара обладает большой термической инерционностью т.е. она не успевает следить за быстрым изменением температуры и сглаживает сигнал. Инерционность термопары зависит также от интенсивности теплообмена между горячим спаем и средой. Как известно интенсивность теплообмена паром и спаем ниже чем в случае омывания с водой. В нашем случае одиночные паровые пузыри могут иметь контакт с детектором с продолжительностью несколько мсек. За это время горячий спай не успевает нагреться тем более, что он окружен при этом еще "холодной" водой. Из этого следует, что характеристики применяемого детектора фактически исключают возможность получения теоретически предпологаемого результата.

Следует однако проанализировать причину увеличения среднеквадратичного отклонения, наблюдаемого на рис. З по сравнению с кривой "без кипения" на рис. 2.

Надо подчеркнуть, что причин для этого можно указать несколько и все они связаны с самим теплофизическим характером недогретого кипения, и действуют одновременно.

Во первых рассмотрим процесс недогретого кипения со стороны теплообмена. Тепловой поток передаваемый поверхностью жидкости можно записать в форме суммы двух составляющих /9/:

905щ = 9конв + 9кип Где 905щ - суммарный тепловой поток

- 9 коне тепловой поток за счет конвекции на поверхности где нет паровых пузырей
- 9 кил тепловой поток за счет пузырей в форме скрытой теплоты парообразования и в следствии уноса части перегретой пленки жидкости.

В узком смысле слова **9**05 м нельзя считать постоянным по времени если даже процесс в общем является стационарным. Это означает, что при стационарном случае среднее значение **9**05 м взятое на достаточно большом интервале времени является константой в течении эксперимента. Однако, **9**05 м нужно представить как

900m (t) = 900m + 9'(t)

Рассмотрим причины, вследствии которых имеется флуктуация q'(t).

Парообразование в одном ядре поверхности при постоянных во времени условиях можно считать регулярным процессом. Однако, число паровых пузырей генерируемых на единице поверхности dF за время dt является случайной функцией времени. Это объясняется с одной стороны тем, что число активных ядер парообразования вследствии флуктуации давления меняется по времени. С другой стороны активные ядра парообразования имеют некоторое распределение по размерам, что накладывается на время необходимое для образования пузыря и на частоту образования. В связи с этим чисто интуитивно можно предположить, что

- 7 -

количество паровых пузырей генерируемых на поверхности dF за dt подчиняется закону Пуассона (см. ещё /IO/) т.е.

$$P(N=k) = e^{-a} \frac{a^k}{k!}$$

где α параметр закона Пуассона, т.е. математическое ожидание числа паровых пузырей генерируемых на единицу поверхности dF за время dt. Условие a = const в течении процесса означает, что средняя скорость генерации паровых пузырей постоянная что соответствует требованиям стационарности.

Случайный характер процесса парообразования находит непосредственное отражение в тепловом потоке, так и в составляющей $q_{\kappa un}$ так и в $q_{\kappa o + 6}$, что зависит от величины поверхности занятых паровыми пузырями.

Отсюда очевидно, что температура среды должна колебаться так как сам тепловой поток колебается. Среднее математическое отклонение здесь должно быть больше чем в случае однофазного течения так как в последнем имеются флуктуации теплового потока в первую очередь за счет турбулентности.

Вторая причина усиленной флуктуации температуры при недогретом кипении связана с интенсивной турбулентностью течения на которую накладывается еще возмущение вызванное гетерогенностью потока из-за наличия паровых пузырей. Как показывают эксперименты /II/ распределение температуры в канале характеризуется наибольшим градиентом по радиусу как раз при кипении в состоянии глубокого недогрева среды см. рис. 8.

Как известно из феноменологической теории турбулентности, тепловой поток турбулентности пропорционален градиенту средней местной температуры, а интенсивность флуктуаций теплового потока а также температуры тоже зависят от температурного градиента /I2/.

Третья причина связана с процессом детектирования. Так как размеры детектора сравнительно велики он фиксирует некую усредненную вокруг своего горячего спая температуру. Здесь мы имеем аналогичное положение как в случае теплоотвода от стенки. Детектор имеет контакт с некоторым объемом $V_{\mathbf{A}}$ среды. Средняя температура этого объема, а также коэффициент теплоотдачи между средой и детектором зависят от количества паровых пузырей находящихся в $V_{\mathbf{A}}$ в момент t. При небольшом значении локального объемного паросодержания число паровых пузырей и вместе с этим средняя температура в $V_{\mathbf{A}}$ меняется во времени. Здесь мы тоже можем предположить что число паровых пузырей в объеме $V_{\mathbf{A}}$ подчиняется закону Пуассона т.е.

$$P(m=k) = e^{-\frac{m}{m}} \frac{(m)^{k}}{k!}$$

где *m* – параметр закона Пуассона что равен математическому ожиданию числа пузырей в V_д.

Величину то можно связать со средним местным объемным паросодержанием следующим образом:

$$\overline{m} = \overline{\alpha} \frac{V_{a}}{\overline{V}_{n}}$$

Все эти причины действуют одновременно при недогретом кипении и вызывают сильное увеличение среднего квадратичного отклонения флуктуаций местной температуры. С ростом истинного массового паросодержания т.е. по мере приближения к равновесному состоянию эти факторы действуют по разному.

В первую очередь теплообмен на поверхности парообразования стабилизируется по мере приближения к равновесному кипению. Это можно проиллюстрировать также на предполагаемом законе распределения числа генерированных паровых пузырей на поверхности dF за dt. Как известно с ростом параметра распределения Пуассона распределение все больше приближается к нормальному. Используя формулу Стирлинга можем писать:

$$e^{-\alpha} \frac{a^{k}}{k!} \approx \frac{1}{\sqrt{2\pi a}} e^{-\frac{(k-\alpha)^{2}}{2\alpha}}$$

где среднее квадратичное отклонение будет в Та.

Среднее квадратическое отклонение числа пузырей относительно его среднего значения постоянно уменьшается. Из этого следует, что эффект вызванный со случайным характером генерации пара становится относительно меньшим.

Как мы видели на рис. 8 распределение температуры по сечению канала становится все больше пологим по мере приближения к равновесному кипению, а температура приближается при этом по всему сечению к температуре насыщения. В связи с этим все меньше влияет на флуктуации местной температуры среды напор между температурой ядра потока и температурой перегретотого пограничного слоя. Это действует в сторону уменьшения интенсивности температурных флуктуаций.

Подобное можно сказать о влиянии "усреднения" температуры по объему V_д в окрестности детектора. Пузыри пара уносят часть перегретого пограничного слоя, таким образом они оказывают сильное возмущение в местной "усредненной" по V_д температуре в связи с большой разностью между температурой недогретой жидкости и захваченной пузырями плёнки. Эта разность по мере уменьшения недогрева снижается, что приводит к уменьшению амплитуды флуктуаций.

Об общем влиянии этих факторов в некоторой мере позволяют судить результаты работы /I3/см. рис. 6.

Развитое объемное кипение

На рис. 4 и 5 показаны кривые плотности вероятности флуктуаций местной температуры при развитом кипении. Данные случаи отличаются только по величине истинного объемного паросодержания на выходе из участка ($\alpha = 0.6$ и $\alpha = 0.84$).

Как видно на кривых, распределение температуры и в этих случаях близко к нормальному. Надо отметить однако, что дисперсия в этом случае значительно меньше чем она была при недогретом кипении. Это объясняется тем, что паровая и жидкая фаза находится в термодинамическом равновесии "насыщения". Температура при этом равняется температуре насыщения по всему сечению за исключением только тонкого пристенного слоя.

Согласно работе /I3/ (см. рис. 6) интенсивность температурных флуктуаций при достижении равновесного кипения резко уменьшается, что подтверждает наше рассуждение.

Эксперименты показали (и эта частично видно на рис. 6) что в предкризисном состоянии дисперсия температурных флуктуаций опять начинает расти по сравнению с дисперсией при равновесном кипении /I4/.

Заключение

На основании приведенных экспериментальных результатов кажется, что существует однозначная взаимосвязь между флуктуациями местной температуры и состоянием теплоносителя. Оказывается что эту взаимосвязь можно выявить с помощью обычной термопары и директной обработки сигналов. В качестве характеристики температурных флуктуаций можно применить функцию плотности вероятности. Кажется также, что данный метод слишком грубый для анализа двухфазных потоков. Однако, возможно получить качественные результаты на базе которых можно определить состояние теплоносителя для диагностических целей. Применяемость метода в диагностике подтверждается еще простотой метода измерения и обработки.

Для того, чтобы сделать выводы о применяемости данной методики определение состояния теплоносителя для диагностических целей, требуется еще дальнейшая детальная отработка методики и более строгий анализ результатов. Следует определить порог чувствительности метода т.е. определить содержание пара при котором возможно однозначно идентефицировать состояние недогретого кипения. Необходимо рассмотреть влияние места расположения горячего спая на чувствительность метода. Как показывает опыт /I5/ интенсивность температурных флуктуаций при недогретом кипении зависит от расстояния от обогреваемой стенки канала, что влияет на выбор места термопары.

- II -

Следует также рассмотреть возможность применения данной методики для предсказания изменений в состоянии теплоносителя. При дальнейших исследованиях необходимо вести анализ температурных флуктуаций параллельно с другими методами исследования двухфазных потоков, например с гамма-просвечиванием.

Литература

- /l./ N.Afgan, M.Stefanovic, L.J.Jovanovic, V.Pislar: Determination of the Statistical Characteristics of Temperature Fluktuation in Pool Boiling Int. Journal of Heat and Mass Transfer Vol. 16 pp. 249-256 /1973/
- /2./ J.M. Delhaye, R.Semeria, J.C.Flamand: Void Fraction and Vapor and Liquid Temperatures: Lôcal Measurements in Two-Phase Flow Using a Microtermocouple Journal of Heat Transfer August 1973

á

É

1

- /3./ Owen C. Jones, Jr. and Jean-Marc Delhaye: Transient and Statistical Measurements Techniques for Two-Phase Flows: A Critical Review Int. J. Multiphase Flow Vol. 3 pp-89-116 1976
- /4./ G.Kosály, Lj.Kostic, L.Miteff, G.Varadi, K.Behringer: Investigation of the Local Component of the Neutron Noise in a BWR and its Application to the Study of Two-Phase Flow SMORN-11 Sept. 19-23, 1977 Gatlinburg, Tennessee U.S.A.
- /5./ Z.Techy, L.Szabados: A theoretical basis of bubble motion in reactor channels Atomkernenergie Bd. 23 /1974/
- /6./ William T. Sha : A Generalized Local Boiling Void Model for Light-Water Reactor System Nuclear Science and Engineering 44, 291-300 /1971/
- /7./ O.Sandervag: Thermal Non-Equilibrium and Bubble Size Distributions in an Upward Steam-Water Flow Kjeller Report /1971/

- /8./ Rohsenow W.M., Hartnett J.P. : Handbook of Heat Transfer Mc Graw Hill New-York /1973/
- /9./ Maróti László : Reaktor forraló csatorna termohiaraulikai számitásā KFKI-1977-53
- /l0./ R.F.Gartner: Distribution of Active Sites in the Nucleate Boiling of Liquids.Presented at the Fifth National Heat Transfer Conference A.I.Ch.E-A.S.M.E. Houston,Texas 1962
- /11./ Г.Г. Бартоломей, В.М. Чамтурия: Труды ЦКТИ вып. IOI, 1970 г. Взято из работы: В.В. Сергеев и др. : Применение термопар для изучения некоторых характеристик неравновесных двухфазных потоков ФЭИ -589 Обнинск, 1975.
- /12./ И.О. Хинце: Турбулентность Государственное Издательство физико-математической литературы Москва, 1963 г.
 - /13./ Г. Блументритт, М. Вернер, П. Виңдберг, Т. Катона: Экспериментальное исследование температурного шума при одно-и двухфазном течении водяного теплоносителя Доклад на II Семинаре по теплофизике ВВЭР стран-членов СЭВ, Будапешт, I978 г.
- /14./ П. Виңдберг, Т. Катона: Исследование состояния теплоносителя на основании флуктуаций температуры со сопоставлением с результатами гамма-просвечивания. Неопубликовано.

/15./ T.E.Lippert, R.S.Dougall: A Study of the Temperature Profiles Measured in the Thermal Sublayer of Water, Freon-113, and Methyl Alcohol During Pool Boiling Journal of Heat Transfer, August 1968

Обозначения

- f.(T) плотность распределения температуры паровых пузырей
- f.(T) плотность распределения температуры жидкости
- f(T) плотность распределения температуры смеси
- f(R) плотность распределения радиуса пузырей
- h, -h'-h" разность удельных энтальпий на линии насыщения
 - h(x) полное число пузырей в единице объёма
 - q'(t) флуктуация теплового потока при кипении
 - радиус паровых пузырей
 - 7 температура

R

- **Т**_n температура пара
- Тж температура жидкости
- T_s температура насыщения
- Un скорость пара
- иж скорость жидкости
- Vn средний объём паровых пузырей
- V<u>л</u> объём детектирования
- Uf = U'-U" разность удельных объёмов на линии насыщения
 - ∠(ズ) местное объёмное паросодержание
 - коэффициент поверхностного натяжения

Скип - среднее квадратическое отклонение числа пузырей

-16-

Ű,

9

3

Кривая плотности вероятности Т_ж при однофазном течении

Кривая плотности вероятности Тж при наступлении недогретого кипения

кипении

CL ≈ 0.6

Кривая плотности вероятности Т_{см} при кипении С_{вых} = 0.84

.

puc. 8

Kiadja a Központi Kizikai Kutató Intézet Felelős kiadó: Gyimesi Zoltán Szakmai lektor: Szabados László Nyelvi lektor: Jánossy János Sebestyén Példányszám: 250 Törzsszám: 78-832 Készült a KFKI sokszorosító üzemében Budapest, 1978. szeptember hó 1

Ve

*

62.588